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Abstract
Recent literature has shown a wide vari-
ety of benefits to mapping traditional one-
hot representations of words and phrases to
lower-dimensional real-valued vectors known
as word embeddings. Traditionally, most
word embedding algorithms treat each word
as the finest meaningful semantic granularity
and perform embedding by learning distinct
embedding vectors for each word. Contrary
to this line of thought, technical domains such
as scientific and medical literature compose
words from subword structures such as pre-
fixes, suffixes, and root-words as well as com-
pound words. Treating individual words as
the finest-granularity unit discards meaningful
shared semantic structure between words shar-
ing substructures. This not only leads to poor
embeddings for text corpora that have long-
tail distributions, but also heuristic methods
for handling out-of-vocabulary words. In this
paper we propose SubwordMine, an entropy-
based subword mining algorithm that is fast,
unsupervised, and fully data-driven. We show
that this allows for great cross-domain perfor-
mance in identifying semantically meaningful
subwords. We then investigate utilizing the
mined subwords within the FastText embed-
ding model and compare performance of the
learned representations in a downstream lan-
guage modeling task.

1 Introduction

In recent years, distributed continuous word rep-
resentations have become a popular tool for pro-
viding a low-dimensional, alternative representa-
tion to traditional one-hot bag of words (Rumel-
hart et al., 1988; Elman, 1990). These word-
embedding vectors are typically a real-valued vec-
tor of dimensionality much smaller than the vo-
cabulary size of a corpus. In addition to computa-
tional efficiency of working with low-dimensional
representations, distributed representations have

Figure 1: Hierarchical segmentation of words spatial,
spatiotemporal, temporally into subwords.

been shown to capture syntactic and semantic reg-
ularities and have been shown to boost the perfor-
mance in tasks such as text classification, sequen-
tial classification, sentiment analysis, and machine
translation (Mikolov et al., 2013c; Joulin et al.,
2017; Huang et al., 2015; Tang et al., 2014; Zou
et al., 2013). Many different methods have been
proposed to derive these continuous representa-
tions from large, unlabeled, text corpora (Col-
lobert and Weston, 2008; Mikolov et al., 2013a,b).

While distributed continuous representations
have helped push the state-of-the-art in a vari-
ety of NLP tasks, because most text corpora have
long-tail distributions, embeddings in the long-
tail are often of poor quality due to infrequency.
This is even worse for out-of-vocabulary words
which are all given the same constant embed-
ding vector because no information is available
to infer a meaningful representation. To address
this deficiency, we propose to mine smaller sub-
word structures that form the base syntactic unit
and leverage the discovered subwords for gener-
ating better-quality word embeddings. As seen in
Figure 1, morphologically-rich words often con-
tain semantically meaningful subwords that are
shared among many words. Understanding the se-
mantic meaning of these subwords can be used
to infer the meaning of words that contain them.
With this motivation, we propose SubwordMine,
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an algorithm for mining semantically-meaningful
subwords from corpus vocabulary. We utilize
the mined subwords as the base-unit for embed-
ding and combine them to construct a word’s
distributed vector representation. The resultant
word embeddings are robust to data-sparsity due
to word infrequency and can be constructed on
many out-of-vocabulary words.

We state and analyze the problem in Section 2,
followed by our proposed solution in Section 3
where we present the key components of our so-
lution, subword mining and subword-based word
embeddings. In Section 4, we review the related
work. Then we evaluate the proposed solution in
Section 5, conclude in Section 6, and present fu-
ture directions in Section 7.

2 SubwordMine Framework

We formalize and analyze the task of extracting
subword structure and propose a framework for
entropy-based subword mining.

2.1 Preliminaries

The input is a corpus W , consisting of |W | words:
W = w1, . . . , w|W |. From this corpus, we con-
struct a vocabulary of unique words, V , of size
|V | such that ∀w ∈ W,w ∈ V . In addi-
tion, the vth word is a sequence of |v| characters:
cv,i, i = 1, . . . , |v|. For convenience we index
all the unique characters that compose the input
vocabulary with C characters and cv,i = x, x ∈
{1, . . . , C} means that the ith character in vth
word is the xth character in the character vocab-
ulary. Given an input corpus consisting of a word
sequence and a vocabulary list of unique words,
our goal is to segment the vocabulary list to iden-
tify human-interpretable and semantically mean-
ingful subwords, then utilize these subwords for
parameter sharing when learning distributed word
representations from the corpus.

