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Abstract
Automatic processing of figurative lan-
guages is gaining popularity in NLP com-
munity for their ubiquitous nature and in-
creasing volume. In this era of web 2.0,
automatic analysis of metaphors is impor-
tant for their extensive usage. Metaphors
are a part of figurative language that
compares different concepts, often on a
cognitive level. Many approaches have
been proposed for automatic detection of
metaphors, even using sequential mod-
els or neural networks. In this paper,
we propose a method for detection of
metaphors at the token level using a hy-
brid model of Bidirectional-LSTM and
CRF. We used fewer features, as com-
pared to the previous state-of-the-art se-
quential model. On experimentation with
VUAMC, our method obtained an F-score
of 0.674.

1 Introduction

A metaphor is a figure of speech that brings to-
gether different concepts, which are often distinct
and seemingly unrelated. A metaphor comprises
a word or a phrase representing something else,
where applying it in its literal sense is often not
possible. Metaphors bring in vivid imagery to our
communications by drawing an analogy between
one thing and another or between actions.

Metaphors also provide a fundamental cognitive
and structural role. Lakoff and Johnson (1980)
introduced metaphor as a central cognitive de-
vice that gives structure to abstract conceptual do-
mains, referred to as the ‘target domains’, which
are described in terms of concrete domains, re-
ferred to as the ‘source domains’. In our work,

we do not try to ascertain the source or target do-
mains, rather we focus on determining the pres-
ence of metaphorically used tokens in any given
sentence.

To estimate the frequency of occurrence of
metaphors, Shutova and Teufel (2010) conducted
a study on a subset of the British National Cor-
pus (Consortium and others, 2007) and manu-
ally annotated the metaphorical expressions in that
data. They found out that 241 sentences contained
at least one metaphor among the 761 sentences
considered.

Figurative uses of language are abundant in lit-
erature, but they are not restricted to the liter-
ary works. Figurative elements of language, es-
pecially sarcasm and metaphor, are common in
online product reviews, blogs, articles and posts
in social networking sites. With the increasing
amount of textual data, the number of metaphori-
cal instances is also increasing. As the application
of metaphors is pervasive, their interpretation in
non-literal ways is required. To process metaphors
automatically, their detection is of foremost im-
portance. Their abundance in any language sug-
gests that their detection would benefit the entire
Natural Language Processing (NLP) community,
for it would benefit methods like paraphrasing,
summarization, machine translation, etc. As of
now, most of the state of the art machine transla-
tions treat text literally and hence errors creep into
the automated translations.

There has been an increasing interest in auto-
mated processing of metaphors in the NLP com-
munity for their pervasiveness in our communi-
cations. To analyze and interpret a metaphor, it
has to be identified first. Some of the existing
computational models for detection of metaphors
use a hierarchical organization of conventional
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metaphors, or selectional restrictions as provided
in lexical resources available or by using word
embeddings, or conventional mappings of subject-
verb, verb-object, subject-object (Shutova, 2015).

In this paper, we treat the problem of token-
level metaphor detection as a sequence tagging
problem; and sequence tagging problems, like
Parts Of Speech (POS) tagging and Named En-
tity Recognition (NER), have been long dealt in
NLP. We approach token-level metaphor detec-
tion, with the help of Long Short-Term Memory
(LSTM) and Conditional Random Fields (CRF).
We try to identify the metaphors in a running text,
irrespective of the type of the metaphor. To ob-
serve the effectiveness of our proposed method,
we have experimented on VUAMC (Steen et al.,
2010b), an open domain text corpus, that has been
hand-annotated for metaphors at the token level.
Our method obtained the state-of-the-art results as
compared to previously reported works on token
level metaphor detection.

The rest of the paper is organized as follows.
We start in Section 2 by discussing existing litera-
ture on metaphor detection which compares to our
work in at least one facet and compare these with
our methodology. Section 3 discusses the prelim-
inaries. Section 4 presents the motivation behind
proposing our method. Section 5 provides infor-
mation about the dataset used in the experiments
and discusses the feature set considered. Section
6 provides the experimental details. Section 7
presents the results of our experiments along with
some discussions. Section 8 concludes the paper
suggesting possible future works.

