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Abstract

We propose post-processing method for
enriching not only word representation but
also its vector space using semantic lex-
icons, which we call extrofitting. The
method consists of 3 steps as follows: (i)
Expanding 1 or more dimension(s) on all
the word vectors, filling with their repre-
sentative value. (ii) Transferring seman-
tic knowledge by averaging each repre-
sentative values of synonyms and filling
them in the expanded dimension(s). These
two steps make representations of the syn-
onyms close together. (iii) Projecting the
vector space using Linear Discriminant
Analysis, which eliminates the expanded
dimension(s) with semantic knowledge.
When experimenting with GloVe, we find
that our method outperforms Faruqui’s
retrofitting on some of word similarity
task. We also report further analysis on
our method in respect to word vector di-
mensions, vocabulary size as well as other
well-known pretrained word vectors (e.g.,
Word2Vec, Fasttext).

1 Introduction

As a method to represent natural language on com-
puter, researchers have utilized distributed word
representation. The distributed word representa-
tion is to represent a word as n-dimensional float
vector, hypothesizing that some or all of the di-
mensions may capture semantic meaning of the
word. The representation has worked well in
various NLP tasks, substituting one-hot represen-
tation (Turian et al., 2010). Two major algo-
rithms learning the distributed word representa-
tion are CBOW (Continuous Bag-of-Words) and
skip-gram (Mikolov et al., 2013b). Both CBOW

and skip-gram learn the representation using one
hidden neural networks. The difference is that
CBOW learns the representation of a center word
from neighbor words whereas skip-gram gets the
representation of neighbor words from a center
word. Therefore, the algorithms have to depend
on word order, because their objective function
is to maximize the probability of occurrence of
neighbor words given the center word. Then a
problem occurs because the word representations
do not have any information to distinguish syn-
onyms and antonyms. For example, worthy and
desirable should be mapped closely on the
vector space as well as agree and disagree
should be mapped apart, although they occur on a
very similar pattern. Researchers have focused on
the problem, and their main approaches are to use
semantic lexicons (Faruqui et al., 2014; Mrkšić
et al., 2016; Speer et al., 2017; Vulić et al., 2017;
Camacho-Collados et al., 2015). One of the suc-
cessful works is Faruqui’s retrofitting1, which can
be summarized as pulling word vectors of syn-
onyms close together by weighted averaging the
word vectors on a fixed vector space (it will be
explained in Section 2.1). The retrofitting greatly
improves word similarity between synonyms, and
the result not only corresponds with human intu-
ition on words but also performs better on docu-
ment classification tasks with comparison to origi-
nal word embeddings (Kiela et al., 2015). From
the idea of retrofitting, our method hypothesize
that we can enrich not only word representation
but also its vector space using semantic lexicons2.
We call our method as extrofitting, which retrofits
word vectors by expanding its dimensions.

1The retrofitting codes are available at
https://github.com/mfaruqui/retrofitting

2Our codes are available at
https://github.com/HwiyeolJo/
Extrofitting

https://github.com/mfaruqui/retrofitting
https://github.com/HwiyeolJo/Extrofitting
https://github.com/HwiyeolJo/Extrofitting
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2 Backgrounds

2.1 Retrofitting
Retrofitting (Faruqui et al., 2014) is a post-
processing method to enrich word vectors us-
ing synonyms in semantic lexicons. The algo-
rithm learns the word embedding matrix Q =
{q1, q2, . . . , qn}with the objective function Ψ(Q):

Ψ(Q) =
n∑
i=1

[α||qi− q̂i||2 +
∑

(i,j)∈E
βij ||qi− qj ||2]

(1)
where an original word vector is qi, its synonym
vector is qj , and inferred word vector is q̂i. The hy-
perparameter α and β control the relative strengths
of associations. The q̂i can be derived by the fol-

lowing online update: q̂i =

∑
j:(i,j)∈E

βijqj+αiqi∑
j:(i,j)∈E

βij+αi

2.2 Linear Discriminant Analysis (LDA)
LDA (Welling, 2005) is one of the dimension re-
duction algorithms that project data into different
vector space, while minimizing the loss of class in-
formation as much as possible. As a result, the al-
gorithm finds linear vector spaces which minimize
the distance of data in the same class as well as
maximize the distance among the different class.
The algorithm can be summarized as follows:
Calculating between-class scatter matrix SB
and within-class scatter matrix SW .
When we denote data as x, classes as c, SB and
SW can be formulated as follows:

