
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 122–128
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

122

OpenNMT System Description for WNMT 2018:
800 words/sec on a single-core CPU

Jean Senellart, Dakun Zhang,
Bo Wang, Guillaume Klein,

J.P. Ramatchandirin, Josep Crego
SYSTRAN Research, Paris

first.last@systrangroup.com

Alexander M. Rush
School of Engineering
and Applied Sciences
Harvard University

srush@seas.harvard.edu

Abstract

We present a system description of the
OpenNMT Neural Machine Translation
entry for the WNMT 2018 evaluation. In
this work, we developed a heavily opti-
mized NMT inference model targeting a
high-performance CPU system. The final
system uses a combination of four tech-
niques, all of them leading to significant
speed-ups in combination: (a) sequence
distillation, (b) architecture modifications,
(c) pre-computation, particularly of vo-
cabulary, and (d) CPU targeted quantiza-
tion. This work achieves the fastest perfor-
mance of the shared task, and led to the de-
velopment of new features that have been
integrated to OpenNMT and made avail-
able to the community.

1 Introduction

As neural machine translation becomes more
widely deployed in production environments, it
becomes also increasingly important to serve
translations models in a way as fast and as
memory-efficient as possible, both on dedicated
GPU and on standard CPU hardwares. The WN-
MT 2018 shared task1 focused on comparing dif-
ferent systems on both accuracy and computation-
al efficiency (Birch et al., 2018).

This paper describes the entry for the OpenN-
MT system to this competition. Our specific in-
terest was to explore the different techniques for
training and optimizing CPU models for very high
throughput while preserving highest possible ac-
curacy compared to state-of-the-art. While we did
not put real focus on memory and docker size foot-

1https://sites.google.com/site/wnmt18/
shared-task

distill-small
LSTM(1024)

distill-small-opt LSTM(512)
distill-tiny-opt

GRU

distill-tiny
GRU

direct-large
direct-small

Tf-base

Tf-large

official cpu

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

0 100 200 300 400 500 600 700

BL
EU

WORD PER SECOND

Figure 1: Pareto on accuracy and throughput. The different
models on the plot are described in the paper, the correspond-
ing BLEU score calculated on newstest2014, and throughput
in word per second measured on non dedicated M5 instances.

print, we applied basic optimization techniques to
reduce the final size of our models.

Our strategy for the shared task was to
take advantage of four main optimization tech-
niques: (a) sequence-level distillation, in particu-
lar cross-class distillation from a transformer mod-
el (Vaswani et al., 2017) to an RNN, (b) architec-
ture search, changing the structure of the network
by increasing the size of the most efficient mod-
ules, reducing the size of the most costly mod-
ules and replacing default gated units, (c) special-
ized precomputation such as reducing dynamical-
ly the runtime target vocabulary (Shi and Knight,
2017), and (d) quantization and faster matrix op-
erations, based on the work of Devlin (2017) and
gemmlowp2. All of these methods are employed
in a special-purpose C++-based decoder CTrans-
late3. The complete training workflow including
data preparation and distillation is described in
Section 2. Inference techniques and quantization
are described in Section 3.

Our experiments compare the different ap-
proaches in terms of speed and accuracy. A meta

2https://github.com/google/gemmlowp
3https://github.com/OpenNMT/CTranslate

https://sites.google.com/site/wnmt18/shared-task
https://sites.google.com/site/wnmt18/shared-task
https://github.com/google/gemmlowp
https://github.com/OpenNMT/CTranslate

123

question of this work is to decide which models
represent interesting and useful points on the Pare-
to curve. The main results are described in Fig-
ure 1. From these results we highlight two models
which were submitted to the shared task: Our first
system distill-small-opt is a 2-layer LST-
M network that is only -2.19 BLEU points behind
the reference transformer model, but with a speed-
up of x18. Our second system achieves 23.11
on WNMT 2018 English-German newstest2014 (-
4.85 behind the reference model) but with an ad-
ditional decoding speed-up of x8. The final model
reaches 800 words/sec on the dedicated evaluation
CPU hardware and is the fastest CPU model sub-
mitted4.

