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Abstract
SGNMT is a decoding platform for machine translation which allows paring various modern

neural models of translation with different kinds of constraints and symbolic models. In this

paper, we describe three use cases in which SGNMT is currently playing an active role: (1)

teaching as SGNMT is being used for course work and student theses in the MPhil in Machine

Learning, Speech and Language Technology at the University of Cambridge, (2) research as

most of the research work of the Cambridge MT group is based on SGNMT, and (3) technology
transfer as we show how SGNMT is helping to transfer research findings from the laboratory

to the industry, eg. into a product of SDL plc.

1 Introduction

The rate of innovation in machine translation (MT) has gathered impressive momentum over

the recent years. The discovery and maturation of the neural machine translation (NMT)

paradigm (Sutskever et al., 2014; Bahdanau et al., 2015) has led to steady and substantial im-

provements of translation performance (Williams et al., 2014; Jean et al., 2015; Luong et al.,

2015; Chung et al., 2016; Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017). Fig. 1

shows that this progress is often driven by significant changes in the network architecture. This

volatility poses major challenges in MT-related research, teaching, and industry. Researchers

potentially spend a lot of time implementing to keep their setups up-to-date with the latest

models, teaching needs to identify suitable material in a changing environment, and the in-

dustry faces demanding speed requirements on its deployment processes. Another practical

challenge many researchers are struggling with is the large number of available NMT tools (van

Merriënboer et al., 2015; Junczys-Dowmunt et al., 2016; Klein et al., 2017; Sennrich et al.,

2017; Helcl and Libovický, 2017; Bertoldi et al., 2017; Hieber et al., 2017).1 Committing to

one particular NMT tool bears the risk of being outdated soon, as keeping up with the pace of

research is especially costly for NMT software developers.

The open-source SGNMT (Syntactically Guided Neural Machine Translation) de-

coder2 (Stahlberg et al., 2017b) is our attempt to mediate the effects of the rapid progress in

1See https://github.com/jonsafari/nmt-list for a complete list of NMT software.
2Full documentation available at http://ucam-smt.github.io/sgnmt/html/.
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Figure 1: Best systems on the English-German WMT news-test2014 test set over the years

(BLEU script: Moses’ multi-bleu.pl).

MT and the diversity of available NMT software. SGNMT introduces the concept of predictors
as abstract scoring modules with left-to-right semantics. We can think of a predictor as an inter-

face to a particular neural model or NMT tool. However, the interface also allows to implement

constraints like in lattice or n-best list rescoring, and symbolic models such as n-gram language

models or counting models as predictors. Our software architecture is designed to facilitate the

implementation of new predictors. Therefore, SGNMT can be extended to a new model or tool

with very limited coding effort because rather than reimplementing models it is often enough to

access APIs within an adapter predictor.3 Software packages which are not written in Python

can be exposed in SGNMT if they have a Python interface.4 Once a new predictor is imple-

mented, it can be directly combined with all other predictors which are already available in

SGNMT. Therefore, general techniques like lattice and n-best list rescoring (Stahlberg et al.,

2016; Neubig et al., 2015), ensembling, MBR-based NMT (Stahlberg et al., 2017a), etc. only

need to be implemented once (as predictor), and are automatically available for all models. This

does not only speed up the transition to a new NMT toolkit, it also allows the combination of

different NMT implementations, eg. ensembling a Theano-based NMT model (van Merriënboer

et al., 2015) with a TensorFlow-based Tensor2Tensor (Google, 2017) model. Hasler et al. (2017)

demonstrated the versatility of SGNMT by combining five very different models (RNN LM,

feedforward NPLM, Kneser-Ney LM, bag-to-seq model, seq-to-seq model) and a bag-of-words

constraint using predictors.

Not only the way scores are assigned to translations is open for extension in SGNMT

(via predictors), but also the search strategy (decoder) itself. Decoders in SGNMT are defined

upon the predictor abstraction, which means that any search strategy is compatible with any

predictor constellation. Therefore, common search procedures like beam search do not need to

be reimplemented for every new model or toolkit.

Secs. 2 to 4 describe central concepts in SGNMT like predictors and decoders briefly and

outline some common use cases. Sec. 5 shows that the SGNMT software architecture has

proven to be very well suited for our research as new directions can be quickly prototyped, and

new NMT toolkits can be introduced without breaking old code. Sec. 6 and Sec. 7 discuss the

benefits of SGNMT in teaching and industry, respectively.