SB =
∑
c

(µi − µ)(µi − µ)T , (2)

SW =
∑
c

∑
i∈c

(xi − µc)(xi − µc)T , (3)

where the overall average of x is µ, and the partial
average in class i is denoted by µi.
Maximizing the objective function J(w).
The objective function J(w) that we should maxi-
mize can be defined as

J(w) =
|UTSBU |
|UTSWU |

, (4)

and its solution can be reduced to find U that satis-
fies S−1W SB = UΛUT . Therefore, U is derived by
eigen-decomposition of S−1Wi

SB; choosing q eigen
vectors which have the top-q eigen values, and
composing transform matrix of U .
Transforming data onto new vector space
Using transform matrix U , we can get transformed
data by y = UTx

3 Enriching Representations of Word
Vector and The Vector Space

3.1 Expanding Word Vector with
Enrichment

We simply enrich the word vectors by expanding
dimension(s) that add 1 or more dimension to orig-
inal vectors, filling with its representative value ri,
which can be a mean value. We denote an original
word vectors as qi = (e1, e2, · · · , eD) where D de-
notes the number of word vector dimension. Then,
the representative value ri can be formulated as
ri = mean(e1, e2, · · · , eD). Intuitively, if we ex-
pand more additional dimensions, the word vec-
tors will strengthen its own meaning. Likewise,
the ratio of the number of expanded dimension to
the number of original dimensions will affect the
meaning of the word vectors.

3.2 Transferring Semantic Knowledge
To transfer semantic knowledge on the represen-
tative value ri, we also take a simple approach of
averaging all the representative values of each syn-
onym pair, substituting each of its previous value.
We get the synonym pairs from lexicons we intro-
duced in Section 3. The transferred representative
value r̄i can be formulated as r̄i =

∑
s∈L rs/N

where L refers to the lexicon consisting of syn-
onym pairs s, and N is the number of synonyms.
This manipulation makes the representation of the
synonym pairs close to one another.

3.3 Enriching Vector Space
With the enriched vectors and the semantic knowl-
edge, we perform Linear Discriminant Analysis
for dimension reduction as well as clustering the
synonyms from semantic knowledge. LDA finds
new vector spaces to cluster and differentiate the
labeled data, which are synonym pairs in this ex-
periment. We can get the extrofitted word embed-
ding matrix w̄ as follows:

Q̄ = LDA(Q⊕ r̄, l) (5)

where Q is the word embedding matrix composed
of word vectors q and l is the index of the synonym
pair. We implement our method using Python2.7
with scikit-learn (Pedregosa et al., 2011).

4 Experiment Data

4.1 Pretrained Word Vectors
GloVe (Pennington et al., 2014) has lots of varia-
tions in respect to word dimension, number of to-
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MEN-3k WS353 SL-999 RG-65 #Extrofitted #Vocab.
glove.6B.300d 0.7486 0.5170 0.3705 0.7693 - 0.4M
+ PPDB 0.7949 0.5826 0.4387 0.8177 67,729 -
+ WordNetsyn 0.7884 0.5805 0.4409 0.7943 55,388 -
+ WordNetall 0.7893 0.5714 0.4353 0.8010 55,388 -
+ FrameNet 0.7840 0.5837 0.4376 0.8187 7,592 -
glove.42B.300d 0.7435 0.5516 0.3738 0.8172 - 1.9M
+ PPDB 0.8292 0.6613 0.4896 0.8362 76,631 -
+ WordNetsyn 0.8230 0.6605 0.4884 0.8634 70,411 -
+ WordNetall 0.8223 0.6638 0.4858 0.8561 70,411 -
+ FrameNet 0.8123 0.6448 0.4601 0.8556 7,809 -

Table 1: Spearman’s correlation of extrofitted word vectors for word similarity tasks using semantic
lexicon. Our method improves pretrained GloVe in different vocabulary size.

kens, and train sources. We used glove.6B trained
on Wikipedia+Gigawords and glove.42B.300d

trained on Common Crawl. The other pre-
trained GloVe do not fit in our experiment be-
cause they have different word dimension or are
case-sensitive. We also use 300-dimensional
Word2Vec (Mikolov et al., 2013a) with negative
sampling trained on GoogleNews corpus. Fast-
text (Bojanowski et al., 2016) is an extension
of Word2Vec, which utilizes subword informa-
tion to represent an original word. We used
300-dimensional pretrained Fasttext trained on
Wikipedia (wiki.en.vec), using skip-gram.