Definition 1 (Subword Formalization) We formally define
subwords and other necessary notation and terminology as
follows:

• A subword is a sequence of contiguous characters:
s={cv,i, ...cv,i+n} n > 0

• A partition over vth word is a sequence of subwords:
Gv =(sv,1, . . . , sv,Gv ) Gv ≥ 1 s.t. the concatenation
of the subword instances is the original word.

In Definition 1 we formalize a subword and the
resultant partition from segmenting a vocabulary

word into subwords. In addition we outline the de-
sired properties of the resultant subword as well as
the mining and embedding framework as follows:

• The subwords extracted are semantically-
meaningful and human-interpretable.

• Utilizing these subwords improves word em-
beddings.

• The overall method is computationally effi-
cient.

• The number of subwords generated is com-
parable to the vocabulary size.

2.2 SubwordMine Framework

To extract subwords that satisfy our desired re-
quirements, we propose a framework that can be
divided into two sequential steps: 1) subword pat-
tern mining 2) subword segmentation. Our pro-
cess for transforming each word in the input vo-
cabulary word to a high-quality ‘bag-of-subwords’
involves creating a subword vocabulary, and then
using these subwords to hierarchically segment
each word in the vocabulary. By applying an
information-theoretic metric to detect candidate
subword boundaries, we identify candidate sub-
words within each vocabulary word. From this
candidate pool, we then apply an unsupervised dy-
namic programming segmentation algorithm to se-
lect a subset of these subwords that best segment
the word. After inducing a partition on each word,
we can recursively segment each subword to an ar-
bitrary level of subword granularity. The resultant
subwords from the hierarchical segmentation can
then be used for word embedding.

The goal of frequent subword pattern mining is
to collect aggregate statistics on subword patterns
for use in the word segmentation algorithm. For
each character-ngram that appears more than once
in the vocabulary, there is the potential for param-
eter sharing via that candidate subword. Addi-
tionally the frequency counts of these subwords
will be used for entropy-boundary computation
to identify potential subword candidates. These
candidates are inputted to the word-segmentation
algorithm that attempts to apply Occam’s Razor
by selecting subwords that maximally cover each
word using the fewest number of subwords. Each
subword can then be recursively segmented into
further subwords.
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3 Methodology

We present a subword mining algorithm that,
given an input vocabulary list V , segments each
vocabulary word into, non-overlapping, character-
ngrams. Our method is purely data-driven rely-
ing on character co-occurence statistics allowing
for good cross-domain performance on a variety of
scientific datasets. Additionally the method oper-
ates directly on an input vocabulary list, forgoing
any corpus-level statistics. This allows for more
scalable subword extraction as passes over large
corpora are unnecessary. From a high-level per-
spective, the subword segmentation algorithm can
be decomposed into the following steps:

1. Mine candidate subword counts and compute
relevant co-occurence statistics.

2. Apply SubwordMine to segment each word.

3. Recurse for finer-grained subword segmenta-
tion.

We apply an entropy-based scoring function to
identify subword boundaries: generating candi-
date subwords. Given a collection of subwords,
the next step in the framework is to apply a
dynamic-programming algorithm to segment each
word into subwords. The framework proceeds to
recursively segment each subword in the segmen-
tation. We will discuss these steps in greater detail
in the next subsections.

3.1 Subword Vocabulary Generation
Our segmentation of words into subwords relies
on the idea of subword compositionality. That is,
the input vocabulary can be constructed by com-
posing subwords drawn from a smaller subword
vocabulary. As such we introduce a two-step ap-
proach for creating the initial subword vocabulary:
prefix and suffix generation followed by root-word
generation.

