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Abstract

We investigate the incorporation of
character-based word representations into
a standard CNN-based relation extraction
model. We experiment with two common
neural architectures, CNN and LSTM, to
learn word vector representations from
character embeddings. Through a task on
the BioCreative-V CDR corpus, extract-
ing relationships between chemicals and
diseases, we show that models exploiting
the character-based word representations
improve on models that do not use this in-
formation, obtaining state-of-the-art result
relative to previous neural approaches.

1 Introduction

Relation extraction, the task of extracting seman-
tic relations between named entities mentioned in
text, has become a key research topic in natu-
ral language processing (NLP) with a variety of
practical applications (Bach and Badaskar, 2007).
Traditional approaches for relation extraction are
feature-based and kernel-based supervised learn-
ing approaches which utilize various lexical and
syntactic features as well as knowledge base re-
sources; see the comprehensive survey of these
traditional approaches in Pawar et al. (2017). Re-
cent research has shown that neural network (NN)
models for relation extraction obtain state-of-the-
art performance. Two major neural architectures
for the task include the convolutional neural net-
works, CNNs, (Zeng et al., 2014; Nguyen and Gr-
ishman, 2015; Zeng et al., 2015; Lin et al., 2016;
Jiang et al., 2016; Zeng et al., 2017; Huang and
Wang, 2017) and long short-term memory net-
works, LSTMs (Miwa and Bansal, 2016; Zhang
et al., 2017; Katiyar and Cardie, 2017; Ammar
et al., 2017). We also find combinations of those
two architectures (Nguyen and Grishman, 2016;
Raj et al., 2017).

Relation extraction has attracted particular at-
tention in the high-value biomedical domain. Sci-
entific publications are the primary repository of
biomedical knowledge, and given their increasing
numbers, there is tremendous value in automat-
ing extraction of key discoveries (de Bruijn and
Martin, 2002). Here, we focus on the task of un-
derstanding relations between chemicals and dis-
eases, which has applications in many areas of
biomedical research and healthcare including tox-
icology studies, drug discovery and drug safety
surveillance (Wei et al., 2015). The importance
of chemical-induced disease (CID) relation extrac-
tion is also evident from the fact that chemicals,
diseases and their relations are among the most
searched topics by PubMed users (Islamaj Dogan
et al., 2009). In the CID relation extraction task
formulation (Wei et al., 2015, 2016), CID relations
are typically determined at document level, mean-
ing that relations can be expressed across sen-
tence boundaries; they can extend over distances
of hundreds of word tokens. As LSTM models can
be difficult to apply to very long word sequences
(Bradbury et al., 2017), CNN models may be bet-
ter suited for this task.

New domain-specific terms arise frequently in
biomedical text data, requiring the capture of un-
known words in practical relation extraction appli-
cations in this context. Recent research has shown
that character-based word embeddings enable cap-
ture of unknown words, helping to improve perfor-
mance on many NLP tasks (dos Santos and Gatti,
2014; Ma and Hovy, 2016; Lample et al., 2016;
Plank et al., 2016; Nguyen et al., 2017). This
may be particularly relevant for terms such as gene
or chemical names, which often have identifiable
morphological structure (Krallinger et al., 2017).

We investigate the value of character-based
word embeddings in a standard CNN model for
relation extraction (Zeng et al., 2014; Nguyen and
Grishman, 2015). To the best of our knowledge,
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there is no prior work addressing this.
We experiment with two common neural ar-

chitectures of CNN and LSTM for learning the
character-based embeddings, and evaluate the
models on the benchmark BioCreative-V CDR
corpus for chemical-induced disease relation ex-
traction (Li et al., 2016a), obtaining state-of-the-
art results.

2 Our modeling approach

This section describes our relation extraction mod-
els. They can be viewed as an extension of the
well-known CNN model for relation extraction
(Nguyen and Grishman, 2015), where we incor-
porate character-level representations of words.
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Figure 1: Our model architecture. Given the
input relation mention marked with two entities
“hemolysis” and “tamoxifen”, the convolutional
layer uses the window size k = 3 and the num-
ber of filters m = 4.

