On the Impact of Various Types of Noise on Neural Machine Translation

Huda Khayrallah
Center for Language & Speech Processing
Computer Science Department
Johns Hopkins University
huda@jhu. edu

Abstract

We examine how various types of noise
in the parallel training data impact the
quality of neural machine translation sys-
tems. We create five types of artificial
noise and analyze how they degrade per-
formance in neural and statistical machine
translation. We find that neural models are
generally more harmed by noise than sta-
tistical models. For one especially egre-
gious type of noise they learn to just copy
the input sentence.

1 Introduction

While neural machine translation (NMT) has
shown large gains in quality over statistical ma-
chine translation (SMT) (Bojar et al., 2017), there
are significant exceptions to this, such as low
resource and domain mismatch data conditions
(Koehn and Knowles, 2017).

In this work, we consider another challenge to
neural machine translation: noisy parallel data. As
a motivating example, consider the numbers in Ta-
ble 1. Here, we add an equally sized noisy web
crawled corpus to high quality training data pro-
vided by the shared task of the Conference on Ma-
chine Translation (WMT). This addition leads to
a 1.2 BLEU point increase for the statistical ma-
chine translation system, but degrades the neural
machine translation system by 9.9 BLEU.

The maxim more data is better that holds true
for statistical machine translation does seem to
come with some caveats for neural machine trans-
lation. The added data cannot be too noisy. But
what kind of noise harms neural machine transla-
tion models?

In this paper, we explore several types of noise
and assess their impact by adding synthetic noise
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NMT SMT
WMT17 27.2 24.0
+ noisy corpus | 17.3(-9.9) | 25.2 (+1.2)

Table 1: Adding noisy web crawled data (raw
data from paracrawl.eu) to a WMT 2017 German—
English statistical system obtains small gains
(+1.2 BLEU), a neural system falls apart (-9.9
BLEU).

to an existing parallel corpus. We find that for al-
most all types of noise, neural machine translation
systems are harmed more than statistical machine
translation systems. We discovered that one type
of noise, copied source language segments, has a
catastrophic impact on neural machine translation
quality, leading it to learn a copying behavior that
it then exceedingly applies.

2 Related Work

There is a robust body of work on filtering out
noise in parallel data. For example: Taghipour
et al. (2011) use an outlier detection algorithm
to filter a parallel corpus; Xu and Koehn (2017)
generate synthetic noisy data (inadequate and non-
fluent translations) and use this data to train a clas-
sifier to identify good sentence pairs from a noisy
corpus; and Cui et al. (2013) use a graph-based
random walk algorithm and extract phrase pair
scores to weight the phrase translation probabili-
ties to bias towards more trustworthy ones.

Most of this work was done in the context of sta-
tistical machine translation, but more recent work
(Carpuat et al., 2017) targets neural models. That
work focuses on identifying semantic differences
in translation pairs using cross-lingual textual en-
tailment and additional length-based features, and
demonstrates that removing such sentences im-
proves neural machine translation performance.
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As Rarrick et al. (2011) point out, one prob-
lem of parallel corpora extracted from the web
is translations that have been created by machine
translation. Venugopal et al. (2011) propose a
method to watermark the output of machine trans-
lation systems to aid this distinction. Antonova
and Misyurev (2011) report that rule-based ma-
chine translation output can be detected due to cer-
tain word choices, and statistical machine transla-
tion output due to lack of reordering.

In 2016, a shared task on sentence pair filtering
was organized1 (Barbu et al., 2016), albeit in the
context of cleaning translation memories which
tend to be cleaner than web crawled data. This
year, a shared task is planned for the type of noise
that we examine in this paper.”

Belinkov and Bisk (2017) investigate noise in
neural machine translation, but they focus on cre-
ating systems that can translate the kinds of or-
thographic errors (typos, misspellings, etc.) that
humans can comprehend. In contrast, we address
noisy training data and focus on types of noise oc-
curring in web-crawled corpora.

