Leveraging Data Resources
for Cross-Linguistic Information Retrieval
Using Statistical Machine Translation

Steve Sloto ssloto@amazon.com
Ann Clifton acclift@amazon.com
Greg Hanneman ghannema@amazon.com
Patrick Porter pwporter @amazon.com
Donna Gates dmg@amazon.com
Almut Silja Hildebrand silja@amazon.com
Anish Kumar anskum @amazon.com
Abstract

Retail websites may provide customers with a localized user experience by allowing them to use
a secondary language of preference. Automatic translation of user search queries is a crucial
component of this experience. Several domain-adapted SMT systems for search query trans-
lation were trained, including language pairs for which smaller-than desired parallel resources
were available, such as Polish-German and Chinese-Japanese. We explored several techniques
that could be used to optimize MT systems for this use-case. These included specialized forms
of pre-processing, such as diacritic normalization and a weak form of language filtering, using
byte-pair encoding (BPE) for automatic word segmentation, sampling monolingual query data
for use as an LM, and pivoting.

To help measure the impact of these techniques, we also introduced normalized distributed
cumulative gain for machine translation (NDCG-MT) as a means to measure the success of
our MT system at the downstream information retrieval task. In addition to examining how
close our translation is to a human-generated one, we measured the similarity in search results
between reference and machine-translated queries.

One additional challenge was the difficulty in choosing a representative sample of user search
queries to use as tuning and test data. The most popular search queries may occur significantly
more frequently and could include vocabulary likely to be well-covered by the rest of the train-
ing data. Consequently, we will also discuss techniques that can be used to optimize selection
of tune/test data. In general, we suggest assessing MT performance on both “head queries,”
those that occur most frequently, and “tail queries,” less frequent queries that could be used to
evaluate performance on difficult inputs.

1 Introduction

Cross-linguistic information retrieval is an important area for internet content providers in our
current multilingual environment. Content providers make information accessible to speakers
of other languages through methods such as translating content on individual webpages. Infor-
mation retrieval systems may also be a part of websites, but these are much more challenging
to localize. Translating an entire database, or modifying an IR system for each desired local-
ity would be costly and would be unlikely to scale well. Another approach is to translate the

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21,2018 | Page 223

user queries which are sent to the IR system. High-level descriptions of such systems can be
found in many papers, including Nikoulina et al. (2012) who experimentally demonstrated us-
ing machine translation to retrieve information on a shared task for cross-lingual search in a
library catalog setting, Martin (2016) who experimented with using MT for cross-linguistic in-
formation for user support forums, and Guha and Heger (2014) who use machine translation of
product searches as part of a wider localization project for a global retail website.

Like numerous other internet content providers, Amazon uses cross-linguistic information
retrieval as a component of a secondary language experience that we offer to customers glob-
ally. For example, users on marketplace websites such as Amazon.de have the option to browse
the retail site in languages such as Czech, Dutch, English, Polish, and Turkish. Search queries
from any of these languages can be translated into German and used to query the German prod-
uct database. This paper focuses specifically on possible ways to optimize statistical machine
translation systems for search query translation.

Numerous challenges may be encountered while training these systems. For example,
adapting a system for the domain of search query translation may be challenging when sig-
nificant parallel-data resources are limited. Another potential constraint is a need to optimize
MT system performance, such that secondary-language users would experience limited latency.
Furthermore, evaluation of these MT systems on their translation quality and performance on
down-stream tasks can be important. To this end, an adapted version of the Normalized Dis-
criminative Cumulative Gain Metric may be used to measure MT quality on the downstream
information retrieval task. To leverage existing data resources, various techniques were tried,
including pivoting, sub-word segmentation (using Byte-Pair Encoding), and different types of
pre-processing.

2 Data and Training Setup
2.1 Search Query Data

Search query data has a few unique properties that can make it challenging to use for training
MT systems. User search queries are not commonly translated. If one wishes to train an MT
system for this domain, one may need to manually sample selections of queries for translation.
It may also be desirable to leverage monolingual query data as a system component. Queries are
short and can contain numerous untranslatable items and brandnames, which suggest different
pre-processing techniques and hyper-parameter settings.