Figure 1 presents our model architecture. Given
an input fixed-length sequence (i.e. a relation
mention) of n word tokens w1, w2, w3, ..., wn,1

marked with two entity mentions, the vector repre-
sentation layer encodes each ith word in the input
relation mention by a real-valued vector represen-
tation vi ∈ Rd. The convolutional layer takes the
input matrix S = [v1,v2, ...,vn]

T to extract high
level features. These high level features are then
fed into the max pooling layer to capture the most
important features for generating a feature vector
of the input relation mention. Finally, the feature
vector is fed into a fully-connected neural network
with softmax output to produce a probability dis-
tribution over relation types. For convenience, we
detail the vector representation layer in Section 2.2
while the remaining layers appear in Section 2.1.

1We set n to be the length of the longest sequence and pad
shorter sequences with a special “PAD” token.

2.1 CNN layers for relation extraction

Convolutional layer: This layer uses different
filters to extract features from the input matrix
S = [v1,v2, ...,vn]

T ∈ Rn×d by performing con-
volution operations. Given a window size k, a
filter can be formalized as a weight matrix F =
[f1,f2, ...,fk]

T ∈ Rk×d. For each filter F , the
convolution operation is performed to generate a
feature map x = [x1,x2, ...,xn−k+1] ∈ Rn−k+1:

xj = g
(∑k

h=1 fhvj+h−1 + b
)

where g(.) is some non-linear activation function
and b ∈ R is a bias term.

Assume that we use m different weight matrix
filters F (1), F (2), ..., F (m) ∈ Rk×d, the process
above is then repeatedm times, resulting inm fea-
ture maps x(1),x(2), ...,x(m) ∈ Rn−k+1.
Max pooling layer: This layer aims to capture the
most relevant features from each feature map x by
applying the popular max-over-time pooling oper-
ation: x̂ = max{x} = max{x1,x2, ...,xn−k+1}.
From m feature maps, the corresponding out-
puts are concatenated into a feature vector z =
[x̂(1), x̂(2), ..., x̂(m)] ∈ Rm to represent the input
relation mention.
Softmax output: The feature vector z is then fed
into a fully connected NN followed by a softmax
layer for relation type classification. In addition,
following Kim (2014), for regularization we apply
dropout on z only during training. The softmax
output procedure can be formalized as:

p = softmax
(
W1(z ∗ r) + b1

)
where p ∈ Rt is the final output of the network
in which t is the number of relation types, and
W1 ∈ Rt×m and b1 ∈ Rt are a transformation
weight matrix and a bias vector, respectively. In
addition, ∗ denotes an element-wise product and
r ∈ Rm is a vector of independent Bernoulli ran-
dom variables, each with probability ρ of being 0
(Srivastava et al., 2014).

2.2 Input vector representation

This section presents the vector representation
vi ∈ Rd for each ith word token in the input re-
lation mention w1, w2, w3, ..., wn. Let word to-
kens wi1 and wi2 be two entity mentions in the
input.2 We obtain vi by concatenating word em-
beddings ewi ∈ Rd1 , position embeddings e

(p1)
i−i1

2If an entity spans over multiple tokens, we take only the
last token in the entity into account (Nguyen et al., 2016).
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and e
(p2)
i−i2
∈ Rd2 , and character-level embeddings

e
(c)
wi ∈ Rd3 (so, d = d1 + 2× d2 + d3):

vi = ewi ◦ e
(p1)
i−i1
◦ e(p2)i−i2

◦ e(c)wi

Word embeddings: Each word type w in the
training data is represented by a real-valued word
embedding ew ∈ Rd1 .
Position embeddings: In relation extraction, we
focus on assigning relation types to entity pairs.
Words close to target entities are usually in-
formative for identifying a relationship between
them. Following Zeng et al. (2014), to specify en-
tity pairs, we use position embeddings e

(p1)
i−i1

and

e
(p2)
i−i2
∈ Rd2 to encode the relative distances i− i1

and i − i2 from each word wi to entity mentions
wi1 and wi2 , respectively.
Character-level embeddings: Given a word type
w consisting of l characters w = c1c2...cl
where each jth character in w is represented by
a character embedding cj ∈ Rd4 , we investi-
gate two approaches for learning character-based
word embedding e

(c)
w ∈ Rd3 from input c1:l =

[c1, c2, ..., cl]
T as follows:

(1) Using CNN (dos Santos and Gatti, 2014; Ma
and Hovy, 2016): This CNN contains a convolu-
tional layer to generate d3 feature maps from the
input c1:l, and a max pooling layer to produce a
final vector e(c)w from those feature maps for rep-
resenting the word w.