2 Related Works

Numerous works have been reported on auto-
mated processing of metaphors. Shutova (2015)
has made a comprehensive review of computa-
tional metaphor identification systems as well as
metaphor interpretation systems. Initially, com-
putational approaches to metaphor identification
heavily relied on hand-coded knowledge, followed
by metaphor identification relying on lexical re-
sources. Recently the NLP community has wit-
nessed a growing interest in statistical and ma-
chine learning approaches to metaphor identifi-
cation. In the following paragraphs, we discuss
works done in the past that are related to our ap-
proach.

Hovy et al. (2013) presented one of the first

approaches to metaphor identification with word
vectors. They revisited the idea of selectional pref-
erence violation as an indication of metaphorical
expression but captured the difference in syntac-
tic relations using dependency trees over words.
They used tree kernels, a similarity matrix over
tree instances, computed using the number of
shared subtrees, to train a Support Vector Ma-
chine (Cortes and Vapnik, 1995) (SVM) classifier.
To construct the different tree representations, they
considered word vector, lemma, POS tag, depen-
dency label, and WordNet (Fellbaum, 1998) su-
persense representations. They downloaded a list
of 329 examples of metaphorical expressions from
the web and used 80% as training data, 10% as
developmental set and remaining 10% as test set.
The authors reported an F-score of 0.75, which
indicates the importance of syntactic information
and compositionality in metaphor identification.

Haagsma and Bjerva (2016) worked on detect-
ing novel metaphors using selectional preference
information. They claim that “metaphor is de-
fined by basicness of meaning and not frequency
of meaning”. Though the basicness and frequency
are correlated, there are instances where the figu-
rative sense of a word has become more frequent
than its original literal sense. They proposed dif-
ferent ways for generalizing over selectional pref-
erences obtained from a corpus. One among them
was to use the word embeddings for the gener-
alizations directly. They used a neural network
with one hidden layer containing 600 hidden units
with a sigmoid activation function and the result-
ing predictions were used as the Predicted Log-
Probability (P-LP) feature. They evaluated the ap-
proaches on the VU Amsterdam Metaphor Corpus
(VUAMC).

Tsvetkov et al. (2014) used logistics regres-
sion with word vectors and MRC Psycholinguis-
tic Database to get the abstractness and imageabil-
ity scores. With the abstractness and imageabil-
ity scores, they used supersenses and vector repre-
sentation of words as features for Random Forest
Classifier to detect metaphor.

Klebanov et al. (2014) considered each of the
‘content-word’ token in any given text to be clas-
sified as metaphorical or not. They used the lo-
gistic regression classifier to detect metaphor us-
ing unigrams, part of speech, concreteness and
topic models as features. Klebanov et al. (2015)
tuned the weight parameter to represent concrete-
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ness of information and include the difference of
concreteness between an adjective and its head
noun and between a verb and its direct object, to
improve on their previous work.

Do Dinh and Gurevych (2016) presented a neu-
ral network based method to detect metaphors at
the token level. Their method relied on word em-
beddings. They experimented with “multilayer
perceptrons (MLP), fully connected feedforward
neural networks with an input layer, one or more
hidden layers, and an output layer”. In their ex-
periments, they incorporated labels for tokens with
noun, verb, adjective, adverb POS tags as supplied
with the VUAMC, as their interest lied in the de-
tection of metaphoricity of content tokens. They
also filtered out auxiliary verbs, having lemmas
have, be, or do.

Rai et al. (2016) used Conditional Random
Fields (CRF) to detect metaphors in an open
domain text. For their experiments, they used
Syntactic features, Conceptual features, Affective
Features and Contextual features. Lemma, Part
of Speech (PoS), Named Entity (NE) type, depen-
dency, and stop word as a set of syntactic features
extracted by using Stanford CoreNLP formed
the Syntactic features. Concreteness, familiar-
ity, imageability, frequency and meaningfulness
extracted from MRC Psycholinguistic Database
formed the Conceptual features. Cognitive state,
physical state, trait, attitude, and emotion ex-
tracted from WordNet Affect (Strapparava et al.,
2004) formed the Affective features. As Contex-
tual features, they used word embeddings. Using
CRF++ (Kudo, 2005) on VUAMC, they reported
an F-score of 0.6093.

Do Dinh and Gurevych (2016) filtered out to-
kens if they did not have noun, verb, adjective or
adverb as part of speech. On the other hand, we
considered all tokens of the dataset. The reason
being that if one word cannot be used metaphori-
cally, it can indicate metaphoricity of another. We
used LSTM, which they had suggested in their
conclusion. Our approach uses less number of fea-
tures as compared to that of Rai et al. (2016). We
used a hybrid architecture of Bidirectional-LSTM
and CRF for metaphor detection.