There is a rich literature on data selection which
aims at sub-sampling parallel data relevant for a
task-specific machine translation system (Axelrod
et al., 2011). van der Wees et al. (2017) find that
the existing data selection methods developed for
statistical machine translation are less effective for
neural machine translation. This is different from
our goals of handling noise since those methods
tend to discard perfectly fine sentence pairs (say,
about cooking recipes) that are just not relevant
for the targeted domain (say, software manuals).
Our work is focused on noise that is harmful for
all domains.

Since we begin with a clean parallel corpus
and potentially noisy data to it, this work can be
seen as a type of data augmentation. Sennrich
et al. (2016a) incorporate monolingual corpora
into NMT by first translating it using an NMT sys-
tem trained in the opposite direction. While such
a corpus has the potential to be noisy, the method
is very effective. Currey et al. (2017) create ad-
ditional parallel corpora by copying monolingual
corpora in the target language into the source, and
find it improves over back-translation for some
language pairs. Fadaee et al. (2017) improve NMT
performance in low-resource settings by altering

'NLP4TM 2016: rgcl.wlv.ac.uk/nlp4tm2016/shared-task
Zstatmt.org/wmt18/parallel-corpus-filtering html
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Type of Noise Count
Okay 23%
Misaligned sentences 41%
Third language 3%
Both English 10%
Both German 10%
Untranslated sentences 4%
Short segments (<2 tokens) 1%
Short segments (3—5 tokens) 5%
Non-linguistic characters 2%

Table 2: Noise in the raw Paracrawl corpus.

existing sentences to create training data that in-
cludes rare words in different contexts.

3 Real-World Noise

What types of noise are prevalent in crawled
web data? We manually examined 200 sentence
pairs of the above-mentioned Paracrawl corpus
and classified them into several error categories.
Obviously, the results of such a study depend very
much on how crawling and extraction is executed,
but the results (see Table 2) give some indication
of what noise to expect.

We classified any pairs of German and English
sentences that are not translations of each other as
misaligned sentences. These may be caused by
any problem in alignment processes (at the doc-
ument level or the sentence level), or by forcing
the alignment of content that is not indeed parallel.
Such misaligned sentences are the biggest source
of error (41%).

There are three types of wrong language con-
tent (totaling 23%): one or both sentences may be
in a language different from German and English
(3%), both sentences may be German (10%), or
both languages may be English (10%).

4% of sentence pairs are untranslated, i.e.,
source and target are identical. 2% sentence pairs
consist of random byte sequences, only HTML
markup, or Javascript. A number of sentence pairs
have very short German or English sentences, con-
taining at most 2 tokens (1%) or 5 tokens (5%).

Since it is a very subjective value judgment
what constitutes disfluent language, we do not
classify these as errors. However, consider the fol-
lowing sentence pairs that we did count as okay,
although they contain mostly untranslated names
and numbers.


 http://rgcl.wlv.ac.uk/nlp4tm2016/shared-task
http://statmt.org/wmt18/parallel-corpus-filtering.html

DE: Anonym 2 24.03.2010 um 20:55 314 Kom-
mentare

EN: Anonymous 2 2010-03-24 at 20:55 314
Comments

DE: &lt; &lt; erste &lt; zuriick Seite 3 mehr
letzte &gt; &gt;

EN: &lt; &lt; first &lt; prev. page 3 next last
&gt; &gt;

At first sight, some types of noise seem to be
easier to automatically identify than others. How-
ever, consider, for instance, content in a wrong
language. While there are established methods for
language identification (typically based on charac-
ter n-grams), these do not work well on a sentence-
level basis, especially for short sentences. Or,
take the apparently obvious problem of untrans-
lated sentences. If they are completely identical,
that is easy to spot — although even those may
have value, such as the list of country names which
are often spelled identical in different languages.
However, there are many degrees of near-identical
content of unclear utility.

4 Types of Noise

The goal of this paper is not to develop methods to
detect noise but to ascertain the impact of different
types of noise on translation quality when present
in parallel data. We hope that our findings inform
future work on parallel corpus cleaning.

We now formally define five types of naturally
occurring noise and describe how we simulate
them. By creating artificial noisy data, we avoid
the hard problem of detecting specific types of
noise but are still able to study their impact.

