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Abstract

Mental illness detection in social media can
be considered a complex task, mainly due to
the complicated nature of mental disorders. In
recent years, this research area has started to
evolve with the continuous increase in popu-
larity of social media platforms that became
an integral part of people’s life. This close
relationship between social media platforms
and their users has made these platforms to re-
flect the users’ personal life on many levels.
In such an environment, researchers are pre-
sented with a wealth of information regarding
one’s life. In addition to the level of complex-
ity in identifying mental illnesses through so-
cial media platforms, adopting supervised ma-
chine learning approaches such as deep neural
networks have not been widely accepted due to
the difficulties in obtaining sufficient amounts
of annotated training data. Due to these rea-
sons, we try to identify the most effective deep
neural network architecture among a few of
selected architectures that were successfully
used in natural language processing tasks. The
chosen architectures are used to detect users
with signs of mental illnesses (depression in
our case) given limited unstructured text data
extracted from the Twitter social media plat-
form.

1 Introduction

Mental disorder is defined as a ”syndrome charac-
terized by a clinically significant disturbance in an
individual’s cognition, emotion regulation, or be-
havior that reflects a dysfunction in the psycholog-
ical, biological, or developmental processes un-
derlying mental functioning” (American Psychi-
atric Association, 2013). According to Canadian
Mental Health Association (2016), 20% of Cana-
dians belonging to different demographics have
experienced mental illnesses during their lifetime,
and around 8% of adults have gone through a ma-

jor depression. According to World Health Orga-
nization (2014) statistics, nearly 20% of children
and adolescents have experienced mental illnesses
and half of these mental illnesses start before the
age of 14. In addition, around 23% of deaths in the
world were caused due to mental and substance
use disorders. The broad implication of mental ill-
ness can be identified from the level of suicide in
Canada where nearly 4,000 Canadians have died
from suicide and 90% of them were identified as
having some form of a mental disorder (Mental
Health Commission of Canada, 2016). Apart from
the severity of mental disorders and their influence
on one’s mental and physical health, the social
stigma (e.g., ”mental disorders cannot be cured”)
or discrimination has made the individuals to be
neglected by the community as well as to avoid
taking the necessary treatments.

The inherent complexity of detecting mental
disorders using social media platforms can be seen
in the literature, where many researchers have
tried to identify key indicators utilizing different
natural language processing approaches. To ex-
tract the most prominent features to develop an
accurate predictive model, one must acquire a suf-
ficient amount of knowledge related to the partic-
ular area of research. Even if such features were
extracted, this does not assure that those features
are the key contributors to obtaining improved ac-
curacies. Due to these reasons, we investigate the
possibility of using deep neural architectures be-
cause the features are learned within the architec-
ture itself.

Here, we explore a few selected deep neural
network architectures to detect mental disorders,
specifically depression. We used the data released
for the Computational Linguistics and Clinical
Psychology (CLPsych) 2015 shared task (Copper-
smith et al., 2015b). Even though the task is com-
prised of three subtasks: detecting Post-Traumatic
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Stress Disorder (PTSD) vs. control, depression
vs. control and PTSD vs. depression, our pri-
mary objective was to detect depression using the
most effective deep neural architecture from two
of the most popular deep learning approaches in
the field of natural language processing: Con-
volutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs), given the limited
amount (i.e., in comparison to most of the deep
neural network architectures) of unstructured data.

Our approach and key contributions can be sum-
marized as follows.

• Word embedding optimization: we propose a
novel approach to optimize word-embedding
for classification with a focus on identify-
ing users suffering from depression based
on their social posts such as tweets. We
use our approach to improve the performance
of two tasks: depression detection on the
CLPsych2015 dataset and test generalization
capability on the Bell Lets Talk dataset (Jamil
et al., 2017).

• Comparative evaluation: we investigate and re-
port the performance of several deep learning
architectures commonly used in NLP tasks, in
particular, to detect mental disorders. We also
expand our investigation to include different
word embeddings and hyperparameter tuning.

