
Proceedings of the 2nd Workshop on Neural Machine Translation and Generation, pages 116–121
Melbourne, Australia, July 20, 2018. c©2018 Association for Computational Linguistics

116

Fast Neural Machine Translation Implementation

Hieu Hoang† Tomasz Dwojak∗ Rihards Krislauks‡
Daniel Torregrosa¶ Kenneth Heafield†

†University of Edinburgh ∗Adam Mickiewicz University
‡Tilde ¶Universitat d’Alacant

Abstract

This paper describes the submissions to
the efficiency track for GPUs at the Work-
shop for Neural Machine Translation and
Generation by members of the University
of Edinburgh, Adam Mickiewicz Univer-
sity, Tilde and University of Alicante. We
focus on efficient implementation of the
recurrent deep-learning model as imple-
mented in Amun, the fast inference en-
gine for neural machine translation. We
improve the performance with an efficient
mini-batching algorithm, and by fusing the
softmax operation with the k-best extrac-
tion algorithm. Submissions using Amun
were first, second and third fastest in the
GPU efficiency track.

1 Introduction

As neural machine translation (NMT) models have
become the new state-of-the-art, the challenge is to
make their deployment efficient and economical.
This is the challenge that this shared task (Birch
et al., 2018) is shining a spotlight on.

One approach is to use an off-the-shelf deep-
learning toolkit to complete the shared task where
the novelty comes from selecting the appropriate
models and tuning parameters within the toolkit
for optimal performance.

We take an opposing approach by eschewing
model selection and parameter tuning in favour of
efficient implementation. We use and enhanced
a custom inference engine, Amun (Junczys-
Dowmunt et al., 2016), which we developed on the
premise that fast deep-learning inference is an is-
sue that deserves dedicated tools that are not com-
promised by competing objectives such as training
or support for multiple models. As well as deliv-
ering on the practical goal of fast inference, it can

serve as a test-bed for novel ideas on neural net-
work inference, and it is useful as a means to ex-
plore the upper bound of the possible speed for
a particular model and hardware. That is, Amun
is an inference-only engine that supports a limited
number of NMT models that put fast inference on
modern GPU above all other considerations.

We submitted two systems to this year’s shared
task for the efficient translation on GPU. Our first
submission was tailored to be as fast as possible
while being above the baseline BLEU score. Our
second submission trades some of the speed of
the first submission to return better quality trans-
lations.

2 Improvements

We describe the main enhancements to Amun
since the original 2016 publication that has im-
proved translation speed.

2.1 Batching

The use of mini-batching is critical for fast model
inference. The size of the batch is determined by
the number of inputs sentences to the encoder in
an encoder-decoder model. However, the num-
ber of batches during decoding can vary as some
sentences have completed translating or the beam
search add more hypotheses to the batch.

It is tempting to ignore these considerations,
for example, by always decoding with a con-
stant batch and beam size and ignoring hypothe-
ses which are not needed. Figure 1 illustrates a
naı̈ve mini-batching with a constant size batch.
The downside to this algorithm is lower transla-
tion speed due to wasteful processing.

Amun implements an efficient batching algo-
rithm that takes into account the actual number of
hypotheses that need to be decoded at each decod-
ing step, Figure 2.



117

Algorithm 1 Naı̈ve mini-batching
procedure BATCHING(encoded sentences i)

Create batch b from i
while hypo h 6= EOS, ∀h ∈ b do

Decode(b)
end while

end procedure

Algorithm 2 Mini-batching
procedure BATCHING(encoded sentences i)

Create batch b from i
while b 6= ∅ do

Decode(b)
for all hypo h ∈ b do

if h = EOS then
Remove h from b

end if
end for

end while
end procedure

We will compare the effect of the two imple-
mentations in the Section 4.

2.2 Softmax and K-Best Fusion

Most NMT models predict a large number of
classes in their output layer, corresponding to the
number of words or subword units in their target
language. For example, Sennrich et al. (2016) ex-
perimented with target vocabulary sizes of 60,000
and 90,000 sub-word units.