MISALIGNED SENTENCES As shown above,
a common source of noise in parallel corpora is
faulty document or sentence alignment. This re-
sults in sentences that are not matched to their
translation. Such noise is rare in corpora such
as Europarl where strong clues about debate top-
ics and speaker turns reduce the scale of the task
of alignment to paragraphs, but more common in
the alignment of less structured web sites. We ar-
tificially create misaligned sentence data by ran-
domly shuffling the order of sentences on one side
of the original clean parallel training corpus.

MISORDERED WORDS Language may be dis-
fluent in many ways. This may be the product
of machine translation, poor human translation,
or heavily specialized language use, such as bul-
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let points in product descriptions (recall also the
examples above). We consider one extreme case
of disfluent language: sentences from the original
corpus where the words are reordered randomly.
We do this on the source or target side.

WRONG LANGUAGE A parallel corpus may be
polluted by text in a third language, say French
in a German—-English corpus. This may occur on
the source or target side of the parallel corpus. To
simulate this, we add French—English (bad source)
or German—French (bad target) data to a German—
English corpus.

UNTRANSLATED SENTENCES Especially in
parallel corpora crawled from the web, there are
often sentences that are untranslated from the
source in the target. Examples are navigational el-
ements or copyright notices in the footer. Purport-
edly multi-lingual web sites may be only partially
translated, while some original text is copied.
Again, this may show up on the source or the tar-
get side. We take sentences from either the source
or target side of the original parallel corpus and
simply copy them to the other side.

SHORT SEGMENTS Sometimes additional data
comes in the form of bilingual dictionaries. Can
we simply add them as additional sentence pairs,
even if they consist of single words or short
phrases? We simulate this kind of data by sub-
subsampling a parallel corpus to include only sen-
tences of maximum length 2 or 5.

5 Experimental Setup

5.1 Neural Machine Translation

Our neural machine translation systems are trained
using Marian (Junczys-Dowmunt et al., 2018).2
We build shallow RNN-based encoder-decoder
models with attention (Bahdanau et al., 2015).
We train Byte-Pair Encoding segmentation mod-
els (BPE) (Sennrich et al., 2016b) with a vocab
size of 50,000 on both sides of the parallel cor-
pus for each experiment. We apply drop-out with
20% probability on the RNNs, and with 10% prob-
ability on the source and target words. We stop
training after convergence of cross-entropy on the
development set, and we average the 4 highest per-
forming models (as determined by development
set BLEU performance) to use as an ensemble
for decoding (checkpoint assembling). Training of

3marian-nmt.github.io


 https://marian-nmt.github.io/

each system takes 2—4 days on a single GPU (GTX
1080ti).

While we focus on RNN-based models with at-
tention as our NMT architecture, we note that dif-
ferent architectures have been proposed, including
based on convolutional neural networks (Kalch-
brenner and Blunsom, 2013; Gehring et al., 2017)
and the self-attention based Transformer model
(Vaswani et al., 2017).

5.2 Statistical Machine Translation

Our statistical machine translation systems are
trained using Moses (Koehn et al., 2007).* We
build phrase-based systems using standard fea-
tures commonly used in recent system submis-
sions to WMT (Haddow et al., 2015; Ding et al.,
2016, 2017). We trained our systems with the
following settings: a maximum sentence length
of 80, grow-diag-final-and symmetrization of
GIZA++ alignments, an interpolated Kneser-Ney
smoothed 5-gram language model with KenLM
(Heafield, 2011), hierarchical lexicalized reorder-
ing (Galley and Manning, 2008), a lexically-
driven 5-gram operation sequence model (OSM)
(Durrani et al., 2013), sparse domain indicator,
phrase length, and count bin features (Blunsom
and Osborne, 2008; Chiang et al., 2009), a max-
imum phrase-length of 5, compact phrase table
(Junczys-Dowmunt, 2012) minimum Bayes risk
decoding (Kumar and Byrne, 2004), cube prun-
ing (Huang and Chiang, 2007), with a stack-size
of 1000 during tuning. We optimize feature func-
tion weights with k-best MIRA (Cherry and Fos-
ter, 2012).

While we focus on phrase based systems as our
SMT paradigm, we note that there are other statis-
tical machine translation approaches such as hier-
archical phrase-based models (Chiang, 2007) and
syntax-based models (Galley et al., 2004, 2006)
that may have better performance in certain lan-
guage pairs and in low resource conditions.

