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Abstract
Neural machine translation (NMT) models are conventionally trained with fixed-size vocabu-

laries to control the computational complexity and the quality of the learned word represen-

tations. This, however, limits the accuracy and the generalization capability of the models,

especially for morphologically-rich languages, which usually have very sparse vocabularies

containing rare inflected or derivated word forms. Some studies tried to overcome this prob-

lem by segmenting words into subword level representations and modeling translation at this

level. However, recent findings have shown that if these methods interrupt the word struc-

ture during segmentation, they might cause semantic or syntactic losses and lead to generat-

ing inaccurate translations. In order to investigate this phenomenon, we present an extensive

evaluation of two unsupervised vocabulary reduction methods in NMT. The first is the well-

known byte-pair-encoding (BPE), a statistical subword segmentation method, whereas the sec-

ond is linguistically-motivated vocabulary reduction (LMVR), a segmentation method which

also considers morphological properties of subwords. We compare both approaches on ten

translation directions involving English and five other languages (Arabic, Czech, German, Ital-

ian and Turkish), each representing a distinct language family and morphological typology.

LMVR obtains significantly better performance in most languages, showing gains proportional

to the sparseness of the vocabulary and the morphological complexity of the tested language.

1 Introduction

Neural machine translation (NMT) has provided significant improvements to the state-of-the-

art in machine translation (Bentivogli et al., 2016). However, it has also brought quite a few

practical issues. A very important one of these is the low accuracy in translating rare words,

caused by two of the main properties of the model. The first is related to the requirement

of observing many examples of a word until its internal representation becomes accurate, and

the second is due to the difficulty of handling large vocabularies, as this has an impact on the

computational complexity of the model. Current implementations of NMT models require long

training time and large memory space due to the high number of parameters to optimize. Hence,

even with the most advanced machinery, deploying networks that can learn reliable representa-

tions for all words observed in the training corpus becomes practically impossible. In order to

control the model complexity and the quality of the word representations, a straightforward ap-

proach is to fix the vocabularies to a maximum size, e.g. 100,000 lexical units, prior to training.
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Clearly, a word can only be translated if an exact match of it is found in the vocabulary. This

requirement leads to critical restrictions in translating morphologically-rich languages, where

the word vocabulary tends to be very large and sparse. For example, in our case study, despite

the relatively small size of our training corpora, the size of the source vocabulary found in the

Turkish-English training corpus is around 170,000, i.e. much larger than the maximum size that

is generally used.

Some studies have tried to overcome this problem by redefining the model vocabulary in

terms of interior orthographic units compounding the words. These units could be individual

characters (Ling et al., 2015; Lee et al., 2017), hybrid word/character units (Luong and Man-

ning, 2016), or subwords (Sennrich et al., 2016), i.e. character sequences segmented according

to their frequency in the training corpus. The prominent approach used today is to treat these

subwords as individual lexical units. Hence, NMT is learned as a bilingual mapping between

subword units of two languages. In addition to providing a new perspective to modeling trans-

lation at the sublexical level, these approaches have alleviated the out-of-vocabulary problem in

NMT.

The sore point of these methods, however, is that they disregard any linguistic notion dur-

ing segmentation. Many studies have shown that using subword segmentation methods which

do not preserve the morpheme boundaries inside words may lead to loss of information related

to the semantic or syntactic properties of words and generate inaccurate translations (Niehues

et al., 2016; Ataman et al., 2017; Pinnis et al., 2017; Huck et al., 2017; Tamchyna et al., 2017).

A more linguistically motivated solution was recently proposed by Ataman et al. (2017), which

segments words into subwords by estimating their likeliness of being morphemes and their

morphological categories. This approach provided significant improvements for translation of

Turkish, an agglutinative language with a very sparse vocabulary.

In this paper, we present a comparative study on two unsupervised word segmentation

methods: Byte-Pair Encoding (BPE) (Sennrich et al., 2016) and the Linguistically-Motivated

Vocabulary Reduction (LMVR) method by Ataman et al. (2017) for NMT. Our analysis aims

at understanding the important factors related to the statistical and formal characteristics of

lexical units, mainly induced by morphology, and how they affect the translation quality. For

this purpose, we set up an evaluation benchmark pairing English with five inflected languages:

Arabic, Czech, German, Italian and Turkish, where each language represents a language family

with distinct morphological characteristics.