The output layer of most deep learning models
consist of the following steps

1. multiplication of the weight matrix with the
input vector p = wx

2. addition of a bias term to the resulting scores
p = p + b

3. applying the activation function, most com-
monly softmax pi = exp(pi)/

∑
exp(pi)

4. a search for the best (or k-best) output classes
argmaxi pi

Figure 1 shows the amount of time spent in each
step during translation. Clearly, the output layer of
NMT models are very computationally expensive,
accounting for over 60% of the translation time.

We focus on the last three steps; their outline is
shown in Algorithm 3. For brevity, we show the
algorithm for 1-best, a k-best search is a simple
extension of this.

Figure 1: Proportion of time spent during transla-
tion

Algorithm 3 Original softmax and k-best algo-
rithm

procedure ADDBIAS(vector p, bias vector b)
for all pi in p do

pi ← pi + bi
end for

end procedure

procedure SOFTMAX(vector p)
. calculate max for softmax stability

max← −∞
for all pi in p do

if pi > max then
max← pi

end if
end for

. calculate denominator
sum← 0
for all pi in p do

sum← sum + exp(pi −max)
end for

. calculate softmax
for all pi in p do

pi ← exp(pi−max)
sum

end for
end procedure

procedure FIND-BEST(vector p)
max← −∞
for all pi in p do

if pi > max then
max← pi
best← i

end if
end for
return max, best

end procedure



118

As can be seen, the vector p is iterated over
five times - once to add the bias, three times to
calculate the softmax, and once to search for the
best classes. We propose fusing the three func-
tions into one kernel, a popular optimization tech-
nique (Guevara et al., 2009), making use of the
following observations.

Firstly, softmax and exp are monotonic func-
tions, therefore, we can move the search for the
best class from FIND-BEST to SOFTMAX, at the
start of the kernel.

Secondly, we are only interested in the proba-
bilities of the best classes during inference, not of
all classes. Since they are now known at the start
of the softmax kernel, we compute softmax only
for those classes.

Algorithm 4 Fused softmax and k-best
procedure FUSED-KERNEL(vector p, bias vec-
tor b)

max← −∞
sum← 0
for all pi in p do

p′i ← pi + bi
if p′i > max then

∆← max− p′i
sum← ∆× sum + 1
max← p′i
best← i

else
sum← sum + exp(p′i −max)

end if
end for
return 1

sum , best
end procedure

Thirdly, the calculation of max and sum can be
accomplished in one loop by adjusting sum when-
ever a higher max is found during the looping:

sum = ext−maxb +
∑

i=0...t−1

exi−maxb

= ext−maxb +
∑

i=0...t−1

exi−maxa+∆

= ext−maxb + e∆ ×
∑

i=0...t−1

exi−maxa

where maxa is the previous maximum value,
maxb is the now higher maximum value, i.e.,
maxb > maxa, and ∆ = maxa − maxb. The
outline of our function is shown in Algorithm 4.

In fact, a well known optimization is to skip
softmax altogether and calculate the argmax over
the input vector, Algorithm 5. This is only possi-
ble for beam size 1 and when we are not interested
in returning the softmax probabilities.

Algorithm 5 Find 1-best only
procedure FUSED-KERNEL-1-BEST(vector p,
bias vector b)

max← −∞
for all pi in p do

if pi + bi > max then
max← pi + bi
best← i

end if
end for
return best

end procedure

Since we are working on GPU optimization, it
is essential to make full use of the many GPU
cores available. This is accomplished by well-
known parallelization methods which multi-thread
the algorithms. For example, Algorithm 5 is par-
allelized by sharding the vector p and calculating
best and max on each shard in parallel. The ulti-
mate best is found in the following reduction step,
Algorithm 6.

2.3 Half-Precision

Reducing the number of bits needed to store float-
ing point values from 32-bits to 16-bits promises
to increase translation speed through faster calcu-
lations and reduced bandwidth usage. 16-bit float-
ing point operations are supported by the GPU
hardware and software available in the shared task.