2 Mental illness detection

Identifying the treatment requirement for a mental
disorder is a complicated clinical decision, which
involves several factors such as the severity of
symptoms, patients’ suffering associated with the
symptoms, positive and negative outcomes of par-
ticular treatments, disabilities related to patients’
symptoms, and symptoms that could negatively
impact other illnesses (American Psychiatric As-
sociation, 2013). It is also important to note that
measuring the severity of the disorder is also a
difficult task that could only be done by a highly
trained professional with the use of different tech-
niques such as text descriptions and clinical inter-
views, as well as their judgments (American Psy-
chiatric Association, 2013). Considering the com-
plexity of the procedures and level of skills in-
volved in identifying mental disorder and the nec-
essary treatments, detecting mental illness within
social media using web mining and emotion anal-
ysis techniques could be considered a preliminary
step that could be used to generate awareness.

It is of greater concern to respect ethical facets
about the use of social media data and its privacy.
The researchers working with such social media
data must take the necessary precautions to protect
the privacy of users and their ethical rights to avoid
further psychological distress. Certain researchers
have taken adequate steps in anonymizing the data
to secure user privacy. Coppersmith et al. (2015b)
have used a whitelist approach in anonymizing the
data given to the CLPsych 2015 shared task partic-
ipants. Even though screen names and URLs were
anonymized using salted hash functions, the possi-
bility of cross-referencing the hashed text against
the Twitter archives still exists, and it could lead
to breach of user privacy. Due to this reason, the
researchers were asked to sign a confidentiality
agreement to ensure the privacy of the data.

As social media interactions reside in a more
naturalistic setting, it is important to identify to
what extent an individual has disclosed their per-
sonal information, and whether the accurate and
sufficient information is being published to deter-
mine whether a person has a mental disorder. The
longitudinal data published on social media plat-
forms have been identified as valuable (De Choud-
hury, 2013, 2014, 2015) with an extensive level of
self-disclosure (Balani and De Choudhury, 2015;
Park et al., 2012).

Most of the research conducted to detect men-
tal illnesses in social media platforms has fo-
cused heavily on feature engineering. Through-
out the literature, it could be identified that the
most widely adopted feature engineering method
is to extract lexical features using the Linguistic
inquiry word count (LIWC) lexicon, which con-
tains more than 32 categories of psychological
constructs (Pennebaker et al., 2007). The lexi-
cons have been used as one of the key feature
extraction mechanisms in identifying insomnia
(Jamison-Powell et al., 2012), distress (Lehrman
et al., 2012), postpartum depression (De Choud-
hury et al., 2013), depression (Schwartz et al.,
2014) and post-traumatic stress disorder (PTSD)
(Coppersmith et al., 2014a). For each of these
mental disorders to be identified, researchers had
to extract features that overlap with each other,
and are unique to a particular disorder. For ex-
ample, the use of first-person pronouns (Lehrman
et al., 2012) compared to the lesser use of second
and third person pronouns (De Choudhury, 2013)
are being used to detect users susceptible to dis-
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tress and depression. To distinguish depression
from PTSD, age is identified as a distinct feature
(Preotiuc-Pietro et al., 2015a).

