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Abstract

Automated depression detection is inherently
a multimodal problem. Therefore, it is critical
that researchers investigate fusion techniques
for multimodal design. This paper presents the
first ever comprehensive study of fusion tech-
niques for depression detection. In addition,
we present novel linguistically-motivated fu-
sion techniques, which we find outperform ex-
isting approaches.

1 Introduction

Depression is an extremely heterogeneous disor-
der that is difficult to diagnose. Given this dif-
ficulty, psychologists and linguists have investi-
gated possible objective markers and have shown
that depression influences how a person behaves
and communicates, affecting facial expression,
prosody, syntax, and semantics (Morales et al.,
2017a). Given that depression affects both non-
verbal and verbal behavior, an automated detec-
tion system should be multimodal. Initial studies
on depression detection from multimodal features
have shown performance gains can be achieved
by combining information from various modalities
(Morales and Levitan, 2016; Scherer et al., 2014).
However, few studies have investigated fusion ap-
proaches for depression detection (Alghowinem
et al., 2015). In this paper, we present a novel lin-
guistically motivated approach to fusion: syntax-
informed fusion. We compare this novel approach
to early fusion and find it is able to outperform it.
We also demonstrate that this approach overcomes
some of the limitations of early fusion. Moreover,
we test our approach’s robustness by applying the
same framework to generate a visual-informed fu-
sion model. We find video-informed fusion also
outperforms early fusion. In addition to presenting
novel fusion techniques, we also evaluate existing
approaches to fusion including early, late, and hy-

brid fusion. To the best of our knowledge, this
work presents the first in-depth investigation of fu-
sion techniques for depression detection. Lastly,
we present interesting results to further support the
relationship between depression and syntax.

2 Related Work

This work presents a multimodal detection system
with a specific focus on the relationship between
depression and syntax. This relationship motivates
a novel approach to fusion. In contrast to a simple
early fusion approach to combining modalities, a
syntax-informed early fusion approach leverages
the relationship between syntax and depression to
help improve system performance. In this sec-
tion, we first provide background on the relation-
ship between depression and language, highlight-
ing both the voice and syntax. In addition, we also
evaluate a video-informed fusion approach which
is motivated from the relationship between depres-
sion and facial activity as well as the relationship
between facial behavior and speech production.
Therefore, we also present related work on the re-
lationship between visual information and depres-
sion. This is followed by a review of related work
on multimodal fusion techniques that have been
investigated for depression detection systems. In
this section, we will only briefly cover relevant
work, for a detailed review of multimodal depres-
sion detection systems see Morales et al. (2017a).

2.1 The Relationship between Depression
and Language

Researchers have investigated the relationship be-
tween prosodic, articulatory, and acoustic features
of speech and clinical ratings of depression (Cum-
mins et al., 2015). In patients with depression,
several changes in speech and voice have been
noted, including changes in prosody (Blanken
et al., 1993), speaking rate (?Stassen et al., 1998),
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speech pauses (Alpert et al., 2001), and voice qual-
ity (Scherer et al., 2013a).

In addition to voice and speech-based markers,
researchers have also provided empirical support
for the existence of a relationship between depres-
sion and syntax. Depressed individuals exhibit
many syntactic patterns including an increased
use of first person singular pronouns (Rude et al.,
2004) and a decreased use of complex syntactic
constructions, such as adverbial clauses (Zinken
et al., 2010). The relationship between syntax and
depression motivates our syntax-informed fusion
approach.

2.2 The Relationship between Depression
and Facial Activity

Similar to the relationship between language and
depression, there also exists a body of research
on the relationship between depression and facial
activity. Depression affects individuals’ facial ex-
pressions, including noted decreases in expressiv-
ity, eyebrow movements, and smiling (Cummins
et al., 2015).

In addition, there also exists an interesting re-
lationship between video and audio, e.g. the
McGurk effect. McGurk and MacDonald (1976)
were the first to report a previously unrecognized
influence of vision upon speech perception. In
their study, they showed participants a video of a
young woman speaking, where she repeated utter-
ances of the syllable [ba] which had been dubbed
on to lip movements for the syllable [ga]. Par-
ticipants reported hearing [da]. Then with the re-
verse dubbing process, a majority reported hearing
[bagba] or [gaba]. However, when participants lis-
tened to only the sound of the video or when they
watched the unprocessed video, they reported the
syllables accurately as repetitions of [ba] or [ga].
These findings had important implications for the
understanding of speech perception, specifically
that visual information a person gets from seeing a
person speak changes the way they hear the sound.

These interesting relationships —between the
face and voice as well as facial expressions and
depression —motivate our video-informed fusion
approach.