3 Preliminaries

3.1 Word Embeddings

There is a long history of word embeddings (Hin-
ton et al., 1985; Hinton et al., 1986; Elman, 1990).

Collobert and Weston (2008) tried to define a uni-
fied architecture for Natural Language Processing.
The architecture deals with raw words and trans-
forms them into real-valued vectors. The architec-
ture learns feature representations that have rele-
vance to many well known NLP tasks like part-
of-speech (POS) tagging, chunking, named-entity
recognition (NER), learning a language model,
recognizing synonyms and semantic role-labeling
(SRL), by training a deep neural network.

The word embeddings produced by the method
of Turian et al. (2010), are real numbers that are
not necessarily in a bounded range, however, gen-
erally, the embeddings have a zero mean, though
they can be scaled by a hyper-parameter to control
their standard deviation.

Mnih and Hinton (2009) used a log-bilinear
model as the foundation to their hierarchical
model. They were focussed on a learning ap-
proach where no expert knowledge was available.
The ‘word feature vectors’ were obtained by gen-
erating a random tree of words, training a hier-
archical log-bilinear model on it and using the
distributed representations the model learns while
building the tree of words.

Mikolov et al. (2013b) showed that sub-
sampling of frequent words during the training
speeds-up the process, and also improves the accu-
racy of the vector representations of less frequent
words. The most common words are usually less
informative as they can easily occur millions of
times. To counter the rare and common words im-
balance, they used a sub-sampling approach. The
work provides a simple but powerful way to rep-
resent large pieces of text, keeping the computa-
tional complexity to a minimal.

Pennington et al. (2014) explicitly made the
model properties that were needed for semantic
and syntactic regularities and presented a global
log-bilinear model having the advantages of global
matrix factorization as well as local context win-
dow methods.

3.2 LSTM

Long Short-Term Memory (LSTM) was intro-
duced by Hochreiter and Schmidhuber (1997)
to overcome the issue of vanishing gradients in
the vanilla recurrent neural networks. They in-
troduced the gating mechanism through LSTM,
which made it possible to learn long-term depen-
dencies.
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LSTM equations are as follows:

it = σ(Wxi · Xt +Whi · Ht−1

+Wci · Ct−1 + bi)

ft = σ(Wxf · Xt +Whf · Ht−1

+Wcf · Ct−1 + bf )

Ct = ft � Ct−1 + it � tanh(Wxc · Xt

+Whc · Ht−1 + bc)

ot = σ(Wxo · Xt +Who · Ht−1

+Wco · Ct + bo)

Ht = ot � tanh(Ct)

(1)

In Eq. 1 for the LSTM, σ is the sigmoid function,
� is the Hadamard product, Ct is the cell state, Ht

is the hidden state. it, ft, ot refer to the input gate,
forget gate and output gate respectively.

A Bidirectional-LSTM (Graves and Schmidhu-
ber, 2005) has two LSTM networks. One of the
networks is provided the input in the forward di-
rection, whereas the other network is provided the
input backward, but both of the networks are con-
nected to the same output layer. In this paper,
Bidirectional-LSTM is henceforth referred to as
Bi-LSTM.

3.3 CRF

While predicting the output tags for a sequence,
a system can also make use of the tags predicted
in the previous time steps. This can be facilitated
by using a Maximum Entropy Markov Model
(MEMM) (McCallum et al., 2000) or a Condi-
tional Random Fields based tagging scheme. Con-
ditional Random Fields or CRF was introduced
by Lafferty et al. (2001) for building probabilis-
tic models for labeling sequential data. CRF over-
comes the problem of label bias. In most prob-
lems, CRF provides a better tagging performance
as compared to MEMMs (Lafferty et al., 2001;
Rozenfeld et al., 2006).

4 Motivation

A standalone word, or token for that matter, cannot
be marked for metaphoricity as many words can be
used both literally or figuratively, which is deter-
mined by the context of the word. Many computa-
tional methods have been proposed for metaphor
detection in datasets consisting of word tuples like
Adjective-Noun (Tsvetkov et al., 2014; Shutova et
al., 2016), Noun-Noun (or Type I metaphor as cat-
egorised by Krishnakumaran and Zhu (2007)) (Su

et al., 2017; Kesarwani et al., 2017) and Subject-
Verb-Object (Tsvetkov et al., 2014; Shutova et al.,
2016).

