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Abstract

The current study examined the role of
syntactic structure during pronoun resolu-
tion. We correlated complexity measures
derived by the syntax-sensitive Hobbs al-
gorithm and a neural network model for
pronoun resolution with brain activity of
participants listening to an audiobook dur-
ing fMRI recording. Compared to the neu-
ral network model, the Hobbs algorithm
is associated with larger clusters of brain
activation in a network including the left
Broca’s area.

1 Introduction

Approaching the issue of pronoun resolution from
the perspectives of generative linguistics, possible
antecedents for pronouns and reflexives are con-
strained by syntactic structures. For instance, the
classical Binding Theory (Chomsky, 1981) states
that reflexives are bound in their “local domain”
while pronouns are not. 1 For example, “himself”
in (1) has to refer to the subject of the inflectional
phrase (IP) “Bill”, while “him” in (2) cannot refer
to “Bill”.

(1) Johni thinks that [IPBillj always criticizes
himself∗i/j/∗k].

(2) Johni thinks that [IPBillj always criticizes
himi/∗j/k].

Nevertheless, it is still unclear what role the
binding theory play in the cognitive process of

1A “local domain” can be roughly defined as the smallest
IP or NP which contains the predicate that assigns the theta
roles, the complements to which the internal theta roles are
assigned, and the subject to which the external theta role is
assigned.

pronoun resolution. It has been argued that ex-
plicit syntactic structure and the associated pars-
ing algorithms may not be necessary during sen-
tence comprehension (e.g. Frank and Christiansen,
2018). Furthermore, recent neural network models
of coreference resolution (e.g. Clark and Manning,
2016) achieved state-of-the-art results with no ex-
plicit syntactic information.

The current study examined the role of syntactic
information during pronoun resolution by correlat-
ing a complexity measure derived by the syntax-
sensitive Hobbs algorithm (Hobbs, 1977) for pro-
noun resolution with brain activity of participants
listened to an audiobook during fMRI recoding.
The Hobbs algorithm searches for the gender and
number matching antecedent by traversing the
parsed syntactic tree in a left-to-right, breadth-first
order. We compared brain activation associated
with the Hobbs algorithm to that associated with
a neural network model for coreference resolu-
tion (Clark and Manning, 2016) which encodes no
explicit syntactic structures. The results revealed
larger clusters for the Hobbs algorithm than for the
neural network model in the left Broca’s area, the
bilateral Angular Gyrus, the left Inferior Tempo-
ral Gyrus and the left Precuneus. Given the ele-
ments in the Hobbs algorithm including syntactic
constraints and gender/number matching, we in-
terpret these areas as supporting morpho-syntactic
processing during pronoun resolution.

In the following sections, we briefly describe
the Hobbs algorithm and the neural network model
and compare their performance on the text of the
audiobook. We then describe our linking hypothe-
ses for correlating the models with brain activity,
before presenting the methods, results and discus-
sion of the fMRI experiment.
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2 The Hobbs Algorithm

The Hobbs algorithm, originally presented in
Hobbs (1977), depends only on a syntactic parser
plus a morphological gender and number checker.
The input to the Hobbs algorithm includes the tar-
get pronoun and the parsed trees for the current
and previous sentences. The algorithm searches
for a gender and number matching antecedent by
traversing the tree in a left-to-right, breadth-first
order, giving preference to closer antecedents. If
no candidate antecedent is found in the current
tree, the algorithm searches on the preceding sen-
tence in the same order. The steps of the Hobbs
algorithm are as follows:

(1) Begin at the NP node immediately dominating the pro-
noun.

(2) Go up the tree to the first NP or S node encountered.
Call this node X, and call the path used to reach it p.

(3) Traverse all branches below node X to the left of path
p in a left-to-right, breadth-first fashion. Propose as the
antecedent any NP node that is encountered which has
an NP or S node between it and X.

(4) If node X is the highest S node in the sentence, tra-
verse the surface parse trees of previous sentences in
the text in order of recency, the most recent first; each
tree is traversed in a left-to-right, breadth-first manner,
and when an NP node is encountered, it is proposed as
antecedent. If X is not the highest S node in the sen-
tence, continue to step 5.

(5) From node X, go up the tree to the first NP or S node
encountered. Call this new node X, and call the path
traversed to reach it p.

(6) If X is an NP node and if the path p to X did not pass
through the N̄ node that X immediately dominates,
propose X as the antecedent.