2.3 Existing Fusion Approaches
In recent years, researchers have begun to investi-
gate multimodal features for depression detection
systems (Morales et al., 2017b). However, it is a
fairly new research interest and as a result only a

few studies have compared techniques for fusing
features from different modalities (Alghowinem
et al., 2015). In the few studies that have investi-
gated fusion techniques, the canonical fusion tech-
niques have been considered, including early, late,
and hybrid fusion. In the early fusion approach,
features are integrated immediately after they are
generated through simple concatenation of feature
vectors. In the late fusion approach integration
occurs after each of the modalities have made a
decision. In the hybrid fusion approach outputs
from early fusion and individual unimodal predic-
tors are combined (Baltrusaitis et al., 2017).

Researchers have found early fusion, although
simple, to be a successful technique to combine
modalities for depression, noting improvements
over unimodal systems (Alghowinem et al., 2015;
Morales and Levitan, 2016; Morales et al., 2017b;
Scherer et al., 2013b). However, a drawback of the
early fusion approach is the high dimensionality of
the combined feature vector. Given that drawback,
Joshi et al. (2013) considered early fusion as well
as early fusion followed by Principal Component
Analysis (PCA), where 98% of the variance was
kept. They found that training a depression de-
tection model on this reduced dimensionality fea-
ture set led to improved performance of the system
over simple early fusion.

Researchers have also investigated late and hy-
brid fusion. In Alghowinem et al. (2015) a hybrid
fusion approach was investigated, which involved
concatenating results from individual modalities
to the the early fusion feature vector. A major-
ity voting method was used. They evaluated how
hybrid fusion and early fusion approaches com-
pare to unimodal approaches. They found that
in most cases their early and hybrid fusion mod-
els outperformed the unimodal models. Moreover,
hybrid fusion models tended to outperform early
fusion. Late fusion approaches have also been in-
vestigated by some (Joshi et al., 2013; Meng et al.,
2013). For example, Meng et al. (2013) used a
late fusion approach that trained a separate model
from each modality and combined decisions using
the weighted sum rule. They found that combin-
ing visual and vocal features at the decision level
resulted in further system improvement for depres-
sion detection.

Although, in this work, we focus on fusion ap-
proaches for depression detection, there exist vari-
ous studies investigating fusion for other machine
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learning tasks. Researchers have also proposed
new approaches to fusion which differ from the
canonical approaches. In particular, deep learn-
ing approaches to fusion appear to be particularly
promising. For example, Mendels et al. (2017)
presented a single hybrid deep model with both
acoustic and lexical features trained jointly and
found that this approach to fusion achieved state-
of-the-art results for deception detection. How-
ever, deep learning is not currently a good ap-
proach for depression detection, since labeled cor-
pora are not very large and interpretable models
are important.

3 Dataset

In this work, we use the Distress Analysis Inter-
view Corpus-Wizard of Oz (DAIC-WOZ; Gratch
et al., 2014). The corpus is multimodal (video,
audio, and transcripts) and is comprised of video
interviews between participants and an animated
virtual interviewer called Ellie, which is controlled
by a human interviewer in another room.

Interview participants were drawn from the
Greater Los Angeles metropolitan area and in-
cluded two distinct populations: (1) the general
public and (2) veterans of the U.S. armed forces.
Participants were coded for depression, Posttrau-
matic Stress Disorder (PTSD), and anxiety based
on accepted psychiatric questionnaires. All par-
ticipants were fluent English speakers and all in-
terviews were conducted in English. The DAIC-
WOZ interviews ranged from 5 to 20 minutes.

The interview started with neutral questions,
which were designed to build rapport and make the
participant comfortable. The interview then pro-
gressed into more targeted questions about symp-
toms and events related to depression and PTSD.
Lastly, the interview ended with a ‘cool-down’
phase, which ensured that participants would not
leave the interview in a distressed state. The de-
pression label provided includes a PHQ–81 score
(scale from 0 to 24) as well as a binary depression
class label, i.e., score >= 10.

4 Features

In this work we use the OpenMM2 pipeline to ex-
tract multimodal features (Morales et al., 2017b),

1http://patienteducation.stanford.edu/
research/phq.pdf

2https://github.com/michellemorales/
OpenMM

which uses Covarep (Degottex et al., 2014) and
Parsey McParseface (Andor et al., 2016) to extract
voice and syntax features.

4.1 Voice

In order to extract features from the voice,
OpenMM employs Covarep (Degottex et al.,
2014). The audio features extracted include
prosodic, voice quality, and spectral features.
Prosodic features include Fundamental frequency
(F0) and voicing boundaries (VUV). Covarep
voice quality features include Normalised ampli-
tude quotient (NAQ), quasi open quotient (QOQ),
the difference in amplitude of the first two har-
monics of the differentiated glottal source spec-
trum (H1H2), parabolic spectral parameter (PSP),
maxima dispersion quotient (MDQ), spectral
tilt/slope of wavelet responses (peakslope), and
shape parameter of the Liljencrants-Fant model
of the glottal pulse dynamics (Rd). Spectral fea-
tures include Mel cepstral coefficients (MCEP0-
24), harmonic model and phase distortion mean
(HMPDM0-24) and deviations (HMPDD0-12).
Lastly, Covarep includes a creak feature which
is derived through a creaky voice detection algo-
rithm.