3Making all models of the T2T library (Google, 2017) available to SGNMT took less than 200 lines of code.
4For example, the neural language modeling software NPLM (Vaswani et al., 2013) is written in C++, but can be

accessed in SGNMT via its Python interface.
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Figure 2: Greedy decoding with the predictor constellation nmt,fst for lattice rescoring.

2 The Predictor Interface

Predictors in SGNMT provide a uniform interface for models and constraints. Since predictors

are decoupled from each other, any predictor can be combined with any other predictor in a

linear model. One predictor usually has a single responsibility as it represents a single model or

type of constraint. Predictors need to implement the following methods:

• initialize(src sentence) Initialize the predictor state using the source sentence.

• get state() Get the internal predictor state.

• set state(state) Set the internal predictor state.

• predict next() Given the internal predictor state, produce the posterior over target

tokens for the next position.

• consume(token) Update the internal predictor state by adding token to the current

history.

The structure of the predictor state and the implementations of these methods differ sub-

stantially between predictors. Stahlberg et al. (2017b) provide a full list of available predictors.

Fig. 2 illustrates how the fst and the nmt predictors work together to carry out (greedy) lattice

rescoring with an NMT model. The predict next() method of the nmt predictor produces

a distribution over the complete NMT vocabulary {A,B,C,UNK, </s>} at each time step in

form of negative log probabilities. The fst predictor returns the scores of symbols with an out-

going arc from the current node in the FST in predict next(). The linear combination

of both scores is used to select the next word, which is then fed back to the predictors via

consume(). Words outside a predictor vocabulary are automatically matched with the UNK

score. For instance, ‘D’ in Fig. 2 is matched with the NMT ‘UNK’ token. Pseudo-code for the

predictors and the decoder is listed in Figs. 3 and 4, respectively.
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c l a s s NMTPredictor ( P r e d i c t o r ) :

def i n i t i a l i z e ( s r c s e n t e n c e ) :

e n c s t a t e s = e n c c o m p u t a t i o n g r a p h (

s r c s e n t e n c e )

d e c i n p u t = [BOS]

def p r e d i c t n e x t ( ) :

s c o r e s , d e c s t a t e = \
d e c c o m p u t a t i o n g r a p h (

d e c i n p u t , e n c s t a t e s )

re turn s c o r e s

def consume ( word ) :

d e c i n p u t = word

def g e t s t a t e ( ) :

re turn d e c s t a t e , d e c i n p u t

def s e t s t a t e ( s t a t e ) :

d e c s t a t e , d e c i n p u t = s t a t e

(a) The nmt predictor

c l a s s F S T P r e d i c t o r ( P r e d i c t o r ) :

def i n i t i a l i z e ( s r c s e n t e n c e ) :

Load FST f i l e
c u r n o d e = s t a r t n o d e

def p r e d i c t n e x t ( ) :

re turn o u t g o i n g a r c s ( c u r n o d e )

def consume ( word ) :

c u r n o d e = c u r n o d e . a r c s [ word ]

def g e t s t a t e ( ) :

re turn c u r n o d e

def s e t s t a t e ( s t a t e ) :

c u r n o d e = s t a t e

(b) The fst predictor

Figure 3: Pseudo-code predictor implementations

c l a s s GreedyDecoder ( Decoder ) :

def decode ( s r c s e n t e n c e ) :

i n i t i a l i z e p r e d i c t o r s ( s r c s e n t e n c e )

t r g t s e n t e n c e = [ ]

t r g t w o r d = None

whi le t r g t w o r d != EOS :

t r g t w o r d = argmin ( combine ( p r e d i c t o r s . p r e d i c t n e x t ( ) ) )

t r g t s e n t e n c e . append ( t r g t w o r d )

p r e d i c t o r s . consume ( t r g t w o r d )

re turn t r g t s e n t e n c e

Figure 4: Pseudo-code implementation of greedy decoding

3 Search Strategies

Search strategies, called Decoders in SGNMT, search over the space spanned by the predictors.

We use different decoders for different predictor constellations, e.g. heuristic search for bag-

of-words problems (Hasler et al., 2017), or beam search for NMT. SGNMT can also be used

to analyze search errors. Tab. 1 compares five different search configurations for SMT lattice

rescoring with a Transformer model (Vaswani et al., 2017) on a subset5 of the Japanese-English

Kyoto Free Translation Task (KFTT) test set (Neubig, 2011). Following Stahlberg et al. (2016)

we measure time complexity in number of node expansions. Our depth-first search algorithm

stops when a partial hypothesis score is worse than the current best complete hypothesis score

(admissible pruning), but it is guaranteed to return the global best model score. Beam search

yields a significant amount of search errors, even with a large beam of 20. Interestingly, a

reduction in search errors does not benefit the BLEU score in this setting.