We additionally report several new results about
recent work in NMT and model efficiency: (a)
we show that distillation of transformer model to
a simple RNN outperforms direct training of a
strong RNN model - extending findings of Crego
and Senellart (2016) who reported that student
models could outperform their teacher for refer-
ence RNN-based model. (b) We compare quan-
titatively different quantizations, and (c) we give
an improved algorithm to dynamically select tar-
get vocabulary for a given batch. Finally, we also
report several complementary experiments that re-
sulted in systems inside of the pareto convex bor-
der. For instance, we compare using 8-bit quanti-
zation to 16-bit quantization.

2 Training and Distillation

Following the shared task setup, we use the da-
ta set provided by WNMT 2018, which is a pre-
processed and tokenized version of WMT 2014
on English-German translation5. The training data
contains about 4.5M sentence pairs. We use news-
test2013 as the validation set and newstest2014
and newstest2015 as the testing sets. Before train-
ing, we trained a 32K joint byte-pair encoding
(BPE) to preprocess the data (Sennrich et al.,
2015) (actual vocabulary size of 34K). We lim-
it the sentence length to 100 based on BPE pre-
processing in both source and target side (exclud-
ing only 0.31% of the training corpus). After de-
coding, we remove the BPE joiners and evaluate
the tokenized output with multi-bleu.perl (Koehn
et al., 2007).

4On non dedicated hardware, our best benchmark shows
621 words/sec, see section 4.3 for analysis of the difference.

5https://nlp.stanford.edu/projects/
nmt/

2.1 Teacher Model: Transformer

Transformer networks (Vaswani et al., 2017) are
the current state-of-the art in many machine trans-
lation tasks (Shaw et al., 2018). The network
directly models the representations of each sen-
tence with a self-attention mechanism. Hence
much longer term dependencies than with stan-
dard sequence-to-sequence models can be learned,
which is especially important for language pairs
like English-German. In addition, transformer al-
lows to easily parallelise the MLE training process
across multiple GPUs. However, a large number
of parameters are needed by the network to obtain
its best performance. In order to reduce the mod-
el size, we applied knowledge distillation, a tech-
nique that has proven successful for reducing the
size of neural models. We considered the trans-
former network as our teacher network.

We used OpenNMT-tf 6 to train two transformer
based systems: base and large described in Table
2 with their evaluation in Table 3. For both, the
learning rate is set to 2.0 and warmup steps 8000,
we average the last 8 checkpoints to get the final
model. Our baseline system outperforms the pro-
vided baseline Sockeye model by +0.37 BLEU on
newstest2014.

2.2 Distillation to RNN

To train our smaller student system, we follow the
sequence-level knowledge distillation approach
described by Kim and Rush (2016). First, we build
the full transformer as above. Next, we use the
teacher system to retranslate all the training source
sentences to generate a set of simplified target sen-
tences. Then, we use this simplified corpus (o-
riginal source and newly generated target) to train
a student system. The student system can be as-
signed with smaller network size, in our case a
RNN-based sequence-to-sequence model similar
to Bahdanau et al. (2014)

Results from Crego and Senellart (2016) show
that the distillation process not only improves the
throughput of the student models and reduce their
size, but can also improve the translation quali-
ty. Also, these distilled systems have the interest-
ing feature that they performed almost identically
when reducing beam search size K from K = 5 to
K = 2. Seemingly the smaller model learns from
more consistent translations and can produce ef-
fective results with simpler syntactic structure and

6https://github.com/OpenNMT/OpenNMT-tf

https://nlp.stanford.edu/projects/nmt/
https://nlp.stanford.edu/projects/nmt/
https://github.com/OpenNMT/OpenNMT-tf