Open domain texts may have more than one
type of metaphor and though dependency pars-
ing is pretty accurate these days, metaphori-
cally related words and their indication might not
be directly related. So inherently detection of
metaphors, at a token level, is a context-sensitive
job and a sequential one.

Hybrid models of Bidirectional-LSTM and
CRF have been successful in tagging problems
like POS tagging, chunking and NER tagging
(Huang et al., 2015; Lample et al., 2016). We
apply a hybrid model of Bidirectional-LSTM and
CRF (henceforth referred to as Bi-LSTM-CRF),
to look for metaphors at the token level.

5 Data and Feature Set

5.1 Dataset

VU Amsterdam Metaphor Corpus
(VUAMC) (Steen et al., 2010b) is a subset
of BNC Baby. The Reference Guide to BNC
Baby (2003) describes its design and provides
information about the way in which it is encoded.
VUAMC is one of the “largest available corpus
hand-annotated for all metaphorical language use,
regardless of lexical field or source domain”. It
was reported that the corpus was annotated with
an inter-annotator reliability in terms of Fleiss’
Kappa, κ > 0.8.

VUAMC consists of randomly selected texts
from four registers of the BNC-Baby, namely,
academic texts, conversations, fiction and news
texts. The texts are coded for metaphor. The an-
notation manual for VUAMC and a detailed doc-
umentation of the project have been published in
Steen et al. (2010a).

In VUAMC, each lexical unit is annotated as be-
ing used literally or metaphorically. Annotation
for metaphoricity is done using fine grained tags.
XML tags with attribute function having value
mrw indicates that the unit is related to metaphors
(mwr expands to metaphor-related words), but
they are further divided with the help of attribute
type which has values between bridge, lit and
met. We considered tags with the value of met for
attribute type when attribute function has value of
mrw as metaphorical and label everything else as
literal.
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5.2 Generating Word Representations

We obtained word embeddings for our ex-
periments by using the open source Google
word2vec1 (Mikolov et al., 2013a; Mikolov et al.,
2013b; Mikolov et al., 2013c). We have used
the Continuous Bag-Of-Words (CBOW) model of
Mikolov et al. (2013a) with a window size of
eight (8) words. CBOW uses a continuous dis-
tributed representation of the context but the order
of words in the history does not influence the pro-
jection.

For training the model, we used the text cor-
pus from recent English Wikipedia dump2 prepro-
cessed with the Perl script of Matt Mahoney3 and
obtained vectors with a dimension of 200.

By training the model with Wikipedia text cor-
pus, we obtained word embeddings for most of
the lemmas and words contained in the VUAMC.
For some of the words and some of the lemmas,
embeddings were not available. There were some
words which were compositions of more than one
word, for them we took the component-wise aver-
age of the vectors of the composing words. Aver-
aging retains the property of both of the compo-
nents. Phrase embedding could have been an al-
ternative, but averaging sufficed our purpose. Nu-
merical tokens of VUAMC had to be dealt sepa-
rately as the Perl script removes non-alphabetical
characters from the corpus during the preprocess-
ing. So years were represented by the embedding
of the word ‘year’, amount was represented by that
of ‘dollars’, component-wise averaged with em-
bedding for ‘million’ or ‘billion’ if mentioned in
the token, and so on. For the words whose repre-
sentations were still not available, a constant vec-
tor was used.

In XML file of the VUAMC, the Part-Of-
Speech (POS) for the tokens are provided by the
“type” attribute. For our experiments, we needed
the vector representations of the POS. For their
representations instead of using one-hot encoding
or some randomly initialized vectors, we trained
Google word2vec only on the sequence of POS
tags as present in the VUAMC and used the
CBOW model to generate vectors of dimension 20
for the POS. While training word2vec on the se-
quence of POS tags, we did not include the labels
for metaphoricity, keeping the embedding genera-

1https://code.google.com/archive/p/word2vec/
2https://dumps.wikimedia.org/enwiki/latest/
3http://mattmahoney.net/dc/textdata.html

tion for the POS unsupervised.