5SMT lattices are lightly pruned by removing paths whose weight is more than five times the weight of the shortest

path. For the experiments in Tab. 1 we removed very long sentences from the original test set to keep the runtime under

control. Lattices have 271 nodes and 408 arcs on average.
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Average number of node Sentences with BLEU
expansions per sentence search errors score

Exhaustive enumeration 652.3K 0% 21.7

Depth-first search with admissible pruning 3.0K 0% 21.7

Beam search (beam=20) 250.5 20.3% 21.9

Beam search (beam=4) 64.8 41.9% 21.9

Greedy decoding 18.0 67.9% 22.1

Table 1: BPE-level SMT lattice rescoring with different search strategies. The BLEU score

does not benefit from less search errors due to modeling errors.

Pure NMT SMT lattice MBR-based
rescoring NMT-SMT hybrid

Theano: Blocks (van Merriënboer et al., 2015) 18.4 18.9 19.0

TensorFlow: seq2seq tutorial6 17.5 19.3 19.2

TensorFlow: NMT tutorial7 18.8 19.1 20.0

TensorFlow: T2T Transformer (Google, 2017) 21.7 19.3 22.5

Table 2: BLEU scores of SGNMT with different NMT back ends on the complete KFTT test

set (Neubig, 2011) computed with multi-bleu.pl. All neural systems are BPE-based (Sen-

nrich et al., 2016) with vocabulary sizes of 30K. The SMT baseline achieves 18.1 BLEU.

4 Output Formats

SGNMT supports five different output formats.

• text: Plain text file with first best translations.

• nbest: n-best list of translation hypotheses.

• sfst: Lattice generation in OpenFST (Allauzen et al., 2007) format with standard arcs.

• fst: Lattices with sparse tuple arcs (Iglesias et al., 2015) which keep predictor scores

separate.

• ngram: MBR-style n-gram posteriors (Kumar and Byrne, 2004; Tromble et al., 2008) as

used by Stahlberg et al. (2017a) for NMT.

5 SGNMT for Research

SGNMT is designed for environments in which implementation time is far more valuable than

computation time. This basic design decision is strongly reflected by the software architecture

which accepts degradations in runtime in favor of extendibility and flexibility. We designed

SGNMT that way because training models and coding usually take the most time in our day-to-

day work. Decoding, however, usually takes a small fraction of that time. Therefore, reducing

the implementation time has a much larger impact on the overall productivity of our research

group than improvements in runtime, especially since decoding can be easily parallelized on

multiple machines.

Another benefit of SGNMT’s predictor framework is that it enables us to write code in-

dependently of any NMT package, and swap the NMT back end with more recent software if

6https://github.com/ehasler/tensorflow
7https://github.com/tensorflow/nmt, trained with Tensor2Tensor (Google, 2017)
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needed. For example, our previous research work on lattice rescoring (Stahlberg et al., 2016)

and MBR-based NMT (Stahlberg et al., 2017a) used the NMT package Blocks (van Merriënboer

et al., 2015) which is based on Theano (Bastien et al., 2012). Since both Blocks and Theano have

been discontinued, we recently switched to a Tensor2Tensor (Google, 2017) back end based

on TensorFlow (Abadi et al., 2016). Without reimplementation, we could validate that MBR-

based NMT holds up even under a much stronger NMT model, the Transformer model (Vaswani

et al., 2017). Tab. 2 compares the performance of lattice rescoring and MBR-based combination

across four different NMT implementations using SGNMT.

6 SGNMT for Teaching

SGNMT is being used for teaching at the University of Cambridge in course work and student

research projects. In the 2015-16 academic year, two students on the Cambridge MPhil in Ma-

chine Learning, Speech and Language Technology used SGNMT for their dissertation projects.

The first project involved using SGNMT with OpenFST (Allauzen et al., 2007) for applying

subword models in SMT (Gao, 2016). The second project developed automatic music composi-

tion by LSTMs where WFSAs were used to define the space of allowable chord progressions in

‘Bach’ chorales (Tomczak, 2016). The LSTM provides the ‘creativity’ and the WFSA enforces

constraints that the chorales must obey. This year, SGNMT provides the decoder for a student

project about simultaneous neural machine translation.

SGNMT is also part of two practicals for MPhil students at Cambridge.8 The first practical

applies different kinds of language models to restore the correct casing in a lowercased sentence

using FSTs. Since SGNMT has good support for the OpenFST library (Allauzen et al., 2007)

and can both read and write FSTs, it is used to integrate neural models such as RNN LMs into

the exercise. The second practical focuses on decoding strategies for NMT and explores the

synergies of word- and subword-based models and the potential of combining SMT and NMT.