On a randomly chosen day of search traffic, search query data could contain millions of
singletons, as well as hundreds of thousands of searches for the most popular queries. Over
multiple days of data collection, certain popular queries could dwarf unique user traffic. We
will refer to queries that may occur exponentially more frequently as “head queries.” We will
refer to queries such as these singletons that may occur less often as “tail queries.”

If one wishes to use MT as a cross-linguistic IR system component, head queries are
paradoxically the most and least important. Knowingly translating the same query hundreds of
thousands of time in a day is an inefficient use of computational resources, so popular queries
could be handled with a cache instead of being directly translated. Also, vocabulary pertaining
to popular queries may be more likely to occur in general purpose training data. In contrast,
tail queries may contain typos or fail to retrieve results, but would allow us to examine how
a search-query MT system will perform in a “worst case scenario.” For the purposes of these
experiments, we sought primarily to optimize translations for tail queries, without having a large
negative impact on performance on head queries.

For each MT system discussed in this paper, we were able to sample a selection of search
query data to be translated by humans and used as tuning and test sets. We sampled tune sets of
2,400 queries, and up to two test sets of 1,000 queries each.

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 224

2.2 Other Training Data

In addition to the small amount of human-translated query data, parallel data from a variety of
domains was used to train the systems discussed in this paper. Translated catalog data was used,
in addition to parallel-data resources drawn from a variety of other domains less related to the
query translation task. The distribution of data from these domains varied between language
pairs. Systems described in this paper used between 25 and 3 million parallel segments for
system training.

2.3 Training SMT Systems

We trained Phrase-Based Statistical Machine Translation systems for search query translation,
experimenting with different methods of transforming and filtering the input data. We train
various model components for a multi-domain system, such as alignment models, target-side
language models, re-ordering models, and translation models.

When an MT system translates a segment, each of these models score possible translations
as they are constructed from left to right, using beam search. The models’ scores are combined
using weights that are automatically learned by tuning to a held-out tune set of human-translated
queries. The weighted combination of scores is used to select the best translation.

3 An IR Metric for MT

While conventional automatic evaluation metrics attempt to replicate human judgements of
translation quality, these translation systems have a different use case than to have a human
read and understand. Consequently, it is advantageous to use an automatic evaluation metric
that reflects performance on our downstream task: search. Things that are important to a human
about what makes a good translation may differ significantly from what makes a successful
search query. Nuances that may be very important to a human in judging quality such as using
function words (e.g., making sure to include the article before a noun) or preserving word order
(e.g., “phone grey” vs “grey phone”) may be irrelevant to returning the most relevant result to
a query. Conversely, translation differences that a human may not mind may change the results
returned from a query (e.g., “rose” may be a human-admissible synonym for “pink”, but may
not return the same search results).

The metrics currently used to evaluate MT systems are generally based on measuring the
degree of overlap of n-grams between an MT translation and a human-generated reference trans-
lation as a way of measuring translation quality. In the case of evaluating MT for search, we
want to directly evaluate based on performance on the task we care about, rather than how close
our translation is to a human-generated one. We would like to be able to quantify the goodness
of an MT translation by comparing the set of results returned by a query translated by our MT
system to the results returned by a reference translation query.

In order to do this, for each translation, we make a call to the search index twice: once
to retrieve the results for the translated output, and once for the results from the reference
translation. We take the top-K results returned for the translated output and evaluate it against
the top-K results returned for the reference using a common IR metric, normalized discounted
cumulative gain (NDCG), which we have adapted for the MT task.

3.1 NDCG-MT

The basic idea of NDCG is that we want to evaluate the goodness of the results returned from
a query based on the relevance score of each query, in proportion to its rank in the list of results
returned, since we know that the first result is more important than the tenth, etc.

NDCG was designed to use relevance scores from some gold-standard measure such as
human judgments. However, we don’t currently have access to this type relevance evaluation

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 225

for any arbitrary query/result pairs we with to test. So, we adapt it for our purposes as fol-
lows to compute NDCG-MT: instead of human-judgment relevance scores over query results,
we take the results returned from the reference translation of a query to be the gold standard.
Note that in this approach, we are assuming that whatever results are returned by the reference
translation are the gold standard; we do not attempt to measure the actual relevance of the ref-
erence query results, or to directly learn a mapping between source-language query inputs and
target-language results.