(7) Traverse all branches below node X to the left of path p
in a left-to-right, breadth-first manner. Propose any NP
node encountered as the antecedent.

(8) If X is an S node, traverse all branches of node X to the
right of path p in a left-to-right. breadth-first manner,
but do not go below any NP or S node encountered.
Propose any NP node encountered as the antecedent.

(9) Go to step 4.

The Hobbs algorithm conforms to the Binding
Theory as it always searches for the antecedent in
the left of the NP (Principle B: Step 3) and does
not go below any NP or S node encountered (Prin-
ciple A: Step 8). It also respects gender, person,
and number agreement, and captures recency and
grammatical role preferences in the order it per-
forms the search. Hobbs (1977) evaluated his al-
gorithm on 300 examples containing third person
pronouns, and it worked in 88.3% of the cases.
With some selectional constraints on dates and lo-
cation antecedents (i.e., restricting dates and loca-
tion NPs such as “2018” and “school” to be the

antecedent of “it”), the algorithm achieved 91.7%
accuracy. However, the test dataset was limited
in size and the performance degraded when there
were competing antecedents. We propose here to
test its accuracy on a larger dataset including 1499
sentences with 465 third person pronouns.

3 The Neural Network Model

The neural network model for pronoun resolution
is adapted from the neural network model for both
pronominal and nominal coreference resolution
(Clark and Manning, 2016). This model consists
of a mention-pair encoder, a cluster-pair encoder,
a mention-ranking model and a cluster-ranking
model. The mention-pair encoder generates dis-
tributed representations for pronoun-antecedent
pairs, or mention pairs, by passing relevant fea-
tures through a feed-forward neural network. The
cluster-pair encoder generates distributed repre-
sentations for pairs of clusters through a pooling
operation over representations of relevant men-
tion pairs. The mention-ranking model scores the
candidate antecedents to prune the set of possible
antecedent and the cluster-ranking model scores
coreference compatibility for each pair of clusters.

The input layer of the neural network model
consists of a large set of features including word
embeddings for the mention pairs, type and length
of the mentions, linear distance between the men-
tion pairs, etc. (see Table 1). These feature vec-
tors are concatenated to produce an I-dimensional
vector h0(a,m) as the representation for the men-
tion m and the antecedent a. The input layer then
passes through three hidden layers of rectified lin-
ear units (ReLU), and the output of the last hidden
layer is the vector representation for the mention
pair rm(a,m).

hi(a,m) = ReLU(Wihi−1(a,m) + bi)
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then applies a pooling operation over Rm(ci, cj)
to produce a distributed representation for the
cluster pair rc(ci, cj). The mention-ranking model
assigns a score for each mention pair by applying
a single fully connected layer of size one the
mention pair representation rm(a,m). The model
is then trained with the max-margin training
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objective.

sm(a,m) = Wmrm(a,m) + bm

Similarly, the cluster-ranking model assigns a
coreference score for each cluster pair and an
anaphoricity score for mention m (i.e., how likely
mention m has an antecedent). These scores
are used to decide whether mention m should be
merged with one preceding cluster or not during
testing.

sc(ci, cj) = Wcrc(ci, cj) + bc

sNA(m) = WNArm(NA,m) + bNA

Feature Type Description
Word embedding head word

dependency parent
first word
last word
two preceding words
two following words
averaged of the five preceding words
averaged of five following words
all words in the mention
all words in the mention’s sentence
and all words in the mention’s document

Mention type (pronoun/noun/proper name/list)
position in the document
contained in another mention or not
length of the mention in words

Document genre (broadcast news/newswire/web data)
Distance intervening sentences

number intervening mentions
mentions overlap or not

String matching head match
exact string match
partial string match

Table 1: Feature set of the neural network model
(Clark and Manning, 2016).

The neural network model encodes no explicit
syntactic structures, but it captures semantic in-
formation in its word embedding features. It also
incorporates discourse-level information such as
linear distance between the mention pairs across
several sentences, discourse genre, etc. Clark and
Manning (2016) trained the model on the CoNLL-
2012 Shared Task (Pradhan et al., 2012) and it
achieved state-of-the-art results in both the En-
glish and Chinese test set.

The neural network model was evaluated on
both pronominal and nominal coreference reso-
lution, however, pronouns and full noun phrases
(NPs) may rely on very different set of features.
For example, string matching and measures for se-
mantic similarity are powerful features for nom-
inal coreference resolution, but are not applica-
ble for pronoun resolution as word embeddings do

not represent pronouns well. In addition, it has
been argued that pronouns serve a different dis-
course function from that of full NPs in that full
NPs introduce new entities in the discourse and
pronouns maintain the reference (Sanford et al.,
1988). Based on these arguments, it is reasonable
to say that pronoun resolution and full NP corefer-
ence involves different cognitive processes.