5.3 Clean Corpus

In our experiments, we translate from German to
English. We use datasets from the shared trans-
lation task organized alongside the Conference
on Machine Translation (WMT)’ as clean train-
ing data. For our baseline we use: Europarl

4statmt.org/moses
>statmt.org/wmt17/
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(Koehn, 2005),° News Commentary,’ and the
Rapid EU Press Release parallel corpus. The cor-
pus size is about 83 million tokens per language.
We use newstest2015 for tuning SMT systems,
newstest2016 as a development set for NMT
systems, and report results on newstest2017.

Note that we do not add monolingual data to
our systems since this would make our study more
complex. So, we always train our language model
on the target side of the parallel corpus for that ex-
periment. While using monolingual data for lan-
guage modelling is standard practice in statistical
machine translation, how to use such data for neu-
ral models is less obvious.

5.4 Noisy Corpora

For MISALIGNED SENTENCE and MISORDERED
WORD noise, we use the clean corpus (above) and
perturb the data. To create UNTRANSLATED SEN-
TENCE noise, we also use the clean corpus and
create pairs of identical sentences.

For WRONG LANGUAGE noise, we do not have
French-English and German—French data of the
same size. Hence, we use the EU Bookstore cor-
pus (Skadins et al., 2014).3

The SHORT SEGMENTS are extracted from
OPUS corpora (Tiedemann, 2009, 2012; Lison
and Tiedemann, 2016):° EMEA (descriptions of
medicines),'? Tanzil (religious text),!! Open Sub-
titles 2016,'2 Acquis (legislative text),!> GNOME
(software localization files),'* KDE (localization
files), PHP (technical manual),’> Ubuntu (local-
ization files),'® and Open Office.'” We use only
pairs where both the English and German seg-
ments are at most 2 or 5 words long. Since this re-
sults in small data sets (2 million and 15 tokens per
language, respectively), they are duplicated multi-
ple times.

We also show the results for naturally occurring
noisy web data from the raw 2016 ParaCrawl cor-
pus (deduplicated raw set).'®

8statmt.org/europarl

7 casmacat.eu/corpus/news-commentary.html

8opus.nlpl.eu/EUbookshop.php

®opus.nlpl.eu

loemea.europa.eu

Ytanzil.net/trans

12opensubtitles.org

Bec.europa.eu/jre/en/language-technologies/jrc-acquis

14110n.gnome.org

13se.php.net/download-docs

'Stranslations.launchpad.net

7 openoffice.org
18 paracrawl.eu


http://www.statmt.org/moses/
http://www.statmt.org/wmt17/
http://www.statmt.org/europarl/
http://www.casmacat.eu/corpus/news-commentary.html
http://opus.nlpl.eu/EUbookshop.php
 http://opus.nlpl.eu/
http://www.emea.europa.eu/
http://tanzil.net/trans/
 http://www.opensubtitles.org/
 https://ec.europa.eu/jrc/en/language-technologies/jrc-acquis 
https://l10n.gnome.org
http://se.php.net/download-docs.php
 https://translations.launchpad.net
 http://www.openoffice.org/ 
https://paracrawl.eu/

We sample the noisy corpus in an amount equal
to 5%, 10%, 20%, 50%, and 100% of the clean
corpus. This reflects the realistic situation where
there is a clean corpus, and one would like to add
additional data that has the potential to be noisy.
For each experiment, we use the target side of the
parallel corpus to train the SMT language model,
including the noisy text.

6 Impact on Translation Quality

Table 3 shows the effect of adding each type
of noise to the clean corpus.'” For some types
of noise NMT is harmed more than SMT: MIS-
MATCHED SENTENCES (up to -1.9 for NMT, -0.6
for SMT), MISORDERED WORDS (source) (-1.7
vs. -0.3), WRONG LANGUAGE (target) (-2.2 vs.
-0.6).

SHORT SEGMENTS, UNTRANSLATED
SOURCE SENTENCES and WRONG SOURCE
LANGUAGE have little impact on either (at most
a degradation of -0.7). MISORDERED TARGET
WORDS decreases BLEU scores for both SMT
and NMT by just over 1 point (100% noise).