The experimental results show that the translation quality obtained using LMVR (Ata-

man et al., 2017) in three of the languages (Arabic, Czech and Turkish) is significantly better

than that with BPE (Sennrich et al., 2016). All of these languages share the common fea-

ture of having a high level of sparseness or a morphology with agglutinating or concatenating

properties. For the remaining two languages with fusional characteristics and lower sparse-

ness: German and Italian, the two segmentation methods yield comparable performance. In

general, both word segmentation methods outperform the simple frequency-based vocabulary

reduction method proposed by (Luong et al., 2015). Our study suggests that considering the

morphological characteristics of the chosen language pair is essential in order to choose the

most appropriate subword segmentation approach in NMT.

2 Neural Machine Translation (NMT)

In this paper, we use the NMT model described in (Bahdanau et al., 2014). The model essen-

tially estimates the conditional probability of translating a source text x, represented by the input

word sequence x = (x1, x2, . . . xm) of length m, into a target text y, represented as the target

word sequence y = (y1, y2, . . . yj . . . yl) of length l. The conditional probability is decomposed

as follows:
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p(y|x; θ) =
l∏

i=1

p(yi|yi−1, ..., y0, xm, ..., x1; θ) (1)

where θ represents the model parameters. The model is trained by maximizing the log-

likelihood of a parallel training set D:

L(D, θ) =
∑

x,y∈D

log p(y|x; θ) (2)

The inputs of the network are one-hot vectors – i.e. binary vectors that have a single bit set to 1

to identify a specific word in the vocabulary. Each word vector is then mapped to an embedding,

a continuous representation in a lower dimension but more dense space. Hence, a distributed

representation of the source words is learned using a bi-directional recurrent neural network,

the encoder, which encodes x into m dense sentence vectors, corresponding to its hidden states.

Next, a unidirectional recurrent neural network, the decoder, predicts the target sequence y
word by word using the information provided by the encoder. Each target word yj is predicted

by sampling from a word distribution computed from the previous target word yj−1, the previ-

ous hidden state of the decoder, and a so-called context vector. The context vector is a linear

combination of the encoder hidden states, whose weights are dynamically computed by a feed-

forward neural network called the attention model. The attention model predicts each weight on

the basis of the previous target word, the previous decoder hidden state and the corresponding

encoder hidden state.

The overall network is trained to minimize the cost function in Equation 2 via Stochastic

Gradient Descent (SGD) (Bottou, 2010) and the Back Propagation Through Time algorithm

(Werbos, 1990). During training, the learning algorithm iteratively updates the parameters of

the network, including the weights of the hidden units in each layer and the word embeddings,

until the value of the cost function calculated in the training corpus is optimized, or a maximum

number of iterations is reached. In practice, this process is computationally very expensive due

to the many parameters to adjust and the fact that the probability of generating each target word

yj is normalized via a softmax function, as shown below:

p(yi = ej |x; θ) =
ee

T
j oi∑K

k=1 e
eTk oi

(3)

where ej is the jth one-hot vector of the target vocabulary of size K, and oi is the decoder

output vector for the ith target word yi.
From equation (3) we see that the computational cost of predicting each word scales linearly

with the target vocabulary size K. In general, larger source and target vocabulary sizes imply

higher levels of data sparseness, longer training and inference time and a larger dynamic mem-

ory usage. Bahdanau et al. (2014) suggested using a fixed-size vocabulary of size k containing

only the top k frequent words in the corpus in order to control the size of the source and target

vocabularies. Nevertheless, this prevents translating any out-of-vocabulary words that might be

encountered in new sentences. Luong et al. (2015) extended this approach to integrate a word

alignment model as a post-processing step to the NMT system, where the words that do not fit

in the vocabulary are marked as an unknown word token (i.e. ’UNK’) and the sentence is trans-

lated disregarding these words. After translation, the unknown tokens on the target side can be

replaced with the original words on the source side or simply left as is. This approach is useful

for translating rare words like numbers or named entities that are not found in the vocabulary,

however, it does not provide a complete solution as rare words can be of different nature in each

language. For instance, a large portion of the vocabularies in a synthetic language (see Section
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4) can contain infrequent words that are derivated or inflected word forms, which often carry

important information related to the syntax and semantics of the rest of the sentence.