124

small-1

small-2

small-5

small-opt-2

tiny-opt-2

generator decoder encoder attention Beam search

small-1

small-2

small-5

small-opt-2

tiny-opt-2

Linear MM Sotfmax Sigmoid/Tanh Others

Figure 2: Profiling of the throughput during inference
on newstest2014. Each line is a different system.
The small-1,2,5 are distilled systems with respec-
tive beam size of 1, 2, 5. distill-tiny-opt and
distill-small-opt are the final systems. The decoding
time for each of these systems range from 90 to 1800 second-
s. The top table shows the distribution of time per component
of the network, while the bottom table shows the distribution
of time for network operators.

even word choices. One major question here was
to find out whether cross-class distillation work-
s as well, here from a transformer model to stu-
dent RNN model. Remarkably, Figure 3 shows
that a distilled simple RNN system outperform-
s the direct strong RNN model7 by a significant
+1.4 BLEU score.

2.3 Model Analysis

Profiling of the throughput of our student system,
before and after further optimizations, is presented
in Figure 2. Here we compare along two splits,
the components of the system: encoder, decoder,
attention, word generation, and beam search; and
model components: linear, MM (matrix multiply,
primarily in attention), softmax, activations, and
others. From this analysis we gather the following
facts:

• The most costly part of the inference is the
7Both NMT systems follow the standard architecture of

Luong et al. (2015). It is implemented as an encoder-decoder
network with multiple layers of a RNN with Long Short-
Term Memory (Hochreiter and Schmidhuber, 1997) hidden
units and attentional architecture. Full details of the OpenN-
MT system are given in Klein et al. (2017).

generator, that is the final Linear layer feed-
ing Softmax with weights corresponding to
each single vocab of the target language. This
is by far the largest matrix multiplication of
the system: (B,W) ∗ (W,V) (with B being
the batch*beam size, W the width of the net-
work, and V the size of the vocabulary).

• Although the cost of the encoder for beam
size 1 is higher than the decoder, the decoder
cost - including generator and attention mod-
el - grows linearly with the beam size.

• The most costly operations are the multi-
plication of the Linear matrix-vector in the
RNNs and generator, contributing for more
than 95% of the complete processing time.

From these facts, it is obvious that we need to
optimize the efficiency of linear matrix-vector op-
eration, to reduce the amount of such required op-
erations, and have a special focus on the genera-
tion layer.

These observations led us to several further
model experiments. First we tried different mod-
el combination based on a “fat encoder, thin de-
coder” spirit: ie. increasing if necessary the num-
ber of operations in the encoder part if we can in
parallel reduce the number of operations in the de-
coder. Second, we experimented with replacing
LSTM cells with GRU cells (Cho et al., 2014). In-
deed LSTM cells have 4 gates while GRU cells
only 3, so a potential 25% improvement in speed
with similar performance can be reached. Note
though, that we found that GRU requires more
care in optimization while a naive SGD optimiza-
tion is generally sufficient for LSTM-RNN train-
ing.

3 Inference Optimizations

3.1 Implementation: CTranslate
CTranslate is the open-source inference engine
for OpenNMT models (initially designed for Lua
Torch). The code is implemented in raw C++ with
minimal dependencies using the popular Eigen
linear algebra library. CTranslate’s goal is to offer
a lightweight and embeddable solution for execut-
ing models. It benefits from Eigen efficiency and
is about 20% faster than a Torch application using
Intel MKL. Additionally, the use of C++ over a
garbage-collected language ensures a predictable
and reduced memory usage. All additional opti-
mizations are built on top of this library.

125

3.2 Generator Vocabulary Reduction

As seen in the last section, the word generation
matrix operations and softmax require significant
time. This time is scaling linearly with the ef-
fective target language vocabulary, which starts at
34K.

There has been significant work in reducing this
cost. We start with the word alignment method,
presented in Shi and Knight (2017), which uses
alignments computed on the training corpus and
for each sentence, selects target words aligned to
each source word, that way building a reduced vo-
cabulary of target words to be used when translat-
ing a source sentence.