We found that working with the data extracted
from the Twitter social media platform is chal-
lenging due to the unstructured nature of the text
posted by users. The Twitter posts are introduced
with new terms, misspelled words, syntactic er-
rors, and character limitations when composing
a message. Character n-gram models could be
considered as an intuitive approach to overcome
challenges imposed by unstructured data. Con-
sidering the effectiveness of such language mod-
els in classification tasks using Twitter data, Cop-
persmith et al. (2014a,b) has used unigram and
character n-gram language models to extract fea-
tures in the process of identifying users suspi-
cious of having PTSD and several other mental
illnesses such as bipolar disorder, depression, and
seasonal affective disorder (SAD). Similarly, char-
acter n-grams can be identified as the key fea-
ture extraction mechanism in detecting mental ill-
nesses such as attention deficit hyperactivity dis-
order (ADHD), generalized anxiety disorder, and
eight other mental illnesses (Coppersmith et al.,
2015a) as well as in detecting rare mental health
conditions such as schizophrenia (Mitchell et al.,
2015). Even though topic modelling techniques
such as latent Dirichlet allocation (LDA) are be-
ing used to enhance the classifier predictability
(Mitchell et al., 2015), researchers have identi-
fied supervised topic modeling methods (Resnik
et al., 2015) and topics derived from clustering
methods such as Word2Vec and GloVe Word Clus-
ters (Preotiuc-Pietro et al., 2015b) to be more reli-
able in identifying users susceptible to having a
mental illness. Further advancements in detect-
ing mental health conditions were identified in the
Computational Linguistics and Clinical Psychol-
ogy (CLPsych) 2016 shared task (Milne et al.,
2016) where post embedding’s (Kim et al., 2016)
were used to determine the category of sever-
ity (i.e., crisis, red, amber and green) of forum
posts published by users. In addition to lexical
(e.g., character n-grams, word n-grams, lemma n-
grams) and syntactic features (e.g., POS n-grams,
dependencies), social behavioural patterns such as
posting frequency and retweet rate, as well as the
demographic details such as age, gender, and per-
sonality (Preotiuc-Pietro et al., 2015a) were also
considered strong indicators in identifying men-

Control Depressed PTSD
Number of users 572 327 246
Number of tweets
in each category

1,250,606 742,793 544,815

Average age 24.4 21.7 27.9
Gender (female)
distribution per
class

74% 80% 67%

Table 1: CLPSych 2015 shared task dataset statis-
tics

tal illnesses. In general, the research in men-
tal illness detection has evolved from the use of
lexicon-based approaches to language models and
topic models. The most recent research has tried
to enhance models’ performance with the use of
vector space representations and recurrent neural
network layers with attention (Kshirsagar et al.,
2017) to detect and explain posts depicting crisis.
In our research, we implement a model that pro-
duces competitive results for detecting depression
of Twitter users (i.e., at user level not at post level)
with limited data and without any exhaustive fea-
ture engineering.

3 Data

The training data consists of 1,145 Twitter users
labeled as Control, Depressed, and PTSD (Cop-
persmith et al., 2015b). Also, each user of the
dataset is labeled according to their gender and
age. Table 1 represents detailed statistics of the
dataset.

As the research is focused mainly on identify-
ing users susceptible to depression, we selected
a test dataset consisting 154 users labeled as ei-
ther Depressed or Control. The users are identified
from the postings published under the Bell Let’s
Talk campaign (Jamil et al., 2017). Out from 154
users, 53 users are labeled as Depressed while the
remaining 101 users as Control. The test dataset
can be considered as random and not following the
same distribution as the training dataset. The train-
ing data contained an average length of 13,041
words per user, and on average 3,864 words are
used by a user in the test set. Unlike the train-
ing dataset, the test dataset is not extracted con-
sidering the age and gender attributes, and it does
not have a similar age and gender distribution be-
tween the control and depressed groups. We as-
sume that our trained model could generate bet-
ter AUC scores if provided with a similarly dis-
tributed test dataset. However, considering the
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Figure 1: System architecture.

AUC scores that we have obtained, we can con-
clude that the trained model is well generalized.

4 Methodology

The overall design of our approach is shown in
Figure 1. We present a system that identifies users
at the risk of depression from their social media
posts.

Toward this, we present an efficient neural net-
work architecture that improves and optimizes
word embeddings. We evaluate the optimized em-
beddings produced by our architecture along with
three commonly used word embeddings (Figure
1), random trainable, skip-gram, and CBOW, on
the CLPsych 2015 shared task and the Bell Let’s
Talk datasets. We perform a comparison on some
selected CNN-based and RNN-based models to
determine the best models and parameters across
different settings for depression detection.

4.1 Preprocessing

We removed all the retweets, URL’s, @mentions,
and all the non-alphanumeric characters. Also, all
the stop words except for first, second, and third
person pronouns were removed. From previous
research, we identified that individuals suscepti-
ble to depression more regularly use first-person
singular pronouns compared to the use of other
pronouns (Pennebaker, 2011). The NLTK Tweet
tokenizer is used to tokenize the messages. After
tokenizing, we build a vocabulary (242,657 unique
tokens) from the training dataset, which is used to
encode text as a sequence of indices.