(2) Using a sequence BiLSTM (BiLSTMseq)
(Lample et al., 2016): In the BiLSTMseq, the in-
put is the sequence of l character embeddings c1:l,
and the output is a concatenation of outputs of a
forward LSTM (LSTMf) reading the input in its
regular order and a reverse LSTM (LSTMr) read-
ing the input in reverse:

e
(c)
w = BiLSTMseq(c1:l) = LSTMf(c1:l) ◦ LSTMr(cl:1)

2.3 Model training

The baseline CNN model for relation extraction
(Nguyen and Grishman, 2015) is denoted here
as CNN. The extensions incorporating CNN and
BiLSTM character-based word embeddings are
CNN+CNNchar and CNN+LSTMchar, respec-
tively. The model parameters, including word, po-
sition, and character embeddings, weight matrices
and biases, are learned during training to mini-
mize the model negative log likelihood (i.e. cross-
entropy loss) with L2 regularization.

3 Experiments

3.1 Experimental setup

We evaluate our models using the BC5CDR cor-
pus (Li et al., 2016a) which is the benchmark
dataset for the chemical-induced disease (CID) re-
lation extraction task (Wei et al., 2015, 2016).3

The corpus consists of 1500 PubMed abstracts:
500 for each of training, development and test.
The training set is used to learn model parame-
ters, the development set to select optimal hyper-
parameters, and the test set to report final re-
sults. We make use of gold entity annotations
in each case. For evaluation results, we measure
the CID relation extraction performance with F1
score. More details of the dataset, evaluation pro-
tocol, and implementation are in the Appendix.

3.2 Main results

Table 1 compares the CID relation extraction re-
sults of our models to prior work. The first 11
rows report the performance of models that use the
same experimental setup, without using additional
training data or various features extracted from ex-
ternal knowledge base (KB) resources. The last
6 rows report results of models exploiting vari-
ous kinds of features based on external relational
KBs of chemicals and diseases, in which the last 4
SVM-based models are trained using both training
and development sets.

The models exploiting more training data and
external KB features obtained the best F1 scores.
Panyam et al. (2016) and Xu et al. (2016) have
shown that without KB features, their model per-
formances (61.7% and 67.2%) are decreased by 5
and 11 points of F1 score, respectively.4 Hence
we find that external KB features are essential; we
plan to extend our models to incorporate such KB
features in future work.

In terms of models not exploiting external data
or KB features (i.e. the first 11 rows in Table
1), our CNN+CNNchar and CNN+LSTMchar ob-
tain the highest F1 scores; with 1+% absolute F1
improvements to the baseline CNN (p-value <
0.05).5 In addition, our models obtain 2+% higher

3http://www.biocreative.org/tasks/
biocreative-v/track-3-cdr/

4Pons et al. (2016) and Peng et al. (2016) did not provide
results without using the KB-based features. Xu et al. (2016)
and Pons et al. (2016) did not provide results in using only
the training set for learning models.

5Improvements are significant with p-value < 0.05 for a
bootstrap significance test.

http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
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Model P R F1
MaxEnt (Gu et al., 2016) 62.0 55.1 58.3
Pattern rule-based (Lowe et al., 2016) 59.3 62.3 60.8
LSTM-based (Zhou et al., 2016) 64.9 49.3 56.0
LSTM-based & PP (Zhou et al., 2016) 55.6 68.4 61.3
CNN-based (Gu et al., 2017) 60.9 59.5 60.2
CNN-based & PP (Gu et al., 2017) 55.7 68.1 61.3
BRAN (Verga et al., 2017) 55.6 70.8 62.1
SVM+APG (Panyam et al., 2018) 53.2 69.7 60.3
CNN 54.8 69.0 61.1
CNN+CNNchar 57.0 68.6 62.3
CNN+LSTMchar 56.8 68.8 62.2
Linear+TK (Panyam et al., 2016) 63.6 59.8 61.7
SVM (Peng et al., 2016) 62.1 64.2 63.1
SVM (+dev.) (Peng et al., 2016) 68.2 66.0 67.1
SVM (+dev.+18K) (Peng et al., 2016) 71.1 72.6 71.8
SVM (+dev.) (Xu et al., 2016) 65.8 68.6 67.2
SVM (+dev.) (Pons et al., 2016) 73.1 67.6 70.2

Table 1: Precision (P), Recall (R) and F1 scores (in
%). “& PP” refers to the use of additional post-
processing heuristic rules. “BRAN” denotes bi-
affine relation attention networks. “SVM+APG”
denotes a model using SVM with All Path Graph
kernel. “Linear+TK” denotes a model combin-
ing linear and tree kernel classifiers. “+dev.” de-
notes the use of both training and development sets
for learning models. Note that Peng et al. (2016)
also used an extra training corpus of 18K weakly-
annotated PubMed articles.