To increase the coverage of the selected mean-
ings without increasing the size of the mapping
model, we first extract words in the target lan-
guage that are unaligned - e.g. determiners when
translating from English to French. We kept the
100 most frequent such words and call them 0-
gram meanings. Then we go through 1-gram,
2-gram, . . ., n-gram sequences of words in the
source sentence. For each source sequence, we
consider its N -best translation hypotheses. All tar-
get words present in such N -best hypotheses are
kept in the target vocabulary. To account for trans-
lation hypotheses we use a phrase table extracted
from word alignments.

The method extends single word vocabulary
mappings to multi-word expressions8. We have
multiple criterion to extract a vocabulary map: the
maximal sequence size n, the maximum number
N of translation hypotheses, the minimum fre-
quency of a phrase pair. The efficiency of a vo-
cabulary map can be evaluated through the cover-
age of the predicted meanings for a reference test
set, the final translation quality, the average num-
ber of meaning per vocab and the actual time spent
in generator layer (Linear and Softmax).

Table 1 compares several vocabulary maps with
these different metrics. Compared to Shi and
Knight (2017), our approach with multiple n-gram
length phrase enables better match-rate than the 1-
gram approach (saturating the Test Coverage (TC)
at 80%).

8For instance speed test translated by test de
vitesse in French is covered by 0-grams ∅ →de, and 1-
grams speed→vitesse, test→test. However, once
more translated by à nouveau will need the 2 additional
meanings à and nouveau that are only covered when using
2-gram meanings.

3.3 Quantization

Another important area of optimization is the cost
of linear matrix-operations. To speed these up, we
use 16-bit signed integer quantization method pro-
posed in Devlin (2017). To further optimize on
the AWS M5 instance used in the competition and
powered with INTEL Skylake processors, we ex-
tend the approach to AVX2 and AVX512 SIMD
instruction sets. Switching from SSE4 to AVX2,
then from AVX2 to AVX512 instructions set gave
additional speed boost of respectively +12% and
+6%.

3.4 Other Experiments

We explored several other methods which largely
resulted in negative results but could be interesting
for other contexts.

Decrease the sentence length: For BPE pre-
processing, we try using 64K merges which can
generate shorter sentences. The average sentence
length for 32K BPE is about 29.1 and for 64K
BPE, it is about 27.7 tokens. Assuming the same
efficiency in the vocabulary mapping, increasing
the size of the vocabulary could therefore have a
gain of about 5% additional speed-up just by the
reduction of the sentence length. However, the
tradeoff here was not clearly a win.

8-bit quantization: To reduce further the sys-
tem size, we also considered use of gemmlowp9.
gemmlowp is a library allowing quantization
to unsigned 8 bits integer through dynamic off-
set/multiplier/shift parameters. Like our imple-
mentation of 16-bit quantization, the low precision
is only for storing the parameters, the dot product
is using larger register for accumulating interme-
diate result of the operation. gemmlowp usage
is for embedded application where speed but also
power usage is critical. The idea was tempting, but
it was not clear if such quantization schema could
actually outperform quantization using SIMD ex-
tended instruction set on modern processors. We
ran comparative tests using AVX2 instructions set
and found out that for multiplications of large ma-
trixes (20, 1024) ∗ (1024, 512) - optimized IN-
T16 implementation was about 3 times faster than
gemmlowp UINT8 implementation10. Main rea-
son being that AVX2 (and AVX512 twice faster)

9https://github.com/google/gemmlowp
10On Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

https://github.com/google/gemmlowp

126

Max
Sequence

Min
Freq

#
Meaning

vocab
per token

Test
Coverage

Linear
Time [s]

SoftMax
Time [s] File Size BLEU

143.86 4.97 239M 23.24
1 1 50 2 30% 3.78 0.11 295M 21.98
2 1 100 24 86% 5.97 0.16 902M 23.13
2 1 150 25 86% 6.63 0.18 918M 23.16
2 1 50 22 85% 5.34 0.14 846M 23.09
2 2 100 22 85% 4.08 0.11 324M 23.02
2 2 150 22 85% 3.95 0.11 324M 23.02
2 2 50 20 84% 3.95 0.11 322M 23.03
3 1 50 30 90% 5.23 0.15 1127M 23.16

Table 1: Evaluations of n-gram vocabulary mappings on newstest2014.