Prefix & Suffix Generation
The first step in creating the subword vocabulary
is to generate a set of high-quality prefixes and
suffixes. The method is based on the principle
that a high-quality prefix or suffix can be mea-
sured by a high level of unpredictability in transi-
tion to longer substrings from the current substring
state. For example, following the prefix “pr”, most
prefixes transition to the character “e” with high
probability forming a prefix “pre”. On the other

Figure 2: Entropy for candidate prefixes and suffixes in
the word “spatiotemporal” from a DBLP titles dataset.

hand, transitioning from “pre” to a longer prefix
is not as predictable as a large number of words
contain the prefix “pre” followed by a variety of
root words starting with different characters. We
identify these high-unpredictability boundaries us-
ing the concept of information entropy to score
the predictability of each prefix or suffix bound-
ary (Shannon, 2001).

Let v be a word consisting of |v| characters and
si be a prefix of w ending at the ith character of
w. For each candidate prefix boundary i for i ∈
[1 . . . |v|], the information entropy of the prefix is
computed as follows:

E(i) = −
C∑

j=1

P(si ⊕ cj |si)× log2P(si ⊕ cj |si)

(1)
Where ⊕ denotes the binary concatenation of

two subwords and the transitional probabilities be-
tween a prefix and the prefix with the next charac-
ter appended is estimated by:

P(si ⊕ cj |si) =
f(si ⊕ cj)

f(si)
(2)

and f(si) denotes the frequency of a prefix si in
the input vocabulary list. The entropy of suffixes
can, without loss of generality, be similarly com-
puted by reversing each word in the vocabulary
and treating each suffix as a prefix.

The information entropy of each possible pre-
fix and suffix in the vocabulary is computed in
linear time using a prefix tree data structure to
store counts over prefixes. Given entropy scores
for each prefix and suffix, scores are computed
for each candidate split point in each word. Un-
der the entropy scoring of prefixes and suffixes,
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we identify local maxima in entropy as candi-
date boundaries for prefixes and suffixes. That
is entropy of prefixes of one-character shorter and
one-character longer should be lower than a can-
didate prefix boundary. This is intuitive as un-
der our principle of compositionality assumption,
complex words are formed by concatenating sub-
word structures. As such, given an incomplete
subword, the next character can easily be pre-
dicted, but given a complete subword, any number
of new subwords can be concatenated to the com-
pleted subword increasing the unpredictability and
thus entropy. These high-entropy positions thus
serve as a strong indicator of subword boundaries.
As seen in Figure 2, for the word “spatiotempo-
ral”, candidate prefixes and suffixes are found at
boundaries exhibit a local maxima in entropy. For
“spatiotemporal”, candidate prefixes are “spa” and
“spati” while candidate suffixes include “al” and
“temporal”.

Root Word Generation

While utilizing entropy-scoring, it is possible to
detect subword structures that occur at the begin-
ning or end of a word, often many words contain
subword structure between prefixes and suffixes.
For each prefix and suffix candidate identified in a
word, it is possible to generate candidate root word
by stemming the word and removing prefixes and
suffixes. This creates a high-quality pool of root-
words to be used in conjunction with prefixes and
suffixes for segmenting the vocabulary.

Example 1 (Root Extraction) Removing prefixes and
suffixes yields candidate root words.

[pre] + authenticat + [ion]

The characters grouped together by [] are prefixes and suf-
fixes. When removed, the remaining underlined character-
sequence represent candidate root words.

As seen in Example 1, when stripping the possi-
ble prefixes and suffixes of a word, the remaining
character sequence is considered a candidate root
word. We apply some filtering conditions for each
candidate root to test the viability as a shareable
root. These include: 1) a minimum support of two
within the vocabulary 2) the entropy boundary of
each rootword must be non-zero. Additionally, for
each word in the vocabulary, after stripping pre-
fixes and suffixes, the candidate root words that
meet the root word constraints are extracted and
added to the subword vocabulary.

(a) Parsimonious Segmenta-
tion

(b) Candidate Subwords

Figure 3: Segmentation of the word “spatiotemporal”
using disjoint interval covering.