4 Evaluating the Models on Text Data

4.1 Text Data
The text data is an English audiobook version
of Antoine de Saint-Exupéry’s The Little Prince.
Within the audiobook text, 1755 pronouns and
3127 non-pronominal entities (4882 mentions in
total) are identified using the annotation tool brat
(Stenetorp et al., 2012; see Figure 1). Reflex-
ives (e.g., “herself”) and possessives (e.g., “his”)
are excluded from the dataset as they have differ-
ent “binding domains” from pronouns according
to the Binding Theory and hence influences per-
formance of the Hobbs algorithm. Pronouns with
sentential antecedents (e.g, the second “it” in the
conversation “That is funny where you live a day
only last a minute.” “It is not funny at all.”), as
well as dummy pronouns (e.g., “it” in “It said in
the book that ...”) are also removed. The result-
ing dataset contains 645 first person pronouns, 302
second person pronouns and 675 third person pro-
nouns (see Table 2).

1st i me we us
505 121 16 3

2nd you
302

3rd she her he him
41 14 268 64
it they them

136 94 58

Table 2: Attestations of each pronoun type in The
Little Prince.

We decided to focus only on the third person
pronouns because they provide gender and number
information that feeds the Hobbs algorithm. In ad-
dition, third person pronouns have been suggested
to differ from first and second person pronouns in
that first and second person pronouns mark prox-
imity in space and third person pronouns are fur-
ther away (Ariel, 1990). Therefore, we further ex-
cluded third person pronouns whose antecedents
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Figure 1: Sample annotations of pronouns and non-pronoun mentions in English, visualized using the
annotation tool brat (Stenetorp et al., 2012).

are first and second person pronouns. The final
test set contains 465 third person pronouns.

4.2 Model Performance

To evaluate performance of the Hobbs algorithm
and the neural network model for third person pro-
noun resolution in The Little Prince, we compared
the predicted antecedents for the 465 third person
pronouns with the correct immediate antecedents.
We considers only the immediate antecedent as the
Hobbs algorithm only propose one antecedent and
does not group the proposed antecedent into clus-
ters. The syntactic trees for the sentences in the
text are parsed by the Stanford PCFG parser (Klein
and Manning, 2003).

For the neural network model, we used the pre-
trained weights from Clark and Manning (2016)
to output a coreference score for all the poten-
tial pronoun-antecedent pairs. If the score of the
immediate antecedent ranks among top three of
all the candidate antecedents, the prediction is
marked as correct.

Table 3 shows the accuracy of the Hobbs al-
gorithm and the neural network model for third
person pronouns in The Little Prince. The neu-
ral coreference model only achieves a 0.4 accu-
racy. Compared with the high F1 score (0.74)
for pronoun and full NP coreference resolution
on the CoNLL-2012 English test data (Clark and
Manning, 2016), this low accuracy confirmed that
pronominal and nominal coreference resolution
rely on different feature sets. String matching and
semantic similarity, for example, may be less pow-
erful for pronominal resolution.

On the other hand, the Hobbs algorithm identi-

fies the correct immediate antecedent for 60% of
the third person pronouns. Given the elements of
the Hobbs algorithm, it is suggested that linguisti-
cally motivated features, especially syntactic con-
straints and gender/number cues, may be more rel-
evant for third person pronoun resolution in En-
glish.

Accuracy
Hobbs Algorithm 0.60
Neural Network 0.40

Table 3: Performance of the Hobbs algorithm and
the neural network model on third pronoun reso-
lution in The Little Prince.

4.3 Error Analysis
To probe why the neural network model performed
relatively poor than the Hobbs algorithm for third
person pronoun resolution, we further divided the
dataset into “same sentence” and “different sen-
tence” conditions depending on whether the an-
tecedent occurs within the same sentence of the
pronoun. 155 of the 465 third person pronouns
have antecedents in the same sentence. Table 4
lists the accuracy of the two models in the two con-
ditions. It can be seen that the Hobbs algorithm
performs equally well for the same and different
sentence conditions, whereas the neural network
model performs worse if the antecedent is not in
the same sentence as the pronoun.