Figure 3: Evaluations on different beam size and batch size

have very powerful multiply and add instruction-
s11 allowing to perform in one single cycle the dot
product of vectors 32*INT16 and at the same time,
the pair accumulation in a vector 16*INT32.

4 Results

After tuning, we settled on two optimal NMT sys-
tems based on the distilled training data. Table 2
lists the different configurations for these two sys-
tems:

• distill-small, uses a bidirectional RN-
N with 2 LSTM layers with each hidden layer
having 1024 nodes. We use a word embed-
ding size of 512 and set the dropout to 0.3.
The batch size is set to 64 and the default
learning rate is 1.0 with sgd optimization.

• distill-tiny, uses a smaller network,
with GRU layers, 512 hidden size. On the
encoder side, we have 2 layers, while on the
decoder side, only 1 layer is set. We use
Adam optimization with the starting learning
rate 0.0002.

Both systems are trained up to 10 epochs.

11 mm256 madd epi16 and mm512 madd epi16

Table 3 shows our internal evaluations. For sys-
tem distill-small-opt, the CPU time dur-
ing decoding improves from 1694.16 seconds to
621.17 seconds (saving 63.3%), with a loss of on-
ly 0.19 BLEU score, on newstest2014. For sys-
tem distill-tiny-opt, the trends are sim-
ilar. 80.3% cpu time is saved, while only 0.13
BLEU score is lost.

We also compare the influence of quantization
hyperparameters, e.g. vmap and quantize model,
on tiny distilled RNN (distill-tiny). Quan-
tize runtime and vmap both can save about 50%
of the decoding time. The quantized model also
halves the model size.

4.1 Beam size and Batch size

We further test the impact on the decoding
performance (BLEU) and CPU time of dif-
ferent beam size and batch size on system
distill-tiny-opt. Figure 3 shows that for
a fixed batch size, when we increase the beam size
from 1 to 3, the accuracy increases as well. While
for beam size 3, 4 and 5, there is no significant d-
ifference in accuracy which is consistent with pre-
vious findings on distilled system. Interestingly,
for a fixed beam size, we notice also a slight im-
provement of accuracy when increasing the batch
size. This is a side-effect of the dynamic vocabu-
lary mapping per batch.

These experiments also show that the decoding
cost increases with larger beam and batch size. For
beam size K = 1 (in blue), we process more sen-
tences inside each batch and the CPU cost reduces
along the increasing of batch size. While for the
others, larger beam size and larger batch size both
cost more computational effort.

As a result, we choose beam K = 2 and batch 2,
balancing the performance and computation cost.

127

Transformer Large N=6, d=512, dff=4096, h=8
Base N=6, d=512, dff=2048, h=8

direct RNN Large b-LSTM, 4 layers*1024, embed=512, optim=sgd
Small b-LSTM, 2 layers*1024, embed=512, optim=sgd

distilled RNN Small b-LSTM, 2 layers*1024, embed=512, optim=sgd
Tiny GRU, enc:2, dec:1 *512, embed=256, optim=adam

Table 2: Configurations for the different systems presented in the paper

quantize
runtime vmap quantize

model
newstest2014 newstest2015 model sizecpu time [s] BLEU cpu time [s] BLEU

Transformer Large - - - 11279.97 27.96 8339.10 29.95 1.4G
Base - - - 10795.16 27.30 7511.08 29.36 1.2G

direct RNN Large - - - 2859.57 24.56 2073.90 27.24 618M
Small - - - 1713.54 23.78 1313.39 26.37 416M

distilled RNN

Small - - - 1694.16 25.96 1300.24 28.62 416M
Small-opt Y Y Y 621.17 25.77 478.08 28.60 207M
Tiny - - - 506.67 23.24 384.76 26.09 141M
Tiny Y - - 286.89 23.24 219.85 26.03 141M
Tiny Y Y - 105.80 23.18 77.10 25.95 141M
Tiny-opt Y Y Y 99.81 23.11 77.76 25.75 72M

Table 3: Evaluations on NMT systems (the suffix ”-opt” means it is the final submission)

4.2 Docker Image Size

We did not invest effort into reduce image size
during the preparation of the submission. Our
fastest system has a docker image of 200M for an
effective 72Mb size for the model and less than
15Mb for additional code and resources. Post-
submission, we looked at reducing this 110Mb
overhead coming from operating system and misc
tools. Without huge effort - we managed to re-
duced this overhead to 70Mb, and docker engi-
neering could probably reduce it even further.