4.2 Word encoding

A network input is a sequence of tokens, such as
words, where S = [s1, s2, . . . , st] and t denotes

the timestep. Si is the one-hot encoding of input
tokens that have a fixed length (T ), such that a
sequence that exceeds this length is truncated. A
word dictionary of fixed terms W is used to en-
code a sequence. It contains three constants that
determine the start and end of this sequence, in ad-
dition to the out of vocabulary (OOV) words. We
normalize the variable text length using padding
for short sequences and truncation for long se-
quences. We set the minimum occurrences of a
word to 2 and the size of context window to 5,
which produce 242,657 words. Then, we select
the most frequent 100,000 words of them without
stopwords.

4.3 Word Embedding Models
Word embedding models are fundamentally based
on the unsupervised training of distributed rep-
resentations, which can be used to solve super-
vised tasks. They are used to project words into
a low-dimensional vector representation xi, where
xiεR

W and W is the word weight embedding
matrix. We pre-train two different Word2Vec
(Mikolov et al., 2013) word embeddings, us-
ing Skip-gram and Continuous Bag-Of-Words
(CBOW) distributed representation, in addition to
a random (Rand) word embedding that has a uni-
form distribution scheme of a range (-0.5 to +0.5).

Word2Vec is a shallow model, in which neural
layers, typically two, are trained to reconstruct a
word context or the current word from their sur-
rounding window of words. Skip-gram infers the
nearby contextual words, as opposed to other dis-
tributed representations, such as CBOW, that focus
on predicting current words. CBOW is a continu-
ous skip-gram, in which the order of context words
does not affect prediction or projection. CBOW
is typically faster than skip-gram, which is slower
but able to identify rare words (Mikolov et al.,
2013).

Our embedding models are pre-trained on the
CLPsych 2015 Shared task data. We also have
an additional hyperparameter that is used to either
freeze the embedding weight matrix or allow for
further training.

4.4 Word Embedding Optimization
We implement an optimized approach for build-
ing an efficient word embedding to learn a better
feature representation of health-specific tasks. Re-
cently, there has been an increased use of embed-
dings average to compute word embedding, which

91



Figure 2: Word embedding optimization.

provides an improved feature representation that
can be used across multiple tasks (Faruqui et al.,
2015).

A word embedding is typically trained in an un-
supervised manner using unlabeled data since it
is not task-specific. We do the same by training
our embedding on a large unlabeled training cor-
pus (Collobert and Weston, 2008; Mikolov et al.,
2013). Word2Vec trains word embeddings in a
supervised manner, as it defines a training crite-
rion that enables using unlabeled data (e.g., pre-
dicting the current word as in CBOW or context
as in skip-gram). We do the same at the sentence
level by predicting the surrounding sentences (Hill
et al., 2016), as well as their possible sense (i.e.,
depressed, PTSD, or neither). We extend it by
leveraging our knowledge about the labels of some
sentences, where it will improve the estimation of
word embedding and produces embeddings that
are general-purpose and can be used across multi-
ple tasks. We use multi-task deep learning (MTL)
(Collobert and Weston, 2008) to learn word em-
bedding by exploiting our knowledge of some la-
beled text as illustrated in Figure 2 (the shared
layer among these tasks is in a dashed box).
Training. We have two tasks to be trained, word
and sense predictions. We use a pre-trained weight
matrix, in particular, skip-gram, to initialize the in-
put word embedding. For the first task, we use
supervised training to predict words occurring to-
gether (i.e., a pair of words wi and wj). For the
second task, there is a fully-connected layer with
Rectified Liner Unit (ReLU) activation, and a final

layer producing the output. It includes a label for
missing data, as it is expected to have limited su-
pervised data regarding sense information. Then,
we use a regularized l2-norm loss function (Ng,
2004) to constrain shared layers between these
tasks (see the dashed box in Figure 2).