The most dramatic difference is UNTRANS-
LATED TARGET SENTENCE noise. When added at
5% of the original data, it degrades NMT perfor-
mance by 9.6 BLEU, from 27.2 to 17.6. Adding
this noise at 100% of the original data degrades
performance by 24.0 BLEU, dropping the score
from 27.2 to 3.2. In contrast, the SMT system only
drops 2.9 BLEU, from 24.0 to 21.1.

6.1 Copied output

Since the noise type where the target side is a copy
of the source has such a big impact, we examine
the system output in more detail.

We report the percent of sentences in the eval-
uation set that are identical to the source for the
UNTRANSLATED TARGET SENTENCE and RAW
CRAWL data in Figures 1 and 2 (solid bars). The
SMT systems output O or 1 sentences that are ex-
act copies. However, with just 20% of the UN-
TRANSLATED TARGET SENTENCE noise, 60% of
the NMT output sentences are identical to the
source.

This suggests that the NMT systems learn to
copy, which may be useful for named entities.
However, with even a small amount of this data
it is doing far more harm than good.

We report case-sensitive detokenized BLEU (Papineni
et al., 2002) calculated using mteval-v13a.pl.

78

UNTRANSLATED TARGET Copying

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percentage of Sentences

S o O b Oy B
0% 5% 10% 20% 50% 100%
amount of noise

Figure 1: Copied sentences in the UNTRANS-
LATED (TARGET) experiments. NMT is the left
green bars, SMT is the right blue bars. Sentences
that are exact matches to the source are the solid
bars, sentences that are more similar to the source
than the target are the shaded bars.

Raw CrawL Copying
100%

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Percentage of Sentences

B EE EE eE PRI

0% 5% 10% 20% 50% 100%
amount ofnoise

Figure 2: Copied sentences in the RAW CRAWL ex-

periments. NMT is the left green bars, SMT is the

right blue bars. Sentences that are exact matches

to the source are the solid bars, sentences that are

more similar to the source than the target are the
shaded bars.




5% 10% 20% 50% 100 %
MISALIGNED SENTENCES | 26.5 24.0 | 265 240 | 26.3 239 | 26.1 23.9 253 234
— — - T e —
07 00 | 07 00 | oo 01 |1 01 3 0.6
MISORDERED WORDS 269 24.0 | 26.6 23.6 264 239 | 26.6 23.6 | 25.5 23.7
(SOURCE) 03 -00 | 06 -04 | 08 0.1 | 06 04 | 510 03
MISORDERED WORDS 27.0 240 | 26.8 240 | 264 234 | 267 232 | 26.1 229
(TARGET) 0.2 00 | 04 00 | 08 0.6 | 0.5 08 | -1.1 -1.1
WRONG LANGUAGE 269 240 | 26.8 239 | 26.8 239 | 26.8 239 | 26.8 23.8
(FRENCH SOURCE) -03 -00 | 04 -0.1 | .04 -0.1 | 04 -0.1 | -04 -02
WRONG LANGUAGE 26.7 240 | 26.6 239 | 26.7 23.8 | 26.2 23.5 | 25.0 234
(FRENCH TARGET) 05 -00 | J06 01 | 205 02 |10 05 g 0.6
UNTRANSLATED 272 239 | 27.0 23.9 26.7 23.6 | 26.8 23.7 26.9 23.5
(ENGLISH SOURCE) -0.0 -0.1 -0.2 -0.1 -0.5 -04 -04 -03 -03 -0.5
UNTRANSLATED 17.6 23.8 11.2 23.9 5.6 23.8 32 234 32 21.1
(GERMAN TARGET) -0.2 -0.1 -0.2 -0.6 -
-2.9
9.8
-16.0
-21.6
-24.0 -24.0
SHORT SEGMENTS 27.1 24.1 26.5 23.9 26.7 23.8
(max 2) 0.1 +0.1 | 7 0.1 | 05 -0.2
SHORT SEGMENTS 27.8 242 | 27.6 24.5 28.0 24.5 26.6 24.2
(max 5) +0.6 +0.2 | +0.4 +0.5 | +0.8 +0.5 | 96 +0.2
RAW CRAWL DATA 274 242 | 26.6 242 | 247 244 | 20.9 24.8 17.3 Saede
+02 402 | g +0.2 | N 104 . +0.8 +1.2
2.5
-6.3
9.9