We take the numerical relevance score of a result to be the inverse of the rank of the result
in the set of results returned from the reference translation query. So, for example, in a list of
ten results returned from the reference query translation, the first result would have a relevance
score of 10, and the last would have a score of 1. We can then evaluate the MT system output
queries against this scoring. Thus, rather than taking the best possible score as the ideal ordering
of the MT output results, we take this from the reference results ranking, so as not to artificially
inflate the scoring of the MT results. The full formulation is as follows:

DCG-MT
NDCG-MT = heGmT
where
27‘eli -1
DCG-MT = » i € MT-RESULTS—————
log, (i + 1)
and
2reli -1
IDCG-MT = Zz € REF-RESULTS —————,
log, (i + 1)

where rel; denotes the relevance score of result “i”.

In addition, we modify the original formulation of NDCG: we base the DCG (discounted
cumulative gain) on the MT output results, and the IDCG (ideal cumulative gain) on the refer-
ence results ranking, where the original NDCG computes both DCG and IDCG over the same
set of results. This is because in the IR tasks for which this metric was originally developed,
it was presupposed that there was a fixed set of results, and the DCG and IDCG only differ in
how they rank these results. In our case however, we can’t assume that the MT output query
will return the same set of results as the reference query. In cases where the output translation
retrieves no results, it gets a score of 0. When the reference translation doesn’t return any results
from the index, we disregard the example and it does not contribute to the test set score.

This gives us a tunable metric that can function as a drop-in replacement for BLEU or
METEOR, introduced in Papineni et al. (2002) and Banerjee and Lavie (2005) respectively.

4 Pre-Processing Techniques Used To Leverage Data Resources

Since search query translation is vastly different from general purpose machine translation, it
may be desirable to preprocess the data to remove differences that might matter to a human, but
not to an information retrieval system, such as lowercasing the data and removing diacritics.

By using the NDCG-MT metric, one can directly measure how procedural differences
affect the quality of downstream search results.

4.1 Normalization

We tokenized and lowercased the training data for all systems discussed in this paper.

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 226

4.1.1 Diacritic Normalization

Many alphabets contain characters with particular diacritic markers added to them to distinguish
between sounds. These characters are not always used by speakers of those languages in casual
scenarios, such as when typing search queries.

Normalizing diacritic makers for system input could maximize the likelihood of providing
a correct translation for these queries. However, it is also possible that words with very differ-
ent meanings could be normalized to the same form. This potential side-effect could increase
ambiguity in the MT system.

If performed, it is optimal to normalize diacritics in a language-specific manner. For ex-
ample, it is common for German speakers to use ‘oe’ to represent ‘6’. However, this may not be
the case for users with different first languages, such as Turkish or Czech, where ‘6’ was more
commonly normalized as ‘o’. Experimentally normalizing ‘6’ to ‘oe’ for Turkish or other input
languages into German, caused a decline in MT performance compared to not normalizing at
all.

Table 1 shows the results from experimenting with different normalization heuristics for
the Czech-language input for the Czech-German MT system. We built MT systems with the
identical hyper-parameter settings and only varied whether diacritic normalization was included
as a part of tokenizing system input. The system with the baseline setting did not include any di-
acritic normalization. The system built with ‘strong normalization’ normalized all Czech letters
with diacritics to the most similar single-letter that did not feature a diacritic. The German-style
system did not normalize these characters, and normalized ‘6’ to ‘oe’. In this case, instead of
better leveraging our training data by combining similar representations of words together, we
arbitrarily separated these words into distinct forms with no real motivation, with a correspond-
ing performance loss on the test sets.

On our test set of head queries, our normalization-free baseline outperforms all normaliza-
tion heuristics. For the tail queries, diacritic normalization moderately improves our success on
information retrieval and translation, but not to a significant degree. This result suggests that
diacritic normalization is most useful for tail-query translation. It also suggests that normal-
ization may be a particularly challenging area for experimentation, since it normalization may
substantially hurt general-case performance with marginal worst-case improvement.