A closer examination on the wrong 279 cases
predicted by the neural network model revealed
that the model tends to be misled by the “partial
string match” feature, such that it gives high coref-
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Hobbs Neural Network
Same Sentence 0.60 0.50
Different Sentence 0.60 0.35

Table 4: Accuracy of the Hobbs algorithm and the
neural network model for third person pronouns
that have antecedents in the same or different sen-
tences.

erence scores for “that” and “they”. This con-
firmed our hypothesis that pronominal and nom-
inal coreference resolution rely on different set of
features.

5 Correlating Model Prediction with
Brain Activity

5.1 Linking Hypotheses
To explain how the model performance are specif-
ically brought to bear on brain activity, we further
correlated activation levels of the antecedents with
fMRI time-courses when participants listened to
The Little Prince in the scanner.

We first selected the 277 third person pronouns
whose antecedents are correctly predicted by the
Hobbs algorithm, i.e., the true positives, and we
calculated the Hobbs distance for each of the 277
pronouns, namely, the number of NPs that the
Hobbs algorithm skips before the antecedent NP
is proposed. Our linking hypotheses is that a
higher Hobbs distance induces a processing ef-
fort for pronoun resolution, hence higher hemo-
dynamic response.

Note that the Hobbs distance is different from
the number of NP nodes between the pronoun
and the antecedents, as the Hobbs algorithm al-
ways searches the antecedent to the left of the pro-
noun in a left-to-right, breadth-first order. Figure
2 shows the Hobbs distance for the two “they” in
the example sentence. The immediate antecedent
for “they 1” is “their”, and the Hobbs distance be-
tween “their” and “they 1” is 2 because the algo-
rithm skips the NP “boa constrictors” before pro-
poses “their” as the antecedent. The Hobbs dis-
tance for “they 2” is 1 because the correct an-
tecedent is the first proposal by the algorithm.

In comparison, we recorded the coreference
score Sm(a,m) generated by the neural network
model for the 277 pronouns that correctly pre-
dicted by the Hobbs algorithm. We took the neg-
ative of the score as a complexity measure for the
neural coreference model: the higher the score,

the more difficult to retrieve the antecedent. Pear-
son’s r revealed no significant correlation between
the Hobbs distance and the negative neural coref-
erence score for the 227 third person pronouns
(r = 0.05, p = 0.43).

5.2 Predicted Brain Activation

Based on the elements in the Hobbs algorithm and
the neural network model, we expected the diffi-
culty of pronoun resolution modeled by the Hobbs
distance and the neural coreference score to tease
apart brain areas that are associated with syntac-
tic and morphological processing, and brain areas
that are sensitive to semantic and discourse-level
information.

Previous neuroimaging results on pronoun res-
olution have reported the bilateral Inferior Frontal
Gyrus (IFG), the left Medial Frontal Gyrus (MFG)
and the bilateral Supramarginal/Angular Gyrus in
gender mismatch between pronoun and antecedent
(Hammer et al., 2007). We therefore expect activ-
ity in these regions for the Hobbs distance met-
ric. We also expect to see activity in the bi-
lateral Superior Temporal Gyrus (STGs) as they
have been associated with long distance pronoun-
antecedent linking (Matchin et al., 2014). These
regions could be relevant for both the Hobbs dis-
tance and neural coreference score as they both
incorporate some form of “distance” between the
pronoun-antecedent pairs. The Precuneus cortex
may also be activated with pronouns in general
as it has been suggested to track different sorts of
story characters (Wehbe et al., 2014).

6 Brain Data

6.1 Participants

Participants were 49 healthy, right-handed, young
adults (30 female, mean age = 21.3, range = 18-
37). They self-identified as native English speak-
ers, and had no history of psychiatric, neurologi-
cal or other medical illness that could compromise
cognitive functions. All participants were paid for,
and gave written informed consent prior to partic-
ipation, in accordance with the guidelines of the
Human Research Participant Protection Program
at Cornell University.

6.2 Stimuli

The stimulus was an audiobook version of Antoine
de Saint-Exupéry’s The Little Prince, translated
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Figure 2: Demonstration of Hobbs distance for third person pronouns in a sentence. The red numbers
below the pronouns indicates the Hobbs distance.

by David Wilkinson and read by Nadine Eckert-
Boulet. This text contains 3127 non-pronominal
mentions and 645 first person pronouns, 302 sec-
ond person pronouns and 675 third person pro-
nouns (see Table 2). Following the pruning criteria
described in Section 5, the final set of data include
277 third person pronouns.