3.2 Parsimonious Subword Segmentation

In the previous section, we introduce an unsuper-
vised method of subword generation based on an
entropy-based predictability metric for boundary
detection. In this subsection we introduce an un-
supervised segmentation algorithm that, utilizing
a given subword vocabulary, segments a word into
subwords. Our algorithm first identifies candidate
subwords from the subword vocabulary within a
word, then selects a subset of these candidate sub-
words that best segment the word. The main in-
sight behind the unsupervised segmentation is a
per-word implementation of Occam’s Razor. That
is, according to the preference for parsimonious
hypotheses, we posit that each word is composed
of the fewest number of subwords that maximally
cover the word.

Example 2 (Parsimonious Segmentation) According to
parsimonious segmentation, candidate segmentations are
scored based on word coverage and number of subwords
used for coverage.

Segmentation # Subwords Coverage
[spa] + tio+ [temporal] 2 11
[spati] + o + [temporal] 2 13
[spati] + o + [tempor] + [al] 3 13

. . .
[spa] + tio [tempor] + [al] 3 11

The highlighted row displays the maximally parsimonious
subword segmentation.

As seen in Figure 3, for each word a set of sub-
words present in the target word are identified and
recursive segmentation is performed to separate
the word into subwords. Example 2 demonstrates
how the candidates are used to segment the target
word under the parsimony criterion. Subsets of
non-overlapping candidate subwords are used to
segment and the most parsimonious segmentation
is selected. Because there are a O(2|Av |) number
of possible subsets of candidate subwords, direct
enumeration of each segmentation quickly proves
intractable for even a modest number of candidate
subwords. To identify the most parsimonious seg-
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mentation, we abstract out our parsimonious sub-
word segmentation task into a general problem we
dub Disjoint Interval Covering and demonstrate
that this problem can be solved via dynamic pro-
gramming in linear time.

We formalize the disjoint interval covering
problem as follows:

Definition 2 (Disjoint Interval Covering)
Given an input N ∈ N and a set A of pairs
(a, b) : a, b ∈ {1 . . . N} × {1 . . . N} and

a < b, find the smallest subset B ⊆ A such
that |⋃x|

x∈B
is maximized, |B| is minimized, and

∀x, y ∈ B : x 6= y ⇒ x ∩ y = ∅.

As seen in Definition 2, the input is a set of
pairs A and a positive integer N . Within the seg-
mentation perspective, these refer to position in-
dex boundary pairs for candidate subwords and the
word length. Given these inputs, the objective is
to select a minimum subset of disjoint subwords
whose length maximize coverage of the word.

F (j) = max
0

min
1





(0, 0), j < 1
F (j−1), j ≥ 1
max0min1{F

(i,j)∈B
(i−1)0 + (j−i+1), F (i−1)1+1}, j ≥ 1





(3)

We define a recurrence to the disjoint interval
covering problem in Equation 3. This recurrence
posits that the segmentation that maximally covers
the word is either the solution for the current word
minus the ending character, or the max-covering,
min-subword solution utilizing all subwords that
have a right boundary index equal to the index
of the end of the word. With proper memoiza-
tion, it is evident that for a word of size |v|, there
are |v| subproblems to solve. In addition, be-
cause each interval’s right boundary corresponds
to the word size, each interval is iterated over a
constant number of times. As such, for word v,
the total, memoized complexity of this segmenta-
tion is O(v + |Av|) where Av indicates the pre-
segmentation subwords that are substrings of word
v.

Algorithm 1 presents the subword segmentation
algorithm. The algorithm takes as input a word
and a collection of intervals corresponding to in-
dex boundaries of candidate subwords within the
word. It then proceeds to select a set of intervals
that maximally cover the word while utilizing the
fewest number of intervals. Solutions to subprob-
lems are memoized as to avoid repeated computa-
tion.

3.3 Hierarchical Subword Segmentation
In Subsection 3.1 we introduced the concept of uti-
lizing high-entropy boundaries to create a subword
vocabulary, and in Subsection 3.2 we introduce
an algorithm for segmenting words into subwords
based on the principle of parsimonious disjoint
interval covering. In this subsection we demon-

Algorithm 1: DP Parsimonious Segmentation (DP)
Input: Word v, Subword Intervals Av

Output: Optimal segmentation S

n[0]← 0; c[0]← 0; p[0]← null;1
for j := 1 to Nv do2

num← n[j-1]; cov←c[j-1]; pair← p[j-1];3
for (i, j) ∈ Av do4

cov′ ← c[i-1]+(j-i+1)5
num′ ← n[i−1]+16
if cov′ > cov then7

cov← cov′; num← num′;8
pair← (i, j);9

end10
if cov′=cov ∧ num′<num then11

num← num′; pair← (i, j)12
end13

end14
n[j]← num; c[j]← cov; p[j]← pair;15

end16
return p17

strate a high-level overview on how applying these
two methods can be used to hierarchically segment
words into multi-granular subwords.