3 Unsupervised Word Segmentation for NMT

A conventional solution to limit the vocabulary size in NMT is to segment words into smaller

units and perform translation at the sublexical level. In this paper, we discuss two such methods:

BPE and LMVR.

3.1 Byte-Pair Encoding (BPE)
BPE is the prominent method of subword segmentation for NMT that has been applied to many

languages (Bojar et al., 2017). It is originally a data compression algorithm that minimizes the

length of sequences of bytes by finding the most frequent consecutive byte pairs and encoding

them using unused byte values (Gage, 1994). It was recently modified by Sennrich et al. (2016)

for vocabulary reduction, where the most frequent character sequences are iteratively merged

to find the optimal description of the corpus vocabulary. This purely statistical method is based

on the assumption that many types of words can be translated when segmented into smaller

units, such as named entities and loanwords. Nevertheless, in cases of common morphological

paradigms such as derivational or inflectional transformations which are typically observed in

morphologically-rich languages, the method lacks a linguistic notion that could allow it to better

generalize syntactic patterns in the data and use the vocabulary space more effectively (Ataman

et al., 2017; Huck et al., 2017; Tamchyna et al., 2017). Moreover, by disregarding morpheme

boundaries during splitting, it can lead to semantically ambiguous subwords which would be

translated inaccurately (Niehues et al., 2016; Ataman et al., 2017; Pinnis et al., 2017).

3.2 Linguistically-Motivated Vocabulary Reduction (LMVR)
Similar to BPE, LMVR constitutes a pre-processing step to NMT. The method is an extension

of Morfessor FlatCat (Grönroos et al., 2014), an unsupervised morphology learning algorithm

based on a Hidden Markov Model (HMM), which models the composition of a word based on

the transitions between different morphemes and their categories (i.e. prefix, stem or suffix).

The category-based HMM is essential for a linguistically motivated segmentation, as words are

split considering the possible categories of the generated subwords and not only their frequen-

cies. Ataman et al. (2017) has recently modified this method in order to optimize the complexity

of the model with a constraint on the number of morphemes to be found in the corpus after seg-

mentation, i.e. the lexicon size, which eventually allows it to be deployed as a stand-alone

vocabulary reduction technique for NMT.

Similar to the two-level morphology model of Koskenniemi (1983), the model (M) consists

of mainly two parts, a lexicon that contains the list of morphemes and a grammar which defines

a set of rules that combine different morphemes together to generate new words. The model

is estimated via Maximum A-Posteriori (MAP) optimization in order to avoid overfitting, by

finding a balance between model accuracy and complexity. The MAP estimate of the overall

system is given as:

M∗ = argmax
M

Pr(D|M) Pr(M) (4)

where the two factors respectively represent the likelihood of the training corpus D and the prior

probability of the model M.

While the former is computed on the data by a HMM, the latter is modeled by considering

individual properties of the generated lexicon1 of morphemes:

Pr(M = {μ1, . . . , μm}) ≈ m! P (usage(μ1, . . . , μm))P (form(μ1, . . . , μm)) (5)

1The grammar is assumed as a fixed component of the model and is thus disregarded from the prior.
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where m is the number of distinct morphemes (μi) in the lexicon (Creutz and Lagus, 2007).

The usage of morphemes are modeled by their frequencies, lengths, and their left and rightwards

perplexities. The form of morphemes considers instead the probability of their internal structure,

composed either of other morphemic categories or a sequence of characters.

Using the a-posteriori probability, one can train a segmentation model considering both the

model complexity and the likelihood of the corpus, without any control on the size of the output

lexicon. In order to achieve a desired rate of vocabulary reduction for NMT, Ataman et al.