4.3 Other Engineering Considerations

We note that at this level of optimization, especial-
ly the use of quantization, the speed measurement
is very dependent on low level memory manage-
ment mechanisms12, and therefore on other pro-
cesses running on the same instance, especially
due to the critical importance of the L3 cache
shared between the different cores. In particular,
we observed that 4 parallel processes using fastest
model were only reaching a x3 speed boost. To
go further on parallel decoding, one would need to
implement different ad-hoc mechanisms such as:

• synchronization points between the parallel
decoders to avoid waste of memory cache
transfer

12This effect was actually observed during the preparation
of the system: a same test could benchmark with a fluctuation
of up to 25% depending on the time of the day, and probable
load of the shared server hosting the virtual instance.

• grouping of the sentences by sentence-length
to optimize CPU usage on the different cores

All the optimizations performed for that sub-
mission were focussed on the Linear layers - on
the final fastest submitted system, and the profiling
in Figure 2 shows emerging opportunities for op-
timization: even though the Linear share remains
preponderant, some potential additional gain (be-
tween 5 and 10%) could be achieved by focusing
on other operators (MM and non-linear).

5 Conclusion

This work presents the OpenNMT submission to
the 2018 Shared Task of WNMT. We show that
training with distillation using an optimized RNN
sequence-to-sequence system we can produce a
very competitive model for CPU demonstrating
again the powerful effect of the distillation process
and for the first time its application cross-class
(Transformer→RNN). This positive result implies
that text simplification through distillation could
be applied to more contexts.

Even though our submission was dedicated to
a specific RNN-based network, most of the pre-
sented optimizations, aiming by different means to
reduce and optimize the matrix multiplication op-
erations can apply for other types of architectures.

Our final system does show an impressive in-
crease in speed of 110x compared to the baseline
system and achieves a throughput of 800 word/sec
on a single core which is the fastest reported so far.

128

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473.

Alexandra Birch, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Yusuke Oda. 2018. Findings
of the second workshop on neural machine transla-
tion and generation. In The Second Workshop on
Neural Machine Translation and Generation.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. 2014. Learning phrase representa-
tions using RNN encoder-decoder for statistical ma-
chine translation. CoRR, abs/1406.1078.

Josep Maria Crego and Jean Senellart. 2016. Neu-
ral machine translation from simplified translations.
CoRR, abs/1612.06139.

Jacob Devlin. 2017. Sharp models on dull hardware:
Fast and accurate neural machine translation decod-
ing on the CPU. CoRR, abs/1705.01991.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Y Kim and Alexander M. Rush. 2016. Sequence-level
knowledge distillation. CoRR, abs/1606.07947.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
In Accepted to ACL 2017 Conference Demo Papers,
Vancouver, Canada. Association for Computational
Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertol-
di, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions, pages
177–180. Association for Computational Linguistic-
s.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lisbon,
Portugal. Association for Computational Linguistic-
s.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. CoRR, abs/1803.02155.

Xing Shi and Kevin Knight. 2017. Speeding up neu-
ral machine translation decoding by shrinking run-
time vocabulary. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pages
574–579.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 6000–6010.

http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1612.06139
http://arxiv.org/abs/1612.06139
http://arxiv.org/abs/1705.01991
http://arxiv.org/abs/1705.01991
http://arxiv.org/abs/1705.01991
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://aclweb.org/anthology/D15-1166
http://aclweb.org/anthology/D15-1166
http://arxiv.org/abs/1803.02155
http://arxiv.org/abs/1803.02155