7 SGNMT in the Industry

SDL Research continuously balances the research and development of neural machine trans-

lation with a focus on bringing state-of-the-art MT products to the market9 while pushing the

boundaries of MT technology via innovation and quick experimental research.

In this context, it is highly desirable to use versatile tools that can be easily extended

to support and combine new models, allowing for quick and painless experimentation. SDL

Research chose SGNMT over all other existing tools for rapid prototyping and assessment of

new research avenues. Among other Neural MT innovations, SDL Research used SGNMT

to prototype and assess attention-based Neural MT (Bahdanau et al., 2015), Neural MT model

shrinking (Stahlberg and Byrne, 2017) and the recent Transformer model (Vaswani et al., 2017).

As described in Sec. 5, the Transformer model is trivially supported by the SGNMT decoder

through its predictor framework, and is easy to combine with other predictors. It is worth noting

that at the time of writing this paper, Transformer ensembles are not natively supported by the

Tensor2Tensor decoder (Google, 2017).

Although SDL Research’s decoder is homegrown, the SGNMT decoder is still a valuable

reference tool for side-by-side comparison between state-of-the-art Neural MT research and the

Neural MT product.

8http://ucam-smt.github.io/sgnmt/html/kyoto_nmt.html
9http://www.sdl.com/software-and-services/translation-software/
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S., Miceli Barone, A. V., Mokry, J., and Nadejde, M. (2017). Nematus: a toolkit for neural machine

translation. In Proceedings of the Software Demonstrations of the 15th Conference of the European
Chapter of the Association for Computational Linguistics, pages 65–68. Association for Computational

Linguistics.

Sennrich, R., Haddow, B., and Birch, A. (2016). Neural machine translation of rare words with subword

units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1715–1725. Association for Computational Linguistics.

Stahlberg, F. and Byrne, B. (2017). Unfolding and shrinking neural machine translation ensembles. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages

1946–1956. Association for Computational Linguistics.

Stahlberg, F., de Gispert, A., Hasler, E., and Byrne, B. (2017a). Neural machine translation by minimising

the Bayes-risk with respect to syntactic translation lattices. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages

362–368. Association for Computational Linguistics.

Stahlberg, F., Hasler, E., Saunders, D., and Byrne, B. (2017b). SGNMT – A flexible NMT decod-

ing platform for quick prototyping of new models and search strategies. In Proceedings of the
2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations,

pages 25–30. Association for Computational Linguistics. Full documentation available at http:

//ucam-smt.github.io/sgnmt/html/.

Stahlberg, F., Hasler, E., Waite, A., and Byrne, B. (2016). Syntactically guided neural machine translation.

In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pages 299–305. Association for Computational Linguistics.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. In

Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 27, pages 3104–3112. Curran Associates, Inc.

Tomczak, M. (2016). Bachbot. MPhil dissertation, University of Cambridge.

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 215



Tromble, R. W., Kumar, S., Och, F., and Macherey, W. (2008). Lattice minimum Bayes-risk decoding for

statistical machine translation. In EMNLP, pages 620–629, Honolulu, HI, USA.

van Merriënboer, B., Bahdanau, D., Dumoulin, V., Serdyuk, D., Warde-Farley, D., Chorowski, J., and

Bengio, Y. (2015). Blocks and fuel: Frameworks for deep learning. CoRR.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u., and Polosukhin,

I. (2017). Attention is all you need. In Advances in Neural Information Processing Systems 30, pages

6000–6010. Curran Associates, Inc.

Vaswani, A., Zhao, Y., Fossum, V., and Chiang, D. (2013). Decoding with large-scale neural language

models improves translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pages 1387–1392, Seattle, Washington, USA. Association for Computational

Linguistics.

Williams, P., Sennrich, R., Nadejde, M., Huck, M., Hasler, E., and Koehn, P. (2014). Edinburghs syntax-

based systems at WMT 2014. In Proceedings of the Ninth Workshop on Statistical Machine Translation,

pages 207–214, Baltimore, Maryland, USA. Association for Computational Linguistics.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., Krikun, M., Cao, Y., Gao, Q.,

Macherey, K., et al. (2016). Google’s neural machine translation system: Bridging the gap between

human and machine translation. arXiv preprint arXiv:1609.08144.

Proceedings of AMTA 2018, vol. 1: MT Research Track Boston, March 17 - 21, 2018   |  Page 216