Test Set | Normalization BLEU | NDCG-MT | METEOR | TER | Length
Head Baseline 55.2 59.6 64.0 36.6 | 102.9
Head Strong Normalization | 54.0 57.5 62.9 37.7 | 102.7
Head German-Style 54.8 59.4 63.1 37.6 | 103.0
Tail Baseline 433 70.2 62.7 414 | 102.7
Tail Strong Normalization | 43.6 70.9 63.0 414 | 103.0
Tail German-Style 41.5 70.6 62.0 42.8 | 103.8

Table 1: Comparison of Different Normalization Heuristics on Test Sets for the Czech-German
System

4.2 Language Filtering

Many parallel corpora are noisy, and contain data that is in the incorrect language. For general-
purpose MT systems, it may be advisable to filter incorrect language segments out of the training
data. User search data can complicate thsi process. As mentioned in Section 2.1, queries
are generally short, so a character-based language detection model may have lower accuracy.
Search queries also commonly include brand names, which may be in languages other than

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 227

those that we are targeting for translation. If “Pomme De Terre” was a French brand name, we
may want to include it in non-French training data.

To measure the effect of language filtering on a finished system’s MT output quality,
Polish-German data was filtered four ways using a character-based language detection library.
We tested allowing Polish, German, and English on both sides of the training data, allowing the
desired language and English on either side of the training data, allowing only Polish and Ger-
man on both sides, or allowing only the desired language on either side. Changing the filtering
setting had a marginal effect on our overall data size. No more than 1% of the data was dis-
carded compared to our ‘weak’ baseline. System variants were otherwise identical with respect
to hyper-parameter settings, including Byte-Pair encoding. We scored the system against a test
set of 1,000 Polish-language queries with corresponding German translations. These queries
had been specifically hand-picked to be in the Polish language. Despite the marginal change in
training data size, a noticeable effect could be seen in our metrics scores, shown in Table 2.

The more permissive language-detection setting performed best on the downstream infor-
mation retrieval task, as measured by the NDCG-MT score. Despite the fact that our queries
were almost exclusively in the Polish language, retaining a marginally larger variety of untrans-
latable items in our training data improved our performance.

Allowed Languages | BLEU | NDCG-MT | METEOR | TER | Length | % of Data Used
plen,de — de.en,pl | 44.1 66.1 57.1 43.6 | 953 100.000%

pl.en — de,en 45.0 65.3 57.0 43.5 | 95.7 99.929%

pl.de — de,pl 45.2 65.5 56.8 429 | 95.1 99.788%

pl —de 43.7 64.9 56.0 43.5 |1 94.0 99.775%

Table 2: Comparison of Language Filtering Settings on Polish-German System

5 Byte-Pair Encoding
5.1 Motivation & Previous Work

There are many scenarios where we may be interested in examining features below the word
level for training MT systems. Some languages, such as Turkish, are morphologically complex,
such that a word may contain many affixes. Breaking apart these words into constituent com-
ponents may enhance translation quality. When translating between related languages, such as
Dutch and German, one could be interested in looking at sub-word features to improve per-
formance on transliteration, or other situations in which common changes apply to the input.
Lastly, segmentation may also be useful for languages written in characters, such as Mandarin
Chinese and Japanese, where discrete spaces between word units may not already exist.

Sennrich et al. (2015) popularized Byte-Pair encoding as an algorithm for unsupervised
sub-word segmentation. Intuitively, Byte-Pair Encoding works by breaking apart words into
characters, and joining characters into sub-word units based on their most frequently occurring
neighbors. This technique does not make use of intuitive phonetic or morphological boundaries,
and its output does not look particularly intelligent to human eyes. BPE has been commonly
adopted for use in Neural Machine Translations systems, where it reduces vocabulary size and
improves performance.

Although Byte-Pair Encoding is commonly used for training NMT systems, it has rarely
been used for training statistical models. Kunchukuttan and Bhattacharyya (2016) experimented
with using BPE to subsegment data for SMT systems translating between related languages.
They built systems for sixteen language pairs in ten different writing systems. They found
that BPE works well as a paradigm for segmentation regardless of data size. Byte-Pair encod-

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21,2018 | Page 228

ing out-performed other forms of sub-word segmentation, as well as baseline systems trained
without segmentation, and led to an increase in BLEU score in all but one case. They also ex-
perimented with different numbers of merge operations for BPE, but tended towards extremely
small settings, experimenting between 1k and 4k.