5.3 Features
The features that we considered for our experi-
ments are as follows :

1. Token

2. Lemma of the token

3. Part-Of-Speech (POS)

4. Whether the lemma and the word are same

5. Whether the lemma is present in the token

Token or word (converted to lower case, if not
originally in the XML file of VUAMC) was the
most essential component for the feature vector
as we were addressing the problem of token-level
metaphor detection. So for every experiment per-
formed for this paper, the token was common. The
word embedding of the token as generated in sub-
section 5.2 was considered as a part of the feature
vector, and referred to as ‘Token’.

Similarly, for the lemma of the token as pro-
vided by the “lemma” attribute in XML file of
VUAMC, word embeddings as generated in sub-
section 5.2 was considered and referred to as
‘Lemma’ in later sections. The generated POS
embeddings were used to represent the Part-Of-
Speech as provided by the “type” attribute in XML
file of VUAMC and referred to as ‘POS’.

For the features 4 and 5, we have used one hot
encoding. For each of them, there were only two
possible scenarios, yes and no, so vectors of di-
mension 2 did the work. Features 4 and 5 represent
the relation between the lemma and the token, so
collectively they are referred to as ‘Word-Lemma
Relations’.

The feature vector of a token, as input to the
model, was a concatenation of the representation
of the features described above in the order they
have been mentioned. When we experimented for
the contribution of each of the features over the to-
ken, we omitted some features while retaining the
others, but we maintained the order for our ease.

6 Experiments

6.1 Baselines
As one of our baselines, we used the results from
Do Dinh and Gurevych (2016). Using neural net-
work, they experimented on each of the contained
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genres in VUAMC (news, conversation, fiction,
academic) separately; for each subcorpora, they
used a random subset of 76% of the data as a
training set, 12% as development set and 12% as
test set. They also reported the performance of
their system on the complete corpus, with a 76%,
12%, 12% split. We compared with their preci-
sion, recall and F1-measure regarding metaphor-
ically used tokens for their tuned neural network
on a feature set of Token+POS+Conc i.e. with
a feature set consisting of Token, POS and Con-
creteness rating.

As for our other baseline, we considered the re-
sults from Rai et al. (2016), as reported by them.
They used conditional random fields (CRF) for de-
tection of metaphors and experimented on each of
the genres contained in VUAMC, as well as on
the complete dataset. For the genres, they have re-
ported precision and recall (for metaphor class),
from which we can calculate the F-measure for
the metaphor class. On the complete dataset, they
have reported precision, recall and F-measure,
with which we compared the performance of our
method.

6.2 Experimental Setup

We considered all tokens, irrespective of their POS
tag supplied with the VUAMC. We ignored the
punctuations like comma (,), exclamation mark
(!), period (.), and quotation mark (’), as punctu-
ation marks cannot be used metaphorically, to the
best of our knowledge.

For each of the tokens considered, the feature
vector was computed as described in section 5.
As the punctuation marks were not considered,
the tokens belonging to a particular sentence were
clubbed together, in the order they appear in the
sentence in VUAMC. As the label for metaphoric-
ity, each token is marked as negative or positive
representing literal and metaphorical tokens, re-
spectively.

As sentences of the dataset are not of equal
length, we padded them with constant vectors, la-
beled negative for metaphoricity. In a running text,
if the end of sentences are not marked, an auto-
matic processor for sentences can be used to mark
them.

We used a Bi-LSTM-CRF architecture similar
to the ones presented by Collobert et al. (2011),
Huang et al. (2015) and Lample et al. (2016).
Our architecture used a Bidirectional-LSTM with

a layer of CRF above it.
Our model with back-propagation updated pa-

rameters with every batch. We used a batch size
of 128 while training. We used a learning rate of
0.0005 and had set the gradient clipping to 5. We
used Adam (Kingma and Ba, 2014) as our learning
method with a dropout of 0.5. Our model used a
single LSTM layer for forward and a single LSTM
layer for backward propagations. Each of the lay-
ers had a dimension of 100. It was observed that
changing the dimensions did not significantly im-
prove the results.

The system is trained and tested on the complete
corpus, leaving out the metadata of the genre they
belong to in the British National Corpus (BNC).
We did a 10-fold cross validation on the entire
dataset, with the order of the sentences changed
randomly. We rearranged the sentences so that the
sentences belonging to the same genre did not nec-
essarily get clubbed together as originally in the
dataset. The performance of the system with the
suggested features is evaluated on the basis of Pre-
cision, Recall and F1-score.