F1 score than the traditional feature-based mod-
els MaxEnt (Gu et al., 2016) and SVM+APG (Pa-
nyam et al., 2018). We also achieve 2+% higher
F1 score than the LSTM- and CNN-based methods
(Zhou et al., 2016; Gu et al., 2017) which exploit
LSTM and CNN to learn relation mention rep-
resentations from dependency tree-based paths.6

Dependency trees have been actively used in tradi-
tional feature-based and kernel-based methods for
relation extraction (Culotta and Sorensen, 2004;
Bunescu and Mooney, 2005; GuoDong et al.,
2005; Mooney and Bunescu, 2006; Mintz et al.,
2009) as well as in the biomedical domain (Fundel
et al., 2007; Panyam et al., 2016, 2018; Quirk and
Poon, 2017). Although we obtain better results,
we believe dependency tree-based feature repre-
sentations still have strong potential value. Note
that to obtain dependency trees, previous work on
CID relation extraction used the Stanford depen-

6Zhou et al. (2016) and Gu et al. (2017) used the same
post-processing heuristics to handle cases where models
could not identify any CID relation between chemicals and
diseases in an article, resulting in final F1 scores at 61.3%.

dency parser (Chen and Manning, 2014). How-
ever, this dependency parser was trained on the
Penn Treebank (in the newswire domain) (Marcus
et al., 1993); training on a domain-specific tree-
bank such as CRAFT (Bada et al., 2012) should
help to improve results (Verspoor et al., 2012).

We also achieve slightly better scores than the
more complex model BRAN (Verga et al., 2017),
the Biaffine Relation Attention Network, based
on the Transformer self-attention model (Vaswani
et al., 2017). BRAN additionally uses byte pair
encoding (Gage, 1994) to construct a vocabulary
of subword units for tokenization. Using subword
tokens to capture rare or unknown words has been
demonstrated to be useful in machine translation
(Sennrich et al., 2016) and likely captures similar
information to character embeddings. However,
Verga et al. (2017) do not provide comparative re-
sults using only original word tokens. Therefore,
it is difficult to assess the usefulness specifically
of using byte-pair encoded subword tokens in the
CID relation extraction task, as compared to the
impact of the full model architecture. We also
plan to explore the usefulness of subword tokens
in the baseline CNN for future work, to enable
comparison with the improvement when using the
character-based word embeddings.

It is worth noting that both CNN+CNNchar and
CNN+LSTMchar return similar F1 scores, show-
ing that in this case, using either CNN or BiL-
STM to learn character-based word embeddings
produces a similar improvement to the baseline.
There does not appear to be any reason to prefer
one of these in our relation extraction application.

4 Conclusion

In this paper, we have explored the value of
integrating character-based word representations
into a baseline CNN model for relation extrac-
tion. In particular, we investigate the use of
two well-known neural architectures, CNN and
LSTM, for learning character-based word repre-
sentations. Experimental results on a benchmark
chemical-disease relation extraction corpus show
that the character-based representations help im-
prove the baseline to attain state-of-the-art per-
formance. Our models are suitable candidates to
serve as future baselines for more complex mod-
els in the relation extraction task.

Acknowledgment: This work was supported by
the ARC Discovery Project DP150101550.
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Appendix

Dataset and evaluation protocol: We evaluate
our models using the BC5CDR corpus (Li et al.,
2016a), which is the benchmark dataset for the
BioCreative-V shared task on chemical-induced
disease (CID) relation extraction (Wei et al., 2015,
2016).7 The BC5CDR corpus consists of 1500
PubMed abstracts: 500 each for training, devel-
opment and test set. In all articles, chemical and
disease entities were manually annotated using the
Medical Subject Headings (MeSH) concept iden-
tifiers (Lipscomb, 2000).