4.2 Syntax

In order to generate syntactic features OpenMM
employs Google’s state-of-the-art pre-trained tag-
ger: Parsey McParseface (Andor et al., 2016). For
each sentence S, the tagger outputs POS tags. In
this work, we make use of 17 POS tags, which are
outlined in Table ?? of the Appendix.

4.3 Visual

The visual features we consider are Action Units
(AUs), which were extracted from the DAIC-
WOZ corpus as part of the baseline system for
the AVEC 2017 challenge (Ringeval et al., 2017).
AUs represent the fundamental actions of individ-
ual muscles or groups of muscles. It is a com-
monly used tool and has become standard to sys-
tematically categorize physical expressions, which
has proven very useful for psychologists. A de-
tailed list of the facial AUs we consider are given
in Table ?? of the Appendix. Each AU receives
a presence score, between -5 and 5, which mea-
sures how present that feature is for a given frame
of video.
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5 Fusion Approaches

5.1 Early Fusion
In our early fusion approach, features are extracted
from each modality and then concatenated to gen-
erate a single feature vector. Visual and acoustic
features are extracted at the frame level while POS
tags are extracted at the sentence level. Therefore,
the modalities do not align automatically. In or-
der to handle these differences, we first compute
statistics (mean, median, standard deviation, max-
imum, and minimum) across frames/sentences.
This results in 370 acoustic features (74 acous-
tic features ⇥ 5 statistical functionals), 100 visual
features (20 visual ⇥ 5 statistical functionals), and
85 syntactic features (17 syntactic features ⇥ 5
statistical functionals). We then fuse the feature
vectors to achieve one multimodal feature vector,
featuresearly.

featuresearly =

Acoustic Syntax2
6664

x0

x1
...
xi

3
7775 +

2
6664

y0

y1
...
yi

3
7775

5.2 Informed Early Fusion
5.2.1 Syntax-informed Early Fusion
We compare early fusion to our proposed ap-
proach. Our approach leverages syntactic infor-
mation to target more informative aspects of the
speech signal. Given the relationship between de-
pression and syntax, we hypothesize that this ap-
proach will help lead to improvements in system
performance. First, we align the audio file and
transcript file. In order to perform alignment, we
use the tool gentle3, which is a forced-aligner built
on Kaldi. We then tag each sentence and retrieve
the timestamp information for each POS tag. For
each POS tag span we extract acoustic features for
that time span.

featuresmm =

0
BBB@

y0 . . . yi

x0 x̄0 . . . x̄0

x1 x̄1 . . . x̄1
...

...
...

...
xi x̄i . . . x̄i

1
CCCA

In other words, we are specifically extracting fea-
tures at the POS level and we are continuously

3https://github.com/lowerquality/
gentle

updating our audio features each time we come
across a POS tag. For example, each time we see a
VERB we use its timestamp information to extract
mean F0 from that specific window and we do this
continuously, updating our F0 value every time
we come across a VERB. In the end, we have a
mean F0 value across all VERBs, ADJs, NOUNs,
etc., as shown in featuresmm. This representa-
tion is different from early fusion in that it condi-
tions the audio features on POS information, pro-
viding a representation that does not simply add
features from each modality, but instead aims to
jointly represent them.

5.2.2 Video-informed Early Fusion
In order to test the robustness of our novel fu-
sion approach —informed early fusion —we per-
form additional experiments using other modali-
ties. The relationship between a person’s facial
behavior and speech production, motivates our
video-informed fusion approach. Similar to our
syntax-informed approach, where we target POS
tags’ time frames to identify more informative as-
pects of the speech signal, we also target aspects
of the speech signal using visual information. We
hypothesize that targeting informative aspects of
the speech signal using visual cues will help boost
system performance when compared with a simple
early fusion system.

Similar to syntax-informed fusion, this repre-
sentation conditions the audio features on AU in-
formation. For each frame of video, we identify
the AU with the highest presence (value between
-5 and 5). Therefore, we assume only one AU can
occur per frame. For the AU with the highest pres-
ence, we extract acoustic features across that span
of time. For each AU, we then aggregate its acous-
tic features across the entire video. In the end, we
have a mean value for each acoustic feature across
all AUs.