(2017) inserts a regularization weight over the lexicon prior and thus force the optimization to

give more importance to reducing the model complexity. The general formula for optimization

then becomes:

L(D,M) = logP (D|M) + α logP (M)

where α > 1 would force the optimization algorithm to find a smaller lexicon size and a

finer segmentation. Ataman et al. (2017) empirically sets α equal to m1

m2
, where m1 is the initial

vocabulary size of the corpus, and m2 is the target vocabulary size.

4 Morphology and Language Families

In NMT, translation is conventionally modeled at the lexical level. Thus, the statistical distri-

bution of the words observed in training data has a crucial role to guide the NMT models. A

high level of variance in the lexical distribution implies a high level of sparseness and a low

expectation to observe each individual word. This increases the difficulty to learn translations,

especially of the infrequent words, and limits the accuracy of the model. An important factor

that affects the sparseness in a corpus is the morphological properties of a language. In order to

illustrate this aspect, we hereby introduce basic concepts of morphology and how it is formed

in different languages.

The smallest units inside a word that carry meaning are called morphemes (O’Grady et al.,

1997). They can typically have one of two main functions: aiding the grammatical role or the

meaning of the word in which they occur. The main component required to form a word is

the root morpheme, or the base, which has the most crucial role of defining the meaning and

contains one of several categories (i.e. noun, verb, adjective, or preposition). Other components

may include affixes, which do not belong to a lexical category and are attached to the base to

form new words. An affix that is attached to the front of the base is called a prefix, and an affix

that is attached to the end of the base is called a suffix. In Italian both prefixes and suffixes

can be observed, whereas in Turkish words expand only through attachment of suffixes. In

very few languages like Arabic, it is also possible to observe infixes, types of affixes that are

attached to the root within a base (O’Grady et al., 1997). In some languages, independent words

from different lexical categories can be combined to create a larger word with a new meaning.

This common morphological process is called compounding. In such a case, the same word

may be expected to contain multiple bases and affixes. In German, compounding is frequently

observed. From a functional perspective, morphemes can be combined to produce words mainly

in two ways. Derivational morphemes are added to a root to change its category or function.

On the other hand, inflectional morphemes carry grammatical meaning and do not change the

category of the root. Both ensure the transformation of the root in a correct surface form so that

the sentence is grammatically acceptable.

Depending on the language, a word may contain a limited number of morphemes. For

instance, analytic languages, such as Mandarin Chinese or Vietnamese, usually preserve a one-

to-one correspondence between a word and a morpheme (Shopen, 1985). On the other hand,

in synthetic languages, a word can contain several morphemes. Synthetic languages are gen-

erally grouped into two morphology families. Fusional languages are characterized by their
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Language Family Morphological Morphological
Complexity Typology

Arabic Semitic High Concatenative, Templatic

Czech Slavic High Mostly Fusional, Partially Agglutinating

German Germanic Medium Fusional

Italian Italic Low Fusional

Turkish Turkic High Agglutinating

Table 1: Families and morphological characteristics of languages we translate from/to English.

tendency to use a single inflectional morpheme to denote multiple grammatical, syntactic, or

semantic features. On the other hand, in agglutinative languages, each morpheme in a word

remains in every aspect unchanged after their composition, allowing a direct identification of

the morpheme boundaries. In fusional and agglutinating typologies, morphemes are generally

composed continuously to construct new word forms. On the other hand, it is also possible to

observe templatic typologies, for instance in Arabic, where morphemes are inserted in certain

templates in a discontinuous fashion to achieve certain derivative or inflective transformations.

Most languages do not belong exclusively to one category of morphological typology.

In fact, there are many languages where different morphological phenomena are observed to-

gether. Based on how much such phenomena are typical in a language, it is expected to observe

increased sparseness in the lexical surface forms. Consequently, the morphological character-

istics of a language would be directly influential on the statistical distribution obtained from

a textual corpus in the given language. In order to enlighten this aspect, we have chosen five

languages which have been commonly studied in official machine translation evaluation cam-

paigns. Each of them represents a different language family and falls into a distinct combination

of morphological typology. The selected languages consist of Arabic (Semitic), Czech (Slavic),

German (Germanic), Italian (Italic) and Turkish (Altaic). As a bridge between all the lan-

guages, we choose English from the Germanic family, which is a moderately analytic language

but contains some different morphological features compared to German, the other Germanic

language in our study. A summary of the main linguistic and morphological features of the

listed languages can be seen in Table 1.