For the first task, we define a probability
p(wi, wj) = e(cos(wi,wj))/ΣwiεW e

cos(wi,wj) for
the likelihood of word to be adjacent using a hi-
erarchal SoftMax function. wi denotes an embed-
ding of a word wi. W is the set of all possible
words, many of which may not be practical

Hence, we replace the set W with the union of
the sets WC , WP and WN .WC denotes the class
index; depressed, PTSD, neither, or unknown.
WP denotes the words occurring next to a word
wi in the training data. WN is a set of n words
that are randomly selected and not occurring next
to the word wi in the training data. We use an an-
tirectifier activation as it enables all-positive out-
puts without losing any value. Then, we use cosine
distance function to compute similarities among
word representations, and to produce word prob-
ability representations.

5 Models

We describe four selected neural network mod-
els, which are used to evaluate the performance
of depression detection. The first three models
use CNN and the last one uses RNN. We build
these model on the top of the word-embeddings
described in the previous section. A drop-out of a
probability 0.2 follows the word embedding layer.
Each model is followed by a vanilla layer that is
fully-connected, has 250 hidden units, and uses a
Rectified Linear Unit (ReLU) activation. Then, we
apply dropout with a probability of 0.2. The output
layer is a fully-connected layer with one hidden
unit, and it uses a sigmoid activation to produce
an output.

5.1 Convolutional Neural Network (CNN)

A convolution operation is a representation of
learning from sliding w-grams for an input se-
quence of d entries, e1, e2, . . . , et. A vector ciεRed

is the concatenated embedding of f entries, such
that xi−f+1, . . . , xi where f is the filter length.
For w-gram, we generate a representation piεRd

using convolution weightsWεRd×wd where a bias
bεRd and pi = tanh(Wxi+b).
CNNWithMax: We apply a one-dimensional con-
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volution operation with 250 filters and a ker-
nel of size 3, where wfi = conv1d(si) and f
is the filter length. After that, a global max-
pooling layer is applied on the feature map to ex-
tract global abstract information, such that ŵf =
globalmax(wfi ), which results in an abstract fea-
ture representation of length 250.
MultiChannelCNN: We apply 3 convolutions,
each of which has 128 features and filters of the
lengths 3, 4, and 5. A one-dimensional opera-
tion is used, where wfi = Conv1d(Si), and f is
the filter length. Then, a max-pooling layer is ap-
plied on the feature map to extract abstract infor-

mation, ŵfi = max(Cfi ). Finally, we concate-
nate feature representations into a single output.
Conversely to recurrent layers, convolutional op-
erations are helpful with max-pooling to extract
word features without considering the sequence
order (Kalchbrenner et al., 2014). Such features
can be used with recurrent features in order to im-
prove the model performance.
MultiChannelPoolingCNN: We extend the pre-
vious model to apply two different max-pooling
sizes, 2 and 5.

5.2 Recurrent Neural Network (RNN)

It is commonly used in NLP as it allows for re-
membering values over different time durations.
In RNN, each element of an input embedding xi is
processed sequentially. ht = tanh(Wxi +Wht−1)
and W represent the weight matrix between an in-
put and hidden states (ht) of the recurrent con-
nection at timestep (t). RNN allows for variable
length processing while maintaining the sequence
order. However, it is limited when it comes to
long sentences due to the exponentially growing
or decaying gradients. Long short term memory
(LSTM) is a common way to handle such a limi-
tation using gating mechanisms.
Bidirectional LSTM with attention: we use bidi-
rectional LSTM layers with 100 units, which re-
ceive a sequence of tokens as inputs. Then,
the LSTM projects word information H =
(h1, h2, . . . , hT ), in which ht denotes the hid-
den state of LSTM at a timestep (t). LSTM
captures the temporal and abstract information
of sequences forwardly (hf ) or backwardly (hb).
Then, we concatenate both forward and backward
representations, where ht = ht

f ||htb. Finally, we
use the last output in the sequence.
Context-aware Attention: Words have different

weight values, as they are generally not equal.
Thus, we use an attention mechanism (Bahdanau
et al., 2014; Vaswani et al., 2017) to focus on the
important words. We use a context-aware atten-
tion mechanism (Yang et al., 2016), which is the
weighted summation of all words in a given se-
quence (r = ΣT

i=1aihi). We use this representa-
tion as a classification feature vector.