Ostling et al. (2017) experimented with using BPE for sub-word segmentation in SMT
systems baseline systems trained as part of the University of Helsinki entry into the WMT
Shared Translation task in 2017. Their results showed that BPE was not particularly helpful in
training SMT models. They attributed this failing to the small number of operations chosen for
NMT and not optimized for SMT specifically. Their vocabulary size was around 20,000.

5.2 Our Setup

We used BPE to subsegment our data after it was already tokenized, lower-cased, and pre-
processed in any other manner. Our experimental usage of BPE differed from that described
by Kunchukuttan and Bhattacharyya (2016) in two ways. First, like Ostling et al. (2017), we
found that too low of a number of operations led to the possibility of degraded performance. In
particular, we found that too low of a setting led to an increased number of garbled translations,
in which not all of the BPE-segments in a word were translated. Second, we usually trained BPE
using a joint model that learned sub-words from both source and target language training data,
instead of using separate models for source and target. Search queries and product names often
include non-translatable items that occur in both versions of a parallel segment. Consequently,
better performance could be achieved by splitting source and target representations of non-
translatable items into the same sub-word units on both halves of our training corpora. For
Turkish-German MT, we experimented with training source and target separately, and found
that we experienced a loss of 2 BLEU points compared to a joint model. We also experimented
with using only a source-side BPE model, and no sub-word segmentation on the target, and
experienced a loss of 11.8 BLEU.

After settling on the general experimental setup of training a joint BPE-model as an MT
system component, we varied the number of BPE operations. Table 3 shows the result of choos-
ing different numbers of BPE Operations on the quality of MT output measured in BLEU, and
Table 4 shows results for the same systems and test sets scored with the NDCG-MT metric.
“None” denotes a system without sub-word segmentation, and “0” denotes a system that was
built at the character level rather than the word level. For the purposes of this comparison, all
systems were built with a re-ordering window of four. All data and hyper-parameter settings
are consistent across different versions of a given system.

\ 0 \ 50,000 \ 100,000 \ 200,00 \ None \

NLNL-DEDE 58.9 | 63.7 62.5 62.2 61.7
PLPL-DEDE 36.8 | 43.4 45.1 45.5 425
ZHCN-JAJP (Head) | 41.5 | 40.3 40.9 422 345
ZHCN-JAJP (Tail) 296 | 29.2 28.7 27.5 21.2
CSCZ-DEDE (Head) | 49.4 | 52.8 54.0 52.5 46.1
CSCZ-DEDE (Tail) | 29.3 | 43.0 43.2 43.4 41.7

Table 3: Effect of Different BPE Number of Operations Settings on BLEU Scores

Variants built with BPE strongly outperformed systems that were built without sub-word
segmentation. These results suggest that 50,000 or 100,000 Operations may be a suitable base-
line setting. 50,000 appears more suitable in cases where both more information is likely to be
shared between the source target in segment. It is also worth noting that the NDCG-MT scores

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21,2018 | Page 229

\ 0 \ 50,000 \ 100,000 \ 200,00 \ None \

NLNL-DEDE 722 | 79.2 78.9 713 75.9
PLPL-DEDE 57.8 | 65.9 67.1 66.2 64.1
ZHCN-JAJP (Head) | 57.1 | 58.3 56.9 56.5 523
ZHCN-JAJP (Tail) 45.1 | 47.5 45.9 45.5 39.9
CSCZ-DEDE (Head) | 51.9 | 57.4 57.5 56.6 55.3
CSCZ-DEDE (Tail) | 63.9 | 70.6 71.3 69.2 66.2

Table 4: Effect of Different BPE Number of Operations Settings on NDCG-MT Scores

shown in Table 4 provide a much cleaner look at the effect of sub-segmenting with different
number of BPE operations.

5.3 Interactions Between BPE Model Hyper-Parameter Settings

Utilizing sub-word tokens rather than full-sized word units may affect optimal model hyper-
parameter settings, such as the desired size of N-Gram language models, or re-ordering window
in re-ordering models. For the specific use-case of search query translation, using BPE did not
have as large of an impact on optimal hyper-parameter settings as it may have for other use-
cases. For search query translation without BPE, lowering the size of the re-ordering window
resulted in roughly equivalent NDCG-MT scores, as well as faster decoding speed. There are
two reasons for this: search queries tend to be short, so there are fewer tokens to move around.
Also, the order of segments in the MT output is less important in an information retrieval sce-
nario.