CID relations were manually annotated for each
relevant pair of chemical and disease concept iden-
tifiers at the document level rather than for each
pair of entity mentions (i.e. the relation annota-
tions are not tied to specific mention annotations).
Figure 2 shows examples of CID relations. We
follow Gu et al. (2016) (see relation instance con-
struction and hypernym filtering sections) and Gu

7http://www.biocreative.org/tasks/
biocreative-v/track-3-cdr/

http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
http://www.biocreative.org/tasks/biocreative-v/track-3-cdr/
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1601297|t|Electrocardiographic evidence of myocardial injury in psychiatrically 
hospitalized cocaine abusers.
1601297|a|The electrocardiograms (ECG) of 99 cocaine-abusing patients were 
compared with the ECGs of 50 schizophrenic controls. Eleven of the cocaine
abusers and none of the controls had ECG evidence of significant myocardial 
injury defined as myocardial infarction, ischemia, and bundle branch block.
1601297 33 50 myocardial injury Disease D009202
1601297 83 90 cocaine Chemical D003042
1601297 135 142 cocaine Chemical D003042
1601297 194 207 schizophrenic Disease D012559
1601297 232 239 cocaine Chemical D003042
1601297 305 322 myocardial injury Disease D009202
1601297 334 355 myocardial infarction Disease D009203
1601297 357 365 ischemia Disease D007511
1601297 371 390 bundle branch blockDisease D002037
1601297 CID D003042 D009203
1601297 CID D003042 D002037

Figure 2: A part of an annotated PubMed article.

et al. (2017) to transfer these annotations to men-
tion level relation annotations.

In the evaluation phase, mention-level classifi-
cation decisions must be transferred to the docu-
ment level. Following Gu et al. (2016), Li et al.
(2016b) and Gu et al. (2017), these are derived
from either (i) a pair of entity mentions that has
been positively classified to form a CID relation
based on the document or (ii) a pair of entity men-
tions that co-occurs in the document, and that has
been annotated as having a CID relation in a doc-
ument in the training set.

In an article, a pair of chemical and disease con-
cept identifiers may have multiple entity mention
pairs, expressed in different relation mentions.

The longest relation mention has about 400
word tokens; the longest word has 37 characters.

We use the training set to learn model parame-
ters, the development set to select optimal hyper-
parameters, and the test to report final results using
gold entity annotations. For evaluation results, we
measure the CID relation extraction performance
using F1 score.

Implementation details: We implement CNN,
CNN+CNNchar, CNN+LSTMchar using Keras
(Chollet et al., 2015) with a TensorFlow backend
(Abadi et al., 2016), and use a fixed random seed.
For both CNN+CNNchar and CNN+LSTMchar,
character embeddings are randomly initialized
with 25 dimensions, i.e. d4 = 25. For CNNchar,
the window size is 5 and the number of filters at
50, resulting in d3 = 50. For LSTMchar, we set
the number of LSTM units at 25, also resulting in
d3 = 50.

For all three models, position embeddings are
randomly initialized with 50 dimensions, i.e. d2 =
50. Word embeddings are initialized by using 200-
dimensional pre-trained word vectors from Chiu

et al. (2016), i.e. d1 = 200; and word types (in-
cluding a special “UNK” word token represent-
ing unknown words), which are not in the em-
bedding list, are initialized randomly. Follow-
ing Kiperwasser and Goldberg (2016), the “UNK”
word embedding is learned during training by re-
placing each word token w appearing nw times
in the training set with “UNK” with probability
punk(w) =

0.25
0.25+nw

(this procedure only involves
the word embedding part in the input vector repre-
sentation layer). We use ReLU for the activation
function g, and fix the window size k at 5 and the
L2 regularization value at 0.001.

We train the models with Stochastic gradi-
ent descent using Nadam (Dozat, 2016). For
training, we run for 50 epochs. We per-
form a grid search to select the optimal hyper-
parameters by monitoring the F1 score after each
training epoch on the development set. Here,
we select the initial Nadam learning rate λ ∈
{5e-06, 1e-05, 5e-05, 1e-04, 5e-04}, the number
of filters m ∈ {100, 200, 300, 400, 500} and the
dropout probability ρ ∈ {0.25, 0.5}. We choose
the model with highest F1 on the development set,
which is then applied to the test set for the evalua-
tion phase.