Table 3: Results from adding different amounts of noise (ratio of original clean corpus) for various types
of noise in German-English Translation. Generally neural machine translation (left green bars) is harmed
more than statistical machine translation (right blue bars). The worst type of noise are segments in the
source language copied untranslated into the target.
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UNTRANSLATED TARGET Learning Curve

20
=)
m
=
R 10

0

0 10 20 30 40 50
Iterations (thousands)

—0% - 5% —10% 20% 50% <o 100%

Figure 3: Learning curves for the NMT UN-
TRANSLATED TARGET SENTENCE experiments.

Figures 1 and 2 show the percent of sentences
that have a worse TER score against the reference
than against the source (shaded bars). This means
that it would take fewer edits to transform the sen-
tence into the source than it would to transform it
into the target. When just 10% UNTRANSLATED
TARGET SENTENCE data is added, 57% of the sen-
tences are more similar to the source than to the
reference, indicating partial copying.

This suggests that the NMT system is overfit-
ting the copied portion of the training corpus. This
is supported by Figure 3, which shows the learning
curve on the development set for the UNTRANS-
LATED TARGET SENTENCE noise setup. The per-
formance for the systems trained on noisy corpora
begin to improve, before over-fitting to the copy
portion of the training set. Note that we plot the
BLEU performance on the development set with
beam search, while the system is optimizing cross-
entropy given a perfect prefix.

Other work has also considered copying in
NMT. Currey et al. (2017) add copied data and
back-translated data to a clean parallel corpus.
They report improvements on EN < RO when
adding as much back-translated and copied data
as they have parallel (1:1:1 ratio). For EN<+TR
and EN<DE, they add twice as much back trans-
lated and copied data as parallel data (1:2:2 ra-
tio), and report improvements on EN<+TR but
not on EN<DE. However, their EN<DE sys-
tems trained with the copied corpus did not per-
form worse than baseline systems. Ott et al.
(2018) found that while copied training sentences
represent less than 2.0% of their training data
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(WMT 14 EN+DE and EN<«FR), copies are
over-represented in the output of beam search. Us-
ing a subset of training data from WMT 17, they
replace a subset of the true translations with a copy
of the input. They analyze varying amounts of
copied noise, and a variety of beam sizes. Larger
beams are more effected by this kind of noise;
however, for all beam sizes performance degrades
completely with 50% copied sentences.?

6.2 Incorrect Language output

Another interesting case is when a German-—
French corpus is added to a German—English cor-
pus (WRONG TARGET LANGUAGE). Both neural
and statistical machine translation are surprisingly
robust, even when these corpora are provided in
equal amounts.

We performed a manual analysis of the neu-
ral machine translation experiments. For the each
of the noise levels, we report the percentage of
NMT output sentences in French (out of of 3004:
5%: 0.20%, 10%: 0.60%, 20%: 1.7%, 50%:
3.3%, 100%: 6.7%. Most NMT output sentences
were either entirely French or English, with the
exception of a few mis-translated cognates (e.g.:
‘facade’, ‘accessibilité’).

In the SMT experiment with 100% noisy data
added, there are a couple of French words in
mostly English sentences. These are much less
frequent than unknown German words passed
through. Only 1 sentence is mostly French.

It is surprising that such a small percentage of
the output sentences were French, since up to half
of the target data in training was in French. We at-
tribute this to the domain of the added data differ-
ing from the test data. Source sentences in the test
set are more similar to the domain-relevant clean
parallel training corpus than the domain-divergent
noise corpus.

7 Conclusion

We defined five types of noise in parallel data, mo-
tivated by a study of raw web crawl data. We
found that neural machine translation is less ro-
bust to many types of noise than statistical ma-
chine translation. In the most extreme case, when
the reference is an untranslated copy of the source
data, neural machine translation may learn to ex-
cessively copy the input. These findings should
inform future work on corpus cleaning.

2See Figure 3 in Ott et al. (2018).
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