6 Models Training

For training, we minimize the validation loss error
between the actual and predicted classes in order
to learn the network parameters. A mini-batch gra-
dient descent with a batch size 32 is applied to im-
prove the network loss function through backprop-
agation. Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 0.007 is used to train our
models. The gradient norm (Pascanu, Mikolov, &
Bengio, 2012) is clipped at 7, which protects our
model from the exploding gradient.
Regularization: we randomly drop neurons off
a network using dropout in order to prevent co-
adaptation of those neurons (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014).
Dropout is also used on the recurrent connec-
tion of our LSTM layers. We additionally, ap-
ply weight decay using L2 regularization penalty
(Cortes, Mohri, & Rostamizadeh, 2012).
Hyperparameters: we use an embedding layer of
the size 300, and an LSTM layer of size 50, which
increases to be 100 for the bidirectional LSTM.
We apply a dropout of 0.4 and 0.2 on the recur-
rent connections. Finally, an L2 regularization of
0.0001 is applied at the loss function.

7 Experiments

We evaluate our approach using two experiments,
1) depression detection on the CLPsych2015
dataset (Section 3) and 2) test generalization abil-
ity on the Bell Let’s Talk dataset (Section 3). We
use different word embeddings for our experi-
ments with the deep neural network models. In
the first experiment, we perform a comparison on
the selected models for depression detection.

In the second experiment, since the dataset is
imbalanced, we perform 5-fold cross-validation
with stratified sampling to report results. Data
points are shuffled for each split while maintain-
ing the class distribution. After that, we test the
generalization ability of the models selected, for
which we use 80% and 20% of the data for train-
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Model Accuracy F1 AUC Precision Recall
Baseline 77.480 77.472 0.844 77.601 77.480

CNNWithMax

Optimized 87.957 86.967 0.951 87.435 87.029
Skip-gram 79.813 78.460 0.879 79.707 78.979
CBOW 60.768 43.095 0.544 38.056 54.207
Trainable 80.820 80.173 0.909 80.440 82.099

MultiChannelPoolingCNN

Optimized 87.510 86.491 0.950 87.266 86.678
Skip-gram 78.818 76.073 0.883 80.514 75.691
CBOW 49.667 37.573 0.556 33.289 53.652
Trainable 73.691 72.021 0.824 72.672 72.799

MultiChannelCNN

Optimized 85.617 84.153 0.935 85.817 84.064
Skip-gram 81.161 78.650 0.892 81.143 77.977
CBOW 76.248 72.047 0.803 76.478 71.742
Trainable 82.268 80.347 0.870 82.770 79.983

BiLSTM (Context-aware attention ) Optimized 78.136 76.024 0.826 76.555 75.751
Trainable 77.589 75.193 0.832 76.687 74.923

Table 2: Performance of our models on the CLPsych 2015 dataset with 5-fold cross-validation. The rows
are highlighted according to the highest AUC score.

Model Accuracy F1 AUC Precision Recall
Baseline 73.460 73.460 0.718 73.322 74.025

CNNWithMax

Trainable 64.935 64.787 0.751 68.376 69.681
Optimized 81.818 80.998 0.920 80.529 83.449
CBOW 61.688 61.216 0.687 63.214 64.515
Skip-gram 72.078 71.322 0.743 71.879 74.229

MultiChannelCNN

Trainable 68.182 67.456 0.773 68.387 70.362
Optimized 83.117 82.252 0.923 81.626 84.439
CBOW 72.078 66.882 0.734 68.969 66.159
Skip-gram 62.338 57.491 0.586 57.687 57.388

MultiChannelPoolingCNN

Trainable 60.390 54.599 0.525 54.911 54.558
Optimized 82.468 81.513 0.888 80.871 83.495
CBOW 51.948 50.752 0.682 69.076 62.918
Skip-gram 64.286 64.248 0.752 69.307 70.082

BiLSTM (Context-aware attention ) Trainable 63.636 62.731 0.733 63.636 65.104
Optimized 80.519 80.035 0.914 80.519 83.803

Table 3: Performance of our models on the Bell Let’s Talk dataset. The rows are highlighted according
to the highest AUC score.

ing and development, respectively. The trained
models are used afterward for evaluation on un-
seen data, which is Bell Let’s Talk; i.e., 154 users
(Section 3).