Following the steps from Subsection 3.1, an ini-
tial subword vocabulary is created. Within the vo-
cabulary, we differentiate between prefixes, suf-
fixes, and root words. As seen in Algorithm 2,
Line 2, each subword found in the input word
is mapped to an interval indicating its boundary
indices within the word with the condition that
prefix intervals must start at the beginning of the
word, suffix intervals must terminate at the end
of the word, and root word intervals can be lo-
cated at any position within the word. In addition,
the complete word is not included (to ensure the
word segments to smaller subwords). The algo-
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Algorithm 2: Segmentation Algorithm (SEGMENT)
Input: Word v, Subword Vocabulary SW
Output: Set of subwords of v

output← {v}1
Av ← {(i, j) for vi . . . vj ∈ SW and j-i 6= |v|}2
if Av = ∅ then3

return output4
end5
segmented← DP(w, Av)6
for subword ∈ segmented do7

output ∪ SEGMENT(subword, SW)8
end9
return output10

rithm terminates if the word cannot be further seg-
mented. Otherwise, the word is segmented with
the dynamic programming parsimonious segmen-
tation algorithm. Each subword is then treated as a
word and recursively segmented by the algorithm,
and the collection of all subwords from segmenta-
tion are outputted.

3.4 Word Embedding

To efficiently utilize our mined subwords to im-
prove upon word embeddings, we modify the Fast-
Text model for word embeddings to use our ex-
tracted subwords (Bojanowski et al., 2016).

FastText utilizes the skip-gram objective with
negative sampling yielding the following objective
(for simplicity, `(x) = log(1 + exp(−x))):

W∑

x=1

[ ∑

c∈Cx
`(s(wx, wc)) +

∑

t∈Nx,c

`(−s(wx, t))
]

(4)
The scoring function is then adapted to incorporate
subword information as follows:

s(wx, wc) =
∑

p∈wx

zᵀpvc (5)

which equates to a simple summation over sub-
word embedding vectors.

4 Related Works

There have been many attempts at automatic sub-
structure extraction from words. These techniques
generally fall into one of three families: scoring
based on segment predictability, identifying sub-
words based on discovering similar and dissimilar
word parts, and optimization methods.

In morphological analysis of relating phonemes
to morphemes, segment predictability has been
suggested as a potential identifying characteristic

for detecting subword structure. An early quanti-
tative metric proposed was the number of differ-
ent variations of subwords following a subword
sequence whereby a high number of variations in-
dicates a subword boundary (Harris, 1970). While
this work provided influential insight into useful
metrics for subword-detection, the main objective
was developing a scoring function for identifying
candidate subwords, not segmentation. Following
this line of work, many methods have extended the
variation boundary approach to identify frequent
morphemes from text corpora (Hafer and Weiss,
1974). A similar method adopts the metric to iden-
tify frequent affixes (Déjean, 1998). Both these
methods seek to identify a small subset of high-
quality, high frequency subwords from each cor-
pus, prioritizing precision over recall. Other meth-
ods propose slight variations to the predictabil-
ity metric such as drops in transitional probabili-
ties (Saffran et al., 1996).

Deviating from predictability-based methods,
several subword detection methods have been pro-
posed for detecting subwords by comparing words
and identifying similar and dissimilar parts. One
such method performs alignment from the left and
right edge of words (Neuvel and Fulop, 2002)
identifying common subwords. Another method
adds words to a trie in correct order and reverse
order to identify leading and trailing frequent sub-
words (Schone and Jurafsky, 2001). Unfortu-
nately both these methods can only identify prefix
and suffix subwords, ignoring many internal sub-
words. Unlike these methods, our subword seg-
mentation is position insensitive and can identify
subwords that occur in any position in a word.