6.3 Procedure

After giving their informed consent, participants
were familiarized with the MRI facility and as-
sumed a supine position on the scanner. The pre-
sentation script was written in PsychoPy (Peirce,
2007). Auditory stimuli were delivered through
MRI-safe, high-fidelity headphones (Confon HP-
VS01, MR Confon, Magdeburg, Germany) in-
side the head coil. The headphones were secured
against the plastic frame of the coil using foam
blocks. An experimenter increased the sound
volume stepwise until the participants could hear
clearly.

The audiobook lasts for about 94 minutes, and
was divided into nine sections, each lasts for about
ten minutes. Participants listened passively to the
nine sections and completed four quiz questions
after each section (36 questions in total). These
questions were used to confirm their comprehen-
sion and were viewed by the participants via a mir-
ror attached to the head coil and they answered
through a button box. The entire session lasted
around 2.5 hours.

6.4 MRI Data Collection and Preprocessing

The brain imaging data were acquired with a
3T MRI GE Discovery MR750 scanner with
a 32-channel head coil. Anatomical scans
were acquired using a T1-weighted volumet-
ric Magnetization Prepared RApid Gradient-Echo

(MP-RAGE) pulse sequence. Blood-oxygen-
level-dependent (BOLD) functional scans were
acquired using a multi-echo planar imaging
(ME-EPI) sequence with online reconstruction
(TR=2000 ms; TE’s=12.8, 27.5, 43 ms; FA=77◦;
matrix size=72 x 72; FOV=240.0 mm x 240.0
mm; 2 x image acceleration; 33 axial slices, voxel
size=3.75 x 3.75 x 3.8 mm). Cushions and clamps
were used to minimize head movement during
scanning.

All fMRI data is preprocessed using AFNI ver-
sion 16 (Cox, 1996). The first 4 volumes in
each run were excluded from analyses to allow
for T1-equilibration effects. Multi-echo inde-
pendent components analysis (ME-ICA; Kundu
et al.,2012) were used to denoise data for motion,
physiology and scanner artifacts. Images were
then spatially normalized to the standard space of
the Montreal Neurological Institute (MNI) atlas,
yielding a volumetric time series resampled at 2
mm cubic voxels.

6.5 Statistical Analysis

At the single subject level, the observed BOLD
time course in each voxel were modeled by the
difficulty of pronoun resolution derived by the
Hobbs Algorithm and the Neural Network Model
for third person pronouns time-locked at the off-
set of each third person pronoun in the audiobook.
To further examine the status of Hobbs and Neural
Network Models as cognitive models for pronoun
resolution, we also included a binary regressor that
simply marks the presence of a third person pro-
noun time-locked at the offset of each third person
pronoun in the audiobook.

In addition, three control variables of non-
theoretical interest were included in the GLM
analysis: RMS intensity at every 10 ms of the au-
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dio; word rate at the offset of each spoken word in
time; frequency of the individual words in Google
Book unigrams 2. These regressors were added to
ensure that any conclusions about pronoun resolu-
tion would be specific to those processes, as op-
posed to more general aspects of speech percep-
tion.

At the group level, the activation maps for the
Hobbs, neural network and binary regressor were
computed using one sample t-test. The voxelwise
threshold was set at p ≤ 0.05 FWE, with an ex-
tent threshold of 50 contiguous voxels (k ≥ 50).

7 fMRI Results

The largest clusters for the binary third person
pronoun regressor were observed in the bilateral
Superior Temporal Gyrus (STGs), the left Infe-
rior Frontal Gyrus (IFG), the left Superior Frontal
Gyrus (STG), the right Cerebellum and the right
Angular Gyrus (p < 0.05 FWE; see Figure 3a).

Hobbs algorithm shows significant activation in
the left Precuneus, the bilateral Angular Gyrus,
the left IFG and the left SFG (p < 0.05 FWE;
see Figure 3b). For the neural network model, al-
though the cluster size is relatively small at the
corrected threshold, it has significant clusters in
the right STG and the left Middle Temporal Gyrus
(MTG; p < 0.05 FWE; see Figure 3c). Table 5
lists all the significant clusters using region names
from the Harvard-Oxford Cortical Structure Atlas.

8 Discussion

Activation map for third person pronoun resolu-
tion modeled by the Hobbs distance is a subset
of the activation map for the binary third per-
son pronoun regressor. Additional activity is ob-
served in the Precuneus for the Hobbs regressor,
suggesting that the Precuneus is involved in the
process of pronoun-antecedent linking, consistent
with Wehbe et al.’s (2014) finding that the Pre-
cuneus tracks the characters in a story.