The metrics used for our evaluation are accu-
racy, ROC area-under-the-curve (AUC), precision,
recall, and F-measure. We use precision and re-
call since data is imbalanced, which may return
imprecise accuracy results. We compared model
performances based on the AUC score, which is
calculated on the validation set and averaged over
the five splits with standard deviation. A low pre-
cision will be identified when the classifier reports
more false positives (FP); i.e., users are inaccu-
rately predicted to have depression. A low recall
will be identified when the classifier reports more
false negatives (FN); i.e., users who suffer from
depression are not recognized. We consider preci-
sion, recall, and F-measure for the positive classes
obtained from the test datasets. We aim to be close

to a perfect balance (1.0) for both precision and re-
call.

The majority of the researchers have relied on
support vector machine (SVM) classifiers to dis-
tinguish users with mental disorders from control
groups and different mental disorder categories
except when trying to identify the level of depres-
sion with the use of regression models (Schwartz
et al., 2014). We used the SVM linear classifier
with TF-IDF to initiate a baseline for the binary
classification task. For evaluation, we used five-
fold cross-validation, and the resulting best model
was used on the Bell Let’s Talk dataset to predict
users with depression. The results are reported
both on the validation and test data.

Table 2 shows good standings results for depres-
sion detection, which indicates that regulariza-
tion and hyperparameter tuning helped resolve the
overfitting issues. CNN-based with max-pooling
models reported better performance than RNN-
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based models. The CNNWithMax models using
our optimized embedding reported higher accu-
racy (87.957%), F1 (86.967%), AUC (0.951), pre-
cision (87.435%), and recall (87.029%), as com-
pared to other models. Table 2 reports that CNN-
based models’ results are close to each other, as
opposed to RNN-based models, which at best re-
ported 83.236% with trainable random embedding
(trainable). Interestingly, CNN models performed
better than RNN models for depression detection.

Table 3 reports the generalization ability of our
approach on the unseen dataset (Section 3). The
models trained using our optimized embedding
managed to maintain their performance with gen-
eralization ability. Our embedding performs bet-
ter because it is optimized using the CLPsych2015
dataset, which includes depression and PTSD la-
beled data. Table 3 shows that the results of the
CNN models are competitive, as opposed to RNN
models. The best performing RNN model re-
ported 91.425%. CBOW embedding performed
the least as compared to others, including the ran-
dom embedding. In particular, pre-trained CBOW
and skip-gram models do not perform as expected,
mainly due to the size of the CLPsych2015 cor-
pus, which is nearly around 22 million words. Fur-
thermore, optimized and trainable random embed-
dings have an advantage for being able to update
their weights during training. We conclude that
user-level classification for depression detection
performs well even with datasets that are small
and/or imbalanced.

8 Comparison to Related Work

Resnik et al. (2015) and Preotiuc-Pietro
et al. (2015b) reported high results for the
CLPsych2015 shared task using topic models.
However, their results are not comparable, as they
are reported on the official testing set that was
not available to us. Alternatively, we performed
a five-fold cross-validation on the shared task
training data (Tables 2 and 3). We report better
performance when testing on the Bell Let’s Talk
dataset as compared to Jamil et al. (2017).

9 Conclusion

In conclusion, we presented a novel approach to
optimize word-embedding for classification tasks.
We performed a comparative evaluation on some
of the widely used deep learning models for de-
pression detection from tweets on the user level.

We performed our experiments on two publicly
available datasets, CLPsych2015 and Bell Lets
Talk. Our experiments showed that our CNN-
based models perform better than RNN-based
models. Models with optimized embeddings man-
aged to maintain performance with the generaliza-
tion ability.

For future work, we will evaluate against more
RNN-based models, in particular with more fo-
cus on attention mechanisms. We will investigate
other kinds of mental disorders, such as PTSD.
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