Opting for an optimization over a scoring per-
spective, a variety of methods have been proposed.
One such method models segmentation through
the minimum description length principle (Creutz
and Lagus, 2002). This method attempts to min-
imize both the vocabulary while maintaining the
likelihood of the corpus data.This method was
successfully applied to languages such as Turk-
ish (Sak et al., 2010). Unfortunately, unlike meth-
ods that take the vocabulary as input, these family
of optimization methods must make several passes
over the corpus. This not only adds significant run-
time and may discourage use as a preprocessing
step before embedding, but can also be intractable
for large text corpora. Other methods apply a max-
imum likelihood approach to identifying subwords
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(also called wordpieces) and has been successfully
applied to a variety of NLP tasks (Wu et al., 2016;
Schuster and Nakajima, 2012). And similarly the
byte-pair compression algorithm has been used to
identify subwords for neural machine translation
tasks (Sennrich et al., 2015). Both these methods
construct a fixed-size subword vocabulary to con-
struct each word as a sequence of subwords.

Many attempts have been proposed to address
data-sparsity when learning distributed word rep-
resentations. These methods posit that individ-
ual words have semantically meaningful attributes
that are shared among other words allowing for pa-
rameter sharing between vocabulary words. One
such method proposes a factored neural language
model where words are represented as a set of
features including subword information (Alexan-
drescu and Kirchhoff, 2006). Another method
attempts to incorporate morphological informa-
tion into the word embeddings by adding mor-
phological similarity features into a neural net-
work along with the context features (Cui et al.,
2015). This method while similarly motivated,
does not leverage subword structure but instead
utilizes the embeddings of “morphologically sim-
ilar” words in the embedding process. While
this may seem appealing, identifying morpholog-
ically similar words can be an expensive pro-
cess as it requires a search over the entire vo-
cabulary which may be prohibitive during on-the-
fly computation out-of-word vocabulary. In ad-
dition, this method may miss important morpho-
logical cues such as negation subwords. When
extended to use subword information, this model
assumes subwords are already provided, this re-
quires manual identification of subwords which
can be an expensive human-powered task, es-
pecially in domain-specific settings or new lan-
guages (Qiu et al., 2014). Along similar moti-
vation, a method has been proposed where given
an input of morphologically annotated data, log-
bilinear models are trained to jointly predict con-
text words and its morphological tag (Cotterell
and Schütze, 2015). Despite displaying supe-
rior embedding performance on German corpora,
this method once again requires human-labeling
for tagging words. This limits applicability to
domain-specific corpora and new languages where
labeled data is scarce or expensive to obtain. The
method that is is closest to our approach is the
extension of FastText enriched with subword in-

formation (Bojanowski et al., 2017). This method
extends the standard skip-gram model but utilizes
character-ngram subword embeddings for param-
eter sharing. The major differences between Sub-
wordMine and this method is that FastText em-
bedding utilizes all character n-grams of user-
specified lengths for subword embedding and per-
forms a simple sum over their representations
while SubwordMine performs unsupervised seg-
mentation and applies a novel attention mecha-
nism to combine the subword representations into
word representations. Finally, utilizing subword
information was shown to improve performance in
machine translation (Sennrich et al., 2016).

Another spectrum of approaches address word
sparsity through the use of characters as the base
unit for embedding. Some approaches treat each
word as a sequence of characters. and apply recur-
rent neural networks to the task of language mod-
eling (Bojanowski et al., 2015; Sutskever et al.,
2011). Other related models apply convolutional
neural networks directly on characters (Kim et al.,
2016).

5 Experimental Results

We introduce the datasets used and methods for
comparison. We then describe our evaluations for
both subword extraction and for word embedding
performance.

5.1 Datasets and methods for comparison
Datasets

We use the following three datasets for evalua-
tion purpose:

• DBLP Abstracts. Computer science ab-
stracts containing 529K abstracts, 186K
unique words, and 39M tokens.

• DBLP Title. Titles of computer science pa-
pers published in 20 conferences containing
44K titles, 5.5K unique words, and 351K to-
kens.