In practise, however, efficiently using half-
precision value requires a comprehensive redevel-
opment of the GPU code. We therefore make do
with using the GPU’s Tensor Core1 fast matrix
multiplication routines which transparently con-
verts 32-bit float point input matrices to 16-bit val-
ues and output a 32-bit float point product of the
inputs.

3 Experimental Setup

Both of our submitted systems use a sequence-
to-sequence model similar to that described in
Bahdanau et al. (2014), containing a bidirectional

1https://devblogs.nvidia.com/programming-tensor-cores-
cuda-9/



119

Algorithm 6 Parallel find 1-best only
procedure FUSED-KERNEL-1-BEST(vector p,
bias vector b)

. parallelize
Create shards p1...pn from p
parfor pj ∈ p1...pn do

maxj ← −∞
for all pji in pj do

if pji + bi > max then
maxj ← pji + bi
bestj ← i

end if
end for

end parfor
. reduce

max← −∞
for all maxj ∈ max1...maxn do

if maxj > max then
max← maxj

best← bestj

end if
end for
return best

end procedure

RNN in the encoder and a two-layer RNN in the
decoder. We use byte pair encoding (Sennrich
et al., 2016) to adjust the vocabulary size.

We used a variety of GPUs to train the models
but all testing was done on an Nvidia V100. Trans-
lation quality was measured using BLEU, specif-
ically multi-bleu as found in the Moses toolkit2.
The validation and test sets provided by the shared
task organisers were used to measure translation
quality, but a 50,000 sentence subset of the train-
ing data was used to measure translation speed to
obtain longer, more accurate measurements.

3.1 GRU-based system

Our first submitted system uses gated recurred
units (GRU) throughout. It was trained using Mar-
ian (Junczys-Dowmunt et al., 2018), but Amun
was chosen as inference engine.

We experimented with varying the vocabulary
size and the RNN state size before settling for a
vocabulary size of 30,000 (for both source and tar-
get language) and 256 for the state size, Table 1.

After further experimentation, we decided to
use sentence length normalization and NVidia’s

2https://github.com/moses-smt/mosesdecoder

State dim
Vocab size 256 512 1024
1.000 12.23 12.77
5,000 16.79 17.16
10,000 18.00 18.19
20,000 - 19.52
30,000 18.51 19.17 19.64

Table 1: Validation set BLEU (newstest2014) for
GRU-based model

Vocab size
Beam size 40,000 50,000
1 23.45 23.32
2 24.15 24.04
3 24.48
4 24.42
5 24.48

Table 2: Validation set BLEU for mLSTM-based
model

Tensor Core matrix multiplication which in-
creased translation quality as well as translation
speed. The beam was kept at 1 throughout for the
fastest possible inference.

3.2 mLSTM-based system

Our second system uses multiplicative-
LSTM (Krause et al., 2017) in the encoder
and the first layer of a decder, and a GRU in the
second layer, trained with an extension of the
Nematus (Sennrich et al., 2017) toolkit which
supports such models; multiplicative-LSTM’s
suitability for use in NMT models has been
previously demonstrated by Pinnis et al. (2017).
As with our first submission, Amun is used as
inference engine. We trained 2 systems with
differing vocabulary sizes and varied the beam
sizes, and chose the configuration that produced
the best results for translation quality on the
validation set, Table 2.

4 Result

4.1 Batching

The efficiency of Amun’s batching algorithm can
be seen by observing the time taken for each de-
coding step in a batch of sentences, Figure 2.
Amun’s decoding becomes faster as sentences
are completely translated. This contrasts with
the Marian inference engine, which uses a naı̈ve



120

Figure 2: Time taken for each decoding step for a
batch of 1280 sentences

Figure 3: Speed v. batch size

batching algorithm, where the speed stays rel-
atively constant throughout the decoding of the
batch.