5 Evaluation

In order to evaluate different subword segmentation methods, we set up a common benchmark

to observe the effect of each method on languages with different statistical properties. Our

benchmark couples English (either as source or target) with five languages: Arabic, Czech,

German, Italian and Turkish. Thus, each language pair represents different statistical proper-

ties reflected by the level of agglutination or fusion observed in their formal morphology. We

perform NMT by keeping the segmentation on the English side fixed and applying different

segmentation approaches to the other languages. This aids us in avoiding a combinatorial ex-

plosion in the number of experiments, while ensuring the results between each language are

comparable. We later vary the segmentation method applied to the English side to investigate

its effects on both sides of translation. We limit these experiments only to the English-Italian

and English-Turkish pairs, as they represent two extreme cases in our setting, i.e. from low

to high morphological complexity. All experiments consider each tested language both at the

source and the target side of translations. The two subword segmentation methods, LMVR and

BPE, are also compared with the frequency-based vocabulary pruning method suggested by Lu-

ong et al. (2015), and described at the end of Section 2, which is henceforth referred to as Word
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method.

Language # sentences # tokens # types
Arabic-English 238,511 3,9M(AR) - 4,9M(EN) 220K(AR) - 120K(EN)

Czech-English 117,966 2M(CS) - 2,3M(EN) 118K(CS) - 50K(EN)

German-English 212,151 4M(DE) - 4,3M(EN) 144K(DE) - 69K(EN)

Italian-English 184,642 3,5M(IT) - 3,8M(EN) 95K(IT) - 63K(EN)

Turkish-English 135,734 2,7M(TR) - 2M(EN) 171K(TR) - 53K(EN)

Language Data sets # sentences # tokens
Arabic-English Development dev2010, 5,835 89K(AR) - 114K(EN)

test2010,

test2011,

test2012

Testing test2013, 4,121 66K(AR) - 83K(EN)

test2014

Czech-English Development dev2010, 3,112 52K(CS) - 61K(EN)

test2010,

test2011

Testing test2012, 2,836 47K(CS) - 55K(EN)

test2013

German-English Development dev2010, 5,777 108K(DE) - 113K(EN)

test2010,

test2011,

test2012

Testing test2013, 3,543 67K(DE) - 70K(EN)

test2014,

test2015

Italian-English Development dev2010, 3,517 74K(IT) - 79K(EN)

test2010,

Testing test2011, 3,230 55K(IT) - 60K(EN)

test2012

Turkish-English Development dev2010, 2,433 34K(TR) - 47K(EN)

test2010

Testing test2011, 2,720 39K(TR) - 53K(EN)

test2012

Table 2: Above: Training sets. Below: Development and Testing Sets. All data set are official

evaluation sets from IWSLT. (M: Million, K: Thousand.)

5.1 Data
We train our NMT models using the TED Talks corpora (Cettolo et al., 2012) and test them on

official data sets of the IWSLT2 evaluation campaign from 2010 to 2015. This aids us in having

a variety of languages with different morphological typology within the same benchmark. We

select multiple development and testing sets from different years to obtain more reliable results.

All data sets are tokenized and truecased using the Moses scripts3 (Koehn et al., 2007), except

2The International Workshop on Spoken Language Translation with shared tasks organized between 2003-2017.
3www.statmt.org/moses
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for Arabic, which is normalized and tokenized using the QCRI normalization tool4 (Sajjad et al.,

2013). The details of the statistical characteristics of each data set used in our experiments and

the chosen development and testing sets are given in Table 2.

5.2 Segmentation Models
The two subword segmentation methods that we compare in our experiments, BPE and LMVR,

as well as the baseline vocabulary reduction method, Word, are applied to fit the same dictionary

sizes (30,000) set in the NMT models. Since our training sets are small, choosing a small

vocabulary size allows to illustrate large vocabulary reduction rates encountered in practical

NMT tasks. We learn the merge rules of BPE at an equal size to the dictionary. Similarly, the

LMVR models are trained with an output lexicon size of the same size. The rest of the settings

are kept as default except for the perplexity threshold, for which we keep the default value of

10 for five languages, while for Arabic we use the value 70 as suggested by Al-Mannai et al.