Even when breaking up MT system output into smaller sub-word chunks, a relatively small
re-ordering window remained an appropriate hyper-parameter choice. Table 5 shows the result
of experimenting with the size of the re-ordering window for the Dutch-German system, and
resulting systems’ performance on BLEU and NDCG-MT. Systems built with BPE were built
with 50,000 operations, the setting shown to have the highest performance for Dutch-German
in the previous section. The NDCG scores for the system without BPE show best performance
with a ROW of 4. For systems built with BPE, there is no real significant difference in IR
performance as the ROW is increased, though a ROW of 6 appears to be a good compromise
between speed, NDCG-MT, and BLEU.

ROW | BLEU NDCG-MT | BLEU NDCG
without BPE | without BPE | with BPE | with BPE
(50k Ops) | (50k Ops)
2 60.1 75.6 62.9 79.1
4 61.7 75.9 63.7 79.2
6 61.7 75.7 64.5 79.6
8 60.8 76.2 63.2 79.7
10 60.9 75.1 63.0 79.9
12 60.9 75.8 63.7 79.3

Table 5: Comparison of Re-Ordering Window Settings With & Without BPE on the
Dutch-German System.

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 230

6 Using Non-Parallel Data Resources

6.1 Monolingual Data

Among the most common techniques for increasing SMT performance is leveraging monolin-
gual data. For the use-case of search query MT, one can do so by building a language model
based on a sample of target-side monolingual search query data. Including this model impacted
system performance positively, as shown in Table 6.

System BLEU | NDGC-MT | METEOR | TER | Length
PLPL-DEDE Including Monolingual Queries | 44.1 66.1 571 43.6 | 95.3
PLPL-DEDE Without Monolingual Queries | 41.7 64.8 56.3 64.7 | 95.7

Table 6: Effect of Including Monolingual Search Query Data as a System Component

6.2 Pivoting

Pivoting is an extremely common technique in low-resource scenarios. In general, it has been
shown to be useful when there are more substantial amounts of translation data available be-
tween the desired source and target languages and a third language, than exist between the
source and target languages alone. There are many possible setups for pivoting, including train-
ing MT model to translate training data between the pivot language and desired language, or
tying together two MT systems in a cascade approach. We experimented with two approaches.

In the first approach, our training corpora were experimentally augmented with data piv-
oted through English. A simple technique was used, in which we directly pivoted between
training data corpora. A desired source-language and target-language string were considered to
be a translation if they had an exact string match on an intermediate language string. These seg-
ments were grouped with non-pivot segments and added to the training data. All other settings
are identical between MT systems including and excluding this pivot data.

We also experimented with cascade approach for Mandarin-Japanese translation. Data
was sequentially sent through non-production Mandarin-English and English-Japanese Search
Query MT models in sequence. One potentially interesting qualitative side effect of doing this
was an increased likelihood of English in the output. The system is forced to translate into
English at an intermediate stage. Since there may be numerous Japanese product titles that
contain untranslated English, more English appears in the final translation, compared to direct
Mandarin-Japanese translation. This result suggests that this technique would be unsuitable for
production use without further refinement.

Data BLEU (Head) | NDCG-MT (Head) | BLEU (Tail) | NDCG-MT (Tail)
Without Pivots 40.5 54.0 28.9 46.5
With Pivots (48% larger) | 42.2 56.5 27.5 45.5
Cascading 8.5 20.8 9.7 22.1

Table 7: Comparison of Three Forms of Pivoting on Two Test Sets for Mandarin-Japanese
Translation

Table 7 shows a comparison of different pivoting techniques for system performance on
Mandarin-Japanese query translation. No system including pivot data outperformed a system
without pivot data. There are two main factors that may have contributed to this:

1. Much (though not all) of the pivot data could have come from domains that were farther
away from the Search Query Translation task.

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 231

2. As was the case for other systems, weak language detection allowing English was used
for the Mandarin-English and English-Japanese MT systems. When combining the two in
a pivot scenario, the cascade system was considerably more likely to have English in the
output. Evidently this setup was extremely harmful for both translation quality, and for
downstream search accuracy.

Table 8 shows comparative results over including pivot data in the general PLPL-DEDE
training data as scored on an exclusively-Polish test set of 1,000 queries. Including pivot data
in the general training data led to a drop in BLEU score, but had no significant impact on the
downstream information retrieval task, as measured by NDCG-MT.