Using batching can increase the translation
speed by over 20 times in Amun, Figure 3. Just
as important, it doesn’t suffer degradation with
large batch sizes, unlike the naı̈ve algorithm which
slows down when batch sizes over 1000 is used.
This scalability issue is likely to become more rel-
evant as newer GPUs with ever increasing core
counts are released.

4.2 Softmax and K-Best Fusion
Fusing the bias and softmax operations in the out-
put layer with the beam search results in a speed
improvement by 25%, Figure 4. Its relative im-
provement decreases marginally as the beam size
increases.

Further insight can be gained by examining the
time taken for each step in the output layer and
beam search, Table 3. The fused operation only
has to loop through the large cost matrix once,
therefore, for low beam sizes its is comparable in
speed to the simple kernel to add the bias. For
higher beam sizes, the cost of maintaining the n-

Figure 4: Using fused operation

best list is begins to impact on speed.

Baseline Fused
Beam size 1

Multiplication 5.39 5.38 (+0%)
Add bias 1.26
Softmax 1.69 2.07 (-86.6%)
K-best extr. 12.53

Beam size 3
Multiplication 14.18 14.16 (+0%)
Add bias 3.76
Softmax 4.75 3.43 (-87.1%)
K-best extr. 18.23

Beam size 9
Multiplication 38.35 38.42 (+0%)
Add bias 11.64
Softmax 14.4 17.5 (-72.1%)
K-best extr. 36.7

Table 3: Time taken (sec) breakdown

4.3 Tensor Cores

By taking advantage of the GPU’s hardware ac-
celerated matrix multiplication, we can gain up to
20% in speed, Table 4.

Beam size Baseline Tensor Cores
1 39.97 34.54 (-13.6%)
9 145.8 116.8 (-20.0%)

Table 4: Time taken (sec) using Tensor Cores

5 Conclusion and Future Work

We have presented some of the improvement to
Amun which are focused on improving NMT in-
ference.



121

We are also working to make deep-learning
faster using more specialised hardware such as FP-
GAs. It would be interesting as future work to
bring our focused approach to fast deep-learning
inference to a more general toolkit.

References
Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural

machine translation by jointly learning to align and
translate. CoRR, abs/1409.0473.

Birch, A., Finch, A., Luong, M.-T., Neubig, G., and
Oda, Y. (2018). Findings of the second workshop
on neural machine translation and generation. In
The Second Workshop on Neural Machine Transla-
tion and Generation.

Guevara, M., Gregg, C., Hazelwood, K. M., and
Skadron, K. (2009). Enabling task parallelism in the
cuda scheduler.

Junczys-Dowmunt, M., Dwojak, T., and Hoang, H.
(2016). Is neural machine translation ready for de-
ployment? a case study on 30 translation directions.
In Proceedings of the 9th International Workshop
on Spoken Language Translation (IWSLT), Seattle,
WA.

Junczys-Dowmunt, M., Grundkiewicz, R., Dwojak, T.,
Hoang, H., Heafield, K., Neckermann, T., Seide, F.,
Germann, U., Aji, A. F., Bogoychev, N., Martins,
A. F. T., and Birch, A. (2018). Marian: Fast Neural
Machine Translation in C++. ArXiv e-prints.

Krause, B., Murray, I., Renals, S., and Lu, L. (2017).
Multiplicative LSTM for sequence modelling. ICLR
Workshop track.

Pinnis, M., Krišlauks, R., Miks, T., Deksne, D., and
Šics, V. (2017). Tilde’s Machine Translation Sys-
tems for WMT 2017. In Proceedings of the Second
Conference on Machine Translation (WMT 2017),
Volume 2: Shared Task Papers, pages 374–381,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Sennrich, R., Firat, O., Cho, K., Birch, A., Haddow,
B., Hitschler, J., Junczys-Dowmunt, M., Läubli, S.,
Miceli Barone, A. V., Mokry, J., and Nadejde, M.
(2017). Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 65–68, Valencia, Spain. Association for Com-
putational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neu-
ral Machine Translation of Rare Words with Sub-
word Units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.