(2014). The translated sentences are desegmented based on the splitting characters (”@@” for

BPE, ”+” for LMVR) before measuring the translation quality.

5.3 NMT Models
The NMT models used in the evaluation are based on the Nematus toolkit (Sennrich et al.,

2017). They have a hidden layer and embedding dimension of 1024 and a dictionary size of

30,000 for both source and target languages. We train the models using the Adagrad (Duchi

et al., 2011) optimizer with a mini-batch size of 100, a learning rate of 0.01, and a dropout rate

of 0.1 (in the input and output layers) and 0.2 (in the embeddings and hidden layers). In order

to prevent over-fitting, we stop training if the perplexity on the validation has not decreased

for 5 epochs or the maximum number of epochs are reached. After 50 epochs, we choose the

model with the highest performance on the development set for translating the test set. In order

to present a comprehensive evaluation, we evaluated the accuracy of each model output using

both BLEU (Papineni et al., 2002) and chrF3 (Popovic, 2015) metrics. Significance tests are

computed only for BLEU with Multeval (Clark et al., 2011).

6 Results

The findings of the experiment, presented in Table 3, illustrates the translation qualities using

different approaches and how these qualities vary among different languages. The results of

the experiments where the English side is segmented with BPE show that LMVR generally

achieves the best results by outperforming BPE with a significant improvement in three out of

four morphologically-rich languages. The improvements are 1.55 BLEU points in Turkish-to-

English, 1.08 BLEU points in Arabic-English and 0.99 BLEU points in Czech-to-English. In

the German-to-English translation task, the difference between the performance of two subword

segmentation methods is not statistically significant. In the Italian-to-English direction, BPE

produces better translations with an accuracy of 0.29 BLEU points higher than LMVR. The

improvements are in general more evident in the chrF3 score, where we observe an improvement

of 0.017 points in Turkish-to-English, and around 0.015 points in Arabic-to-English and Czech-

to-English. In the German-to-English direction, LMVR provides slightly higher accuracy in

terms of the chrF3 score. The improvements over the weak baseline of word-based translation

are also significant, ranging from 5.16 BLEU points in Turkish-to-English to 1.63 BLEU points

in German-to-English and 0.62 BLEU points in Italian-to-English.

The experiments conducted in the opposite translation directions show that the per-

formance characteristics of LMVR are consistent in either directions. Translating into a

morphologically-rich language is a more challenging task and the output quality is generally

4alt.qcri.org/tools/arabic-normalizer
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Language Segmentation BLEU chrF3

Direction (Src) (Tgt)

Arabic-English Word BPE 26.76 0.4793

BPE BPE 29.59 0.5102

LMVR BPE 30.67� 0.5248
Czech-English Word BPE 26.82 0.4689

BPE BPE 28.21 0.494

LMVR BPE 29.2� 0.5091
German-English Word BPE 30.71 0.5109

BPE BPE 32.57 0.5432

LMVR BPE 32.53 0.5437
Italian-English Word BPE 31.41 0.5237

BPE BPE 32.50 0.5322

LMVR BPE 32.21 0.5302

BPE LMVR 32.16 0.5416

LMVR LMVR 32.50 0.5446
Turkish-English Word BPE 17.58 0.3859

BPE BPE 21.28 0.4335

LMVR BPE 22.83 0.4501

BPE LMVR 20.99 0.4390

LMVR LMVR 23.13� 0.4599

chrF3 BLEU Segmentation Language

(Src) (Tgt) Direction

0.3460 15.20 BPE Word English-Arabic

0.4490 17.91 BPE BPE

0.4610 18.95� BPE LMVR

0.3731 18.46 BPE Word English-Czech

0.4378 19.09 BPE BPE

0.4483 19.98� BPE LMVR

0.4927 26.35 BPE Word English-German

0.5431 27.24 BPE BPE

0.5485 27.38 BPE LMVR

0.5120 27.77 BPE Word English-Italian

0.5415 28.28 BPE BPE

0.5451 28.30 BPE LMVR

0.5412 27.99 LMVR BPE

0.5432 28.24 LMVR LMVR

0.2968 10.05 BPE Word English-Turkish

0.4183 11.31 BPE BPE

0.4410 12.53 BPE LMVR

0.4378 11.13 LMVR BPE

0.4435 12.63� LMVR LMVR

Table 3: Experiment results. Best scores for each translation direction are in bold font. Those