4.2 Semantic Lexicons

We borrow the semantic lexicons from
retrofitting (Faruqui et al., 2014). Faruqui
et al. extracted the synonyms from PPDB (Gan-
itkevitch et al., 2013) by finding a word that
more than two words in another language are
corresponding with. Retrofitting also used Word-
Net (Miller, 1995) database which grouped words
into set of synonyms (synsets). We used two
versions of WordNet lexicon, one which consists
of synonym only (WordNetsyn) and the other
with additional hypernyms, hyponyms included
(WordNetall). Lastly, synonyms were extracted
from FrameNet (Baker et al., 1998), which
contains more than 200,000 manually annotated
sentences linked to semantic frames. Faruqui
et al. regarded words as synonyms if the words
can be grouped with any of the frames.

4.3 Evaluation Data

We evaluate our methods on word similarity tasks
using 4 different kinds of dataset. MEN-3k (Bruni

et al., 2014) consists of 3000-word pairs rated
from 0 to 50. WordSim-353 (Finkelstein et al.,
2001) consists of 353-word pairs rated from 0 to
10. SimLex-999 (Hill et al., 2015) includes 999-
word pairs rated from 0 to 10. RG-65 (Ruben-
stein and Goodenough, 1965) has 65 words paired
scored from 0 to 4. MEN-3k and WordSim-353
were split into train (or dev) set and test set, but
we combined them together solely for evaluation
purpose. The other datasets have lots of out-of-
vocabulary, so we disregard them for future work.

5 Experiments on Word Similarity Task

The word similarity task is to calculate Spear-
man’s correlation (Daniel, 1990) between two
words as word vector format. We first apply ex-
trofitting to GloVe from different data sources and
present the result in Table 1. The result shows that
although the number of the extrofitted word with
FrameNet is less than the other lexicons, its per-
formance is on par with other lexicons. We can
also ensure that our method improves the perfor-
mance of original pretrained word vectors.
Next, we perform extrofitting on GloVe in dif-
ferent word dimension and compare the perfor-
mance with retrofitting. We use WordNetall lex-
icon on both retrofitting and extrofitting to com-
pare the performances in the ideal environment
for retrofitting. We present the results in Ta-
ble 2. We can demonstrate that our method out-
performs retrofitting on some of word similar-
ity tasks, MEN-3k and WordSim-353. We be-
lieve that extrofitting on SimLex-999 and RG-
65 is less powerful because all word pairs in
the datasets are included on WordNetall lexicon.
Since retrofitting forces the word similarity to be
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MEN-3k WS353 SL-999 RG-65 Lexicon
glove.6B.50d 0.6574 0.4193 0.2646 0.5948 -
+ Retrofitting 0.6773 0.4121 0.3761 0.7027 WordNetall
+ Extrofitting 0.6876 0.4859 0.2926 0.6743 WordNetall
glove.6B.100d 0.6932 0.4488 0.2975 0.6762 -
+ Retrofitting 0.7052 0.4428 0.4065 0.7863 WordNetall
+ Extrofitting 0.7447 0.5337 0.3733 0.7341 WordNetall
glove.6B.200d 0.7244 0.4866 0.3403 0.7128 -
+ Retrofitting 0.7397 0.4799 0.4415 0.8123 WordNetall
+ Extrofitting 0.7689 0.5416 0.4120 0.7389 WordNetall
glove.6B.300d 0.7486 0.5130 0.3705 0.7693 -
+ Retrofitting 0.7681 0.5232 0.4701 0.8499 WordNetall
+ Extrofitting 0.7893 0.5714 0.4353 0.8010 WordNetall

Table 2: Comparison of Spearman’s correlation of retrofitted or extrofitted word vectors for word simi-
larity tasks. Our method, extrofitting, outperforms retrofitting on MEN-3k and WordSim-353.

Figure 1: Plots of nearest top-100 words of cue words in different post-processing methods. We choose
two cue words; one is included in semantic lexicons (love; left), and another is not (soo; right)

improved by weighted averaging their word vec-
tors, it is prone to be overfitted on semantic lex-
icons. On the other hand, extrofitting also uses
synonyms to improve word similarity but it works
differently that extrofitting projects the synonyms
both close together on a new vector space and far
from the other words. Therefore, our method can
make more generalized word representation than
retrofitting. We plot top-100 nearest words using
t-SNE (Maaten and Hinton, 2008), as shown in
Figure 1. We can find that retrofitting strongly col-
lects synonym words together whereas extrofitting
weakly disperses the words, resulting loss in co-
sine similarity score. However, the result of ex-