Only the Hobbs algorithm showed an increased
activation in the left Broca’s area, which has been
recurrently reported as correlating with syntac-
tic processing cost linked to antecedent pronoun
(Santi and Grodzinsky, 2012), and particularly to
the distance between the antecedent and the pro-
noun (Matchin et al., 2014; Santi and Grodzinsky,
2007).

2 http://books.google.com/ngrams

The bilateral Angular Gyrus activity was also
significant for the Hobbs algorithm. Notably, pre-
vious literature on German gender agreement in
anaphoric reference reported increased activation
in the left Angular Gyrus (BA 39) for incongru-
ent biological gender matching (Hammer et al.,
2007). Our results supported the role of morpho-
syntactic processing for gender matching during
pronoun resolution at the Angular Gyrus.

The neural network model encodes different
brain activity patterns at the right STG and the left
MTG, although the cluster size is relatively small
at the corrected threshold. The right STG has
been reported to encode linear distance between
pronouns and antecedents (Hammer et al., 2007,
2011) and for long distance back anaphora com-
pared to short-distance back anaphora (Matchin
et al., 2014). The MTGs have been associated with
intra-sentential co-referential link (Fabre, 2017).
This is expected as the neural network model en-
codes the linear distance between the pronoun
and the antecedent. The MTGs were also re-
ported to respond to highly predictive lexical ac-
cess (Fruchter et al., 2015), suggesting that diffi-
culty of pronoun resolution modeled by the neural
network scores is likely to involve lexical semantic
processing.

9 Conclusion

Comparison of model performance between the
Hobbs algorithm and the neural network model on
pronoun resolution suggest an important role for
syntactic and morphological cues during pronoun
resolution. These two types of information were
integrated in the Hobbs distance measure that re-
flects processing difficulty of pronoun resolution.
This difficulty measure is associated with signifi-
cant activity in the left Broca’s area, the bilateral
Angular Gyrus and the left IFG — a network that
has been reported in the neuroimaging literature
for anaphora resolution.

Overall, our results show that crossing com-
putational approach and naturalistic stimuli is a
promising perspective in neuroimaging to tease
apart strongly interwoven cognitive processes. As
such, they pave the way for increasing cross-
fertilization between computational linguistics
and the cognitive neuroscience of language.

http://books.google.com/ngrams
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(a) T-score map for the binary third person pronoun regressor

(b) T-score map for the Hobbs distance regressor

(c) T-score map for the negative neural network score regressor

Figure 3: Whole-brain effect with significant clusters for (a) binary third person pronouns effect, (b)
difficulty for third pronoun resolution based on the Hobbs algorithm and (c) difficulty for third person
pronoun resolution based on the neural coreference model. All images underwent FWE voxel correction
for multiple comparisons with p < 0.05.

MNI coordinates Region p-value k-size t-score
x y z FWE-corr cluster peak

Third Person Pronoun -60 -12 -6 left Superior Temporal Gyrus < 0.001 4411 12.92
(binary) 64 -10 -2 right Superior Temporal Gyrus < 0.001 1625 10.95

-46 30 -12 left Inferior Frontal Gyrus < 0.001 706 10.53
-10 42 46 left Superior Frontal Gyrus < 0.001 2394 10.45
18 -74 -30 right Cerebellum < 0.001 283 7.15
52 -60 26 right Angular Gyrus 0.004 68 5.84

Hobbs Algorithm -6 -68 50 left Precuneus < 0.001 1163 8.86
-32 -62 42 left Angular Gyrus < 0.001 1216 8.42
-52 -56 -16 left Inferior Temporal Gyrus < 0.001 285 6.54
34 -52 34 right Angular Gyrus 0.001 119 6.31
-44 6 34 left Inferior Frontal Gyrus 0.005 55 5.01
-26 12 60 left Superior Frontal Gyrus 0.007 62 5.63

Neural Network 62 -28 14 right Superior Temporal Gyrus 0.005 48 5.69
-46 -54 4 left Middle Temporal Gyrus 0.008 13 5.55

Table 5: Significant clusters of BOLD activation for (a) third person pronouns, (b) difficulty for third
person pronoun resolution based on the Hobbs algorithm and (c) difficulty for third person pronoun
resolution based on the neural coreference model. Peak activations are given in MNI Coordinates (p <
0.05, FWE).
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