To check whether a feature contributes to the
results, we also experimented on an incremental
basis, i.e. adding features on top of the others. We
also checked separately for the features along with
the word embeddings for the words (tokens). We
did this with a 10-fold cross-validation.

6.3 Fig-Lang18 Shared Task

The shared task on metaphor detection in the First
Workshop on Figurative Language Processing4,
co-located with NAACL 2018 targets detecting
“all content-word metaphors in a given text”. The
shared task also uses the VUAMC dataset (re-
ferred to as VUA in the shared task). It has a sep-
arate evaluation only for the verb metaphors.

The training as well as the test data consists of
text ids and sentence ids along with the respective
sentences from the VUAMC. The test phase has
test instances (one set of instances for all-POS and
another only for the verb metaphors), over which
the submitted predictions are evaluated.

For our training and testing purpose, we had
the text ids and sentence ids as provided for the
shared task, from which we could get the respec-
tive sentences from the VUAMC and thus generate
the feature vectors for each of their tokens (leav-
ing aside the punctuation marks), as described in

4https://competitions.codalab.org/competitions/17805
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Method Precision Recall F1-score
Do Dinh and Gurevych (2016) 0.5899 0.5355 0.5614
Rai et al. (2016) 0.6333 0.5871 0.6093
Bi-LSTM-CRF (Embeddings only for tokens) 0.7036 0.5755 0.6327
Bi-LSTM-CRF (All of the considered features) 0.7283 0.6253 0.6740

Table 1: Results for complete VU Amsterdam Metaphor Corpus.

Method Precision Recall F1-score
Only Token 0.7036 0.5755 0.6327
Token + Word-Lemma Relations 0.7040 0.5876 0.6330
Token + POS 0.7252 0.5784 0.6399
Token + Lemma 0.7495 0.6213 0.6657
Token + Lemma + POS 0.7239 0.6297 0.6729
Token + Lemma + POS + Word-Lemma Relations 0.7283 0.6253 0.6740

Table 2: Results for Feature Selection on the complete VU Amsterdam Metaphor Corpus with Bi-
LSTM-CRF.

section 5. If any punctuation mark was to be
evaluated, it was to be given a negative level for
metaphoricity.

We trained on the training set as decided for the
task, using the same system of Bi-LSTM-CRF as
used in the previous subsection, with all of the fea-
tures considered. We did not train separately for
verb metaphors but used the same system to eval-
uate the verb metaphors also.

7 Results and Discussions

Using Bi-LSTM-CRF only with the word embed-
dings of the tokens of the sentences, gives better
results as compared to the baselines, as shown in
Table 1.

We have also reported the results of experiments
for feature selection in Table 2. As it can be seen
in Table 2, using word embeddings of the lem-
mas along with the tokens, improved the results
by a huge scale. Adding embeddings for the POS
also improved the results. POS tags are provided
with VUAMC, but for a dataset, if the POS are
not available, they can be generated by using the
available POS taggers.

Do Dinh and Gurevych (2016) and Rai et
al. (2016) used concreteness ratings but for our
method, the results hardly change if we con-
sider concreteness ratings. As Do Dinh and
Gurevych (2016) have pointed out, this could be
due to one-dimensionality of the abstractness (or
concreteness) feature.

The results of the experiments on the shared
task data have been reported in Table 3. Our
method obtained an F-measure of 0.6541 over the
entire test set of the shared task but an F-measure
of 0.5362 for the all-POS instances and 0.5859 for
the verb instances.

8 Conclusion and Future Work

We presented a method for token level metaphor
detection using Bi-LSTM-CRF. Our method uses
word-embeddings of the token as well as its lem-
matized form. Our method compares well with the
state-of-the-art system that considers a huge set of
features, which we beat with fewer features with-
out filtering out any particular type of word.

The context that we had considered for our ex-
periments was one sentence at a time, but an in-
dication of metaphorically related words can also
be across sentences and for those scenarios, the
global context is expected to help. So in our future
work, we intend to take wider context into consid-
eration.
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Data Accuracy Precision Recall F-measure
All POS Instances 0.8575 0.6446 0.4591 0.5362
Verb Instances 0.7807 0.6753 0.5173 0.5859
Overall Test Set 0.9172 0.7331 0.5904 0.6541

Table 3: Results on Shared Task.
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