marked with � are also statistically significantly better (p-value < 0.05) than the baseline.
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lower. In these directions, however, the effect of the chosen segmentation methods can be vi-

sualized more clearly, as the experiments show that the improvements of the two vocabulary

reduction methods over the weak baseline of word-based translation is quite significant for the

most sparse languages, whereas as sparseness in the languages decreases we observe very com-

parable performances. For instance, in English-to-Italian translation, the word vocabulary is

naturally not very sparse, and segmentation by either method provides around 0.5 BLEU and

0.033 chrF3 points, i.e. 1,8% improvement. On the other hand, for English-to-Arabic transla-

tion, segmenting words generally provides an improvement of at least 3.75 BLEU and 0.103
chrF3 points. Similarly, in English-to-Turkish translation, we observe very large improvements

over the baselines, 2.49 BLEU and 0.14 chrF3 points above the weak baseline, reaching an

overall of 11% improvement. The findings also suggest that choosing LMVR for vocabulary

reduction for NMT in the task of generating translations in the morphologically-rich language

provides better translation quality than BPE. The highest improvement is observed again in the

English-to-Turkish direction, where LMVR outperforms BPE by 1.32 BLEU and 0.025 chrF3

points. The improvements follow the same trend for English-to-Arabic, with 1.04 BLEU and

0.029 chrF3 points and in English-to-Czech translation, where LMVR achieves an accuracy of

around 4.7% above the strong baseline. For translation directions involving German and Italian,

the performances of two segmentation methods are generally comparable.

Using LMVR on both sides of the parallel data aids in obtaining full advantage from the

method, especially in the morphologically-rich language setting. In Turkish-to-English direc-

tion, using LMVR also on the English side improves the performance by 0.3 BLEU and 0.0099
chrF3 points over the approach of using BPE on the English and LMVR on the target side,

whereas in English-to-Turkish direction it provides an improvement of 0.1 BLEU and 0.0025
chrF3 points. In Italian-to-English direction, the performance is increased by 0.29 BLEU and

0.0124 chrF3 points, reaching the best performance among all vocabulary reduction methods. In

English-to-Italian direction, all methods are comparable. A comparison between the approaches

of applying either LMVR or BPE on both sides of the corpus does not yield a significantly dif-

ferent translation accuracy in English-to-Italian and Italian-to-English directions.

7 Discussion

A first glance at the findings of our experiments confirms the benefit of subword segmentation

as a vocabulary reduction approach. This is mainly due to the higher reduction of vocabulary

sparseness that is achieved with respect to filtering out infrequent words (Word method). When

rare words that do not fit into the limited NMT model vocabulary are segmented into sequences

of subwords, a new vocabulary with a lower sparseness is obtained. The lower data sparseness

obtained by BPE and LMVR versus Word is evident from Figure 1a, which plots the corre-

sponding type-to-token ratios of each training corpus. After segmentation, the new vocabulary

of subwords has a less sparse frequency distribution and each subword is observed in more

types of context. This allows to learn better representations for each subword and increases the

translation accuracy. The significant difference in output quality observed with two different

segmentation approaches tells, however, that their impact highly depends on the nature of the

splitting process and the characteristics of the language they are applied on.