trofitting can be interpreted as generalization that
the word vectors strengthen its own meaning by
being far away from each other, still keeping
synonyms relatively close together (see Table 3).
When we list up top-10 nearest words, extrofitting
shows more favorable results than retrofitting. We
can also observe that extrofitting even can be ap-
plied to words which are not included in semantic
lexicons.
Lastly, we apply extrofitting to other well-known
pretrained word vectors trained by different algo-
rithms (see Subsection 4.1). The result is pre-
sented in Table 4. Extrofitting can be also applied
to Word2Vec and Fasttext, enriching their word
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Cue Word Method Top-10 Nearest Words(Cosine Similarity Score)

love

glove.42B.300d
loved(.7745), i(.7338), loves(.7311), know(.7286), loving(.7263),

really(.7196), always(.7193), want(.7192), hope(.7127), think(.7110)

+ Retrofitting
loved(.7857), know(.7826), like(.7781), want(.7736), i(.7707),

feel(.7549), wish(.7549), think(.7491), enjoy(.7453), loving(.7451)

+ Extrofitting
loved(.6008), adore(.5949), hate(.5949), luv(.5562), loving(.5391),

loooove(.5321), looooove(.5233), loveeee(.5195), want(.5171), looove(.5107)

soo

glove.42B.300d
sooo(.8394), soooo(.7938), sooooo(.7715), soooooo(.7359), sooooooo(.6844),

haha(.6574), hahah(.6320), damn(.6247), omg(.6244), hahaha(.6219)

+ Retrofitting
sooo(.8394), soooo(.7938), sooooo(.7715), soooooo(.7359),

haha(.6574), hahah(.6320), omg(.6244), hahaha(.6219), sooooooo(.6189)

+ Extrofitting
sooo(.8329), soooo(.7896), sooooo(.7774), soooooo(.7560), sooooooo(.7256),

soooooooo(.6867), sooooooooo(.6796), soooooooooo(.6517),

tooo(.6493), sooooooooooo(.6423)

Table 3: List of top-10 nearest words of cue words in different post-processing methods. We show cosine
similarity scores of two words included in semantic lexicon (love) or not (soo).

MEN-3k WS353 SL-999 RG-65 #Extrofitted #Vocab.
w2v-google-news 0.7764 0.6156 0.4475 0.7558 - 3.0M
+ PPDB 0.7883 0.5935 0.4799 0.7877 63,825 -
+ WordNetsyn 0.7821 0.6004 0.4741 0.7844 64,248 -
+ WordNetall 0.7782 0.6051 0.4733 0.7782 64,248 -
+ FrameNet 0.7784 0.6025 0.4651 0.7650 7,559 -
wiki.en.vec 0.7654 0.6301 0.3803 0.8005 - 2.5M
+ PPDB 0.7737 0.6363 0.4133 0.7723 69,237 -
+ WordNetsyn 0.7599 0.6326 0.4135 0.7633 70,542 -
+ WordNetall 0.7569 0.6421 0.4093 0.7459 70,542 -
+ FrameNet 0.7594 0.6323 0.4051 0.7740 7,637 -

Table 4: Spearman’s correlation of extrofitted word vectors for word similarity tasks on pretrained word
vectors by Word2Vec and Fasttext. Extrofitting can be applied to other kinds of pretrained word vector.

representations except on WordSim-353 and RG-
65, respectively. We find that our method can dis-
tort the well-established word embeddings. How-
ever, our results are noteworthy in that extrofitting
can be applied to other kinds of pretrained word
vectors for further enrichment.

6 Conclusion

We propose post-processing method for enriching
not only word representation but also its vector
space using semantic lexicons, which we call ex-
trofitting. Our method takes a simple approach
that (i) expanding word dimension (ii) transfer-
ring semantic knowledge on the word vectors (iii)
projecting the vector space with enrichment. We
show that our method outperforms another post-
processing method, retrofitting, on some of word
similarity task. Our method is robust in respect to

the dimension of word vector and the size of vo-
cabulary, only including an explainable hyperpa-
rameter; the number of dimension to be expanded.
Further, our method does not depend on the or-
der of synonym pairs. As a future work, we will
do further research about our method to generalize
and improve its performance; First, we can exper-
iment on other word similarity datasets for gen-
eralization. Second, we can also utilize Autoen-
coder (Bengio et al., 2009) for non-linear projec-
tion with a constraint of preserving spatial infor-
mation of each dimension of word vector.
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