• PubMed Abstracts. Abstracts of research
papers obtained from from PubMed Cen-
tral containing 421K abstracts, 334K unique
words and 5.8M tokens.

For baseline comparison methods to our pro-
posed SubwordMine algorithm we utilize a un-
igram language model segmentation of ‘word-
pieces’ and byte-pair encoding segmentation as
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Figure 4: Accuracy in extracting Greek and Latin root
words while varying subword vocabulary size.

Model Extraction Accuracy
PubMed DBLP

Byte-Pair Encoding 0.2180 0.1881
Unigram LM 0.2535 0.1782
SubwordMine 0.3831 0.3363

Table 1: Accuracy in automatically extracting Greek
and Latin root words.

described in the related works. For comparable
methods for embedding we utilize FastText, a pro-
posed variation of the Skip-Gram objective that
utilize subword information, and modify FastText
to use a variety of subword segmentations.

5.2 Subword Extraction Accuracy
To evaluate the effectiveness of our proposed
unsupervised segmentation algorithm at extract-
ing semantically meaningful subwords, we col-
lect a list of approximately three-thousand English
words and their Greek or Latin roots. For each
segmentor trained on each dataset, we test to see
if the segmentation correctly extracts the ground
truth root.

As seen in Figure 4, the accuracy of extracting
the root words varies with the vocabulary size for
both BPE and the Unigram LM method. As seen
in Table 2, for the optimal vocabulary size for both
methods, we see SubwordMine still outperforms
both methods.

5.3 Perplexity
We investigate the benefits of using semantically
meaningful subwords for parameter-sharing dur-
ing when learning word embeddings. For each set
subword-enriched embedding vectors, we learn a
language model and evaluate its quality by com-
puting the language model perplexity on a DBLP
title dataset. The model used for language mod-
eling is an LSTM variant of a recurrent neural
network with two hidden layers and 600 hidden
units per layer and regularized with dropout with

Model Perplexity
Untuned Tuned

SkipGram 378.45 245.01
BPE-FastText 356.29 210.59
ULM-FastText 324.07 220.73

FastText 370.68 212.88
SubwordMine 320.65 207.84

Table 2: Test perplexity on the language modeling task
for DBLP titles dataset. Evaluation is performed with
fixed pre-trained embeddings, and embedding tuning.

0.2 probability. The RNNs are unrolled for 35
steps and the batch size is set to 20. Parameters
are learned using Adagrad with a gradient clip-
ping of 1. Each language model instance trained
on a training set partition consisting of 80% of the
DBLP data and evaluation of perplexity was com-
puted for each model on an independent test set
consisting of 10% of the data after selecting the
best performing iteration of the model on the re-
maining validation set.

The results are summarized in Table 2. Be-
cause our implementation performs minimal data
cleaning and does not drop infrequent or out-of-
vocabulary words, we expect the resulting per-
plexity should be relatively higher than cleaned-
datasets but directly comparable among the differ-
ing methods (Bojanowski et al., 2016).

For the LSTM model, we observe that across
all sub-word enriched embeddings perform bet-
ter in language modeling over traditional skip-
gram. Additionally, for both the untuned and
tuned settings, SubwordMine segmentations im-
prove test-perplexity over all other subword ex-
traction method including original FastText’s enu-
meration of all possible subwords. This is likely
due to the sheer number of enumerated subwords
and subword embeddings generated by FastText
which may be more difficult to learn.

6 Conclusions

In this paper, we propose a computationally effi-
cient method of segmenting vocabulary lists into
semantically meaningful subwords. We demon-
strate experimentally that utilizing the subwords in
word embeddings in scientific domain corpora im-
proves embedding quality as measured by a down-
stream language modeling task.
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7 Future Works

Currently SubwordMine applies unsupervised
segmentation. While this has be shown to yield
high-quality segmentations, one natural extension
is to incorporate human-labeling and perform su-
pervised segmentation. Another area of work is to
utilize subword structures in a variety of sequen-
tial modeling tasks which could improve tasks
such as entity typing, relation extraction, and ma-
chine translation where substructures can provide
valuable signals.
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