An interesting outcome of our experiments is that as the complexity of morphology (i.e.
sparseness in the lexical vocabulary) and the level of agglutination observed in the language in-

creases, the more beneficial it becomes to use LMVR for vocabulary reduction. Arabic, Czech

and Turkish all have a high level of lexical sparseness, and the higher translation quality ob-

tained using LMVR proves that a segmentation method that preserves morphological informa-

tion contained at the subword level can generate better translations. As can be seen in Figures

1a and 1b, LMVR can reduce the sparseness, i.e. increase the token-to-type ratio, in the corpus
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(a) Token-to-type ratios (b) Average sentence lengths

Figure 1: Token-to-type ratios and average sentence lengths after vocabulary reduction.

at higher degrees by applying a more homogeneous segmentation among the corpus, indicated

in the levels of increase in the average sentence lengths. Sentence lengths generally remain

close to their original lengths with BPE, on the other hand, with LMVR, the sentences can be-

come much longer. One can also see that the improvements in each language are related to the

formal characteristics of subwords. All three languages have inflections or derivations that are

formed in a rather concatenating fashion, compared to German and Italian, where the affixes

cannot be observed independently on the surface level. This explains the success of LMVR in

learning subwords that are more consistent with the morphological boundaries. In Turkish, an

agglutinative language where morpheme boundaries are transparent, it is possible to achieve a

complete segmentation of the morphemes inside a word. However, this is not the case for the

others. Arabic morphemes are discontinuous, and in Czech, there is less transparency in terms

of the morpheme boundaries. Therefore, when a clear segmentation at the surface level is not

possible, LMVR can fail to predict the correct morphemes inside a word.

In German and Italian, languages with highly fusional morphology, different approaches

in vocabulary reduction do not yield large differences in the output quality. This is mainly due

the formal properties of fusional morphology, where typographic changes at the input may not

yield sufficient information for the model to learn significantly better translations. In addition

to fusional transformations, German is also rich in compounding, which can be defined as

an agglutinating transformation. However, the small difference in the performance of either

segmentation methods suggests that both methods can handle this phenomena similarly, leading

to comparable performances. Another factor that affects the results is related to the statistical

characteristics of the languages, which, as can be seen in the vocabulary sizes listed in Table 2,

do not hold a large amount of sparseness. The quantity of rare words in the vocabulary that could

better be translated by different approaches could be an important indicator in the overall output

accuracy. Italian, unlike German, has a morphology of comparably lower complexity and the

word vocabulary is quite compact, where rare words (singletons and less frequently observed

words that are in the long tail of the frequency distribution) mostly consist of named entities or

numeric expressions. This is in contrast to morphologically-rich languages, where the majority

of rare words also include inflected or derivated word forms. Hence, in Italian, vocabulary

reduction with either segmentation methods can provide similar performances. When BPE is

used, most words in the corpus are translated without segmentation. Although rare inflected

words can exist in the corpus, they are not observed many times, and the improvement in their

translation through LMVR may not be significant enough to be observed at the output. English

is also a language of this group, with a morphology of very low complexity, although most of

the affixes are easily separable. Therefore, LMVR can be trained to segment words according
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to their morphological boundaries. The benefit of applying LMVR also on the English side can

be seen in our experimental results, which show that the best translation accuracy is obtained

when LMVR is applied on both sides of the training data. Nevertheless, these improvements

are not as significant as in the morphologically-rich language settings, as in the cases of Arabic,

Czech and Turkish.

8 Conclusion

NMT is a novel and successful approach to machine translation that can provide high quality

translations in many languages. However, the limitation in the size of the model vocabulary

prevents to take full advantage of the approach, especially in morphologically-rich languages.

These languages usually have large and sparse vocabularies which contain rare inflected or

derivated word forms that cannot be included in the model vocabulary, and consequently, trans-

lated. A conventional solution to this is to reduce the vocabulary of the training corpus by seg-

menting words into subword level representations and perform their translations at this level. In

this paper, we have compared two such methods, BPE, the prominently used approach which

is a statistical method that disregards any linguistic notion during segmentation, and LMVR, a

recently proposed method which also takes morphological coherence into consideration during

prediction of the subwords. We have evaluated two methods in a common machine translation

benchmark consisting of six languages with distinct morphological characteristics. Our findings

showed that using LMVR provides better translation in NMT applied on morphologically-rich

languages by trying to maintain a coherence between the generated subwords and the morpho-

logical boundaries. On the other hand, for fusional languages with low sparseness, using BPE

and LMVR provided comparable translation quality. Our analysis supports that morphology

is an important factor in determining the statistical characteristics of the language and should

be taken into consideration for choosing the most appropriate vocabulary reduction method for

NMT.
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