Data BLEU | NDCG-MT | METEOR | TER | Length
Without Pivots 452 66.2 572 432 | 95.1
With Pivots (15% larger) | 44.1 66.1 57.1 43.6 | 953

Table 8: Results of Including Pivot Data in the General Polish-German Training Corpus

7 Conclusions

In this paper, we discussed specific modifications to standard SMT system training in order to
optimize for the use-case of search query translation. Several techniques increased the quality
of our output in an experimental setting. We summarize these as follows:

o Filtering training data with weak language detection moderately improved system quality
compared to stricter filtering. We gained 1.2 NDCG-MT on PL-DE.

e Diacritic normalization potentially improved translation for edge cases, but substantially
negatively impacted system performance on “head queries”. We gained 0.7 NDCG-MT on
a test set of Czech-German tail queries, counterbalanced by a loss of 2.1 NDCG-MT on
head queries.

e Using a joint BPE model for sub-word segmentation substantially improved model quality
We saw improvements between 1.3 and 6.6 NDCG-MT across language-pairs and test-
sets. BPE also outperformed character-based models, though it is possible that those may
be competitive for language-pairs such as Mandarin-Japanese and Dutch-German. 50k or
100k operations, and a re-ordering window of 6 is a good baseline for BPE.

¢ Including monolingual data substantially improved performance. The Polish-German sys-
tem gained 1.3 NDCG-MT.

e Adding pivot data to the model had mixed results. In the best case, we gained 0.1
NDCG-MT for Polish-German translation, and 2.5 NDCG-MT on Mandarin-Japanese
head queries, but lost 1.4 NDCG-MT on Mandarin-Japanese tail queries. A cascade ap-
proach to pivoting would be unsuitable without optimizing the constituent MT systems to
be used in tandem for this domain.

From the above, it is clear that a combination of sub-word segmentation with BPE and use of
monolingual LM data may greatly enhance model performance for this domain. Avoiding strict
language filtering may also be useful. Diacritic normalization or the inclusion of pivot data in
the general training corpus may be more or less desirable depending on whether one wishes to
optimize a system for the translation of head or tail queries.

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21, 2018 | Page 232

Lastly, the NDCG-MT metric itself was very useful for evaluating translation quality for
the downstream information retrieval task. In particular, NDCG-MT was useful in cases where
changes in traditional machine translation metric scores were not reflected by downstream in-
formation retrieval quality. For instance, MT metrics alone do not make a compelling case for
weak language detection, compared to the NDCG-MT metric, which shows a strong preference
for it in table 2. The NDCG-MT score provided much-needed visibility into downstream task
performance.

References

Banerjee, S. and Lavie, A. (2005). Meteor: An automatic metric for mt evaluation with im-
proved correlation with human judgments. In Proceedings of the acl workshop on intrinsic
and extrinsic evaluation measures for machine translation and/or summarization, pages 65—
72.

Guha, J. and Heger, C. (2014). Machine translation for global e-commerce on ebay. In Pro-
ceedings of the AMTA, volume 2, pages 31-37.

Kunchukuttan, A. and Bhattacharyya, P. (2016). Learning variable length units for SMT be-
tween related languages via byte pair encoding. CoRR, abs/1610.06510.

Martin, R. (2016). Multilingual search with machine translation in the intel communities. In
Proceedings of the AMTA, volume 2, pages 65-71.

Nikoulina, V., Kovachev, B., Lagos, N., and Monz, C. (2012). Adaptation of statistical machine
translation model for cross-lingual information retrieval in a service context. In Proceed-
ings of the 13th Conference of the European Chapter of the Association for Computational
Linguistics, pages 109—119. Association for Computational Linguistics.

Ostling, R., Scherrer, Y., Tiedemann, J., Tang, G., and Nieminen, T. (2017). The helsinki neural
machine translation system. CoRR, abs/1708.05942.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th annual meeting on association
for computational linguistics, pages 311-318. Association for Computational Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2015). Neural machine translation of rare words with
subword units. CoRR, abs/1508.07909.

Proceedings of AMTA 2018, vol. 2: MT Users' Track Boston, March 17 - 21,2018 | Page 233