5.3 Late Fusion

We explore two types of late fusion approaches:
(1) voting and (2) ensemble. In our voting ap-
proach, we train separate classification models
for each modality. Each unimodal system makes
a classification prediction, depressed or not de-
pressed. We then take the majority vote as our ul-
timate prediction. We also consider an ensemble
approach. In our ensemble late fusion approach,
we again train separate classification models for
each modality. The models’ predictions are then
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Modality Fusion Type Precision Recall F1-score

A – 0.34 0.70 0.45

S – 0.21 0.96 0.35

V – 0.16 0.52 0.25

A + S E 0.34 0.70 0.45

A + S I 0.40 0.69 0.49

A + S E + I 0.36 0.62 0.44

A + V E 0.37 0.70 0.48

A + V I 0.36 0.77 0.49

A + V E + I 0.34 0.74 0.46

Table 1: Results for 5-fold cross-validation using SVM. Results reported for the audio
(A), syntax (S), video (V), and fusion (A + S) approaches. Fusion types include early
(E), syntax-informed (I), and both (E + I).

used as features to train a new classification sys-
tem. The predictions from the newly trained clas-
sification system are then used as the final predic-
tion.

5.4 Hybrid Fusion

In our hybrid fusion approach, outputs from early
fusion and individual unimodal predictors are
combined. Therefore, we train separate classifi-
cation models for each modality. We then take
the predictions from each unimodal system and
concatenate it with the early fused feature vec-
tors. These new feature vectors (early fusion +
unimodal predictors) are then used to train a new
model to make the ultimate prediction.

6 Results

6.1 Binary Classification Experiments

In order to evaluate our approach, we conduct a
series of participant-level binary classification ex-
periments. We train both unimodal and multi-
modal models. Our early + syntax-informed fu-
sion model combines both the early fusion and
syntax-informed fusion feature sets, by early fu-
sion, i.e. simple concatenation. Using scikit-
learn4 we train a Support Vector Machine (SVM)
for classification, (linear kernel, C = 0.1). We con-
duct 5-fold cross-validation on 136 participant in-
terviews (depressed = 26, non-depressed = 110).

4http://scikit-learn.org/

During cross-validation, each fold is speaker inde-
pendent and drawn at random. Given the skew-
ness of the dataset, we set the SVM model’s class
weight parameter to ‘balanced’, which automati-
cally adjusts the weights of the model inversely
proportional to the class frequencies in the data,
helping adjust for the class imbalance. Given the
possibility of sparse feature values and the dif-
ferences in dimensionality across feature sets, we
also perform feature selection. We use scikit-
learn’s Select K-Best feature selection approach,
which computes the ANOVA F-value across fea-
tures and identifies the K most significant features.
We set K to 20 and evaluate each feature set’s best
set. We report our findings in Table ??. We report
precision, recall, and F1-score for the depressed
class. We choose to report these values instead of
the average values across both classes because the
depressed class label is the harder class to detect.
As a result, the non-depressed class usually reports
very high scores which tend to inflate the average
score. If we can increase the performance of the
depressed class, it can be assumed that the overall
performance will go up as a result.

We find that the novel syntax-informed fusion
approach performs best, with an F1-score of 0.49.
We believe this approach is able to leverage syn-
tactic information to target more informative as-
pects of the speech signal resulting in higher per-
forming models. By conditioning acoustic mod-
els on syntactic information this approach com-
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Figure 1: Illustration of linear kernel SVM’s coefficient weights by class. Blue checkered bars represent
the positive or depressed class. Red striped bars represent negative or healthy class.

bines information from both modalities in a way
a human clinician might. Syntax-informed fusion
substantially outperforms early fusion in precision
and F1-score. In recall, performance is similar for
both approaches. In addition, the syntax-informed
method surfaces novel multimodal features. For
example, creak is not a useful feature in the early
fusion or the acoustic model. However, when we
consider verb creak we find it extremely useful.
This is demonstrated in Figure 1. To better un-
derstand each model, we inspect the coefficient
weights of the SVM models. Using the weight co-
efficients from the models, we plot the top 5 most
important features by class in Figure 1. The ab-
solute size of the coefficients in relation to each
other can be used to determine feature importance
for the depression detection task.

If we consider the audio and early fusion mod-
els in Figure 1, we find that both models weight
the same features highly. Although the early fu-
sion model also includes the set of syntax features,
it still prefers the same five features as the audio-
only model. Since early fusion is simply concate-
nating the audio and syntax feature vectors it is
understandable to find similar features perform-
ing well. These results show the promise of these

specific audio features, which include spectral and
prosodic (F0) features. These results support pre-
vious work that showed spectral and prosodic fea-
tures were useful for detecting depression (Cum-
mins et al., 2015).

However, these findings also highlight the lim-
itation of early fusion. The intention behind early
fusion is to have access to multiple modalities that
observe the same phenomenon to allow for more
robust predictions, allowing for complementary
information from each modality. Something not
visible in individual modalities may appear when
using multiple modalities. However, in early fu-
sion, we can not guarantee that information from
both modalities is considered. For example, if we
inspect the feature set for early fusion we find that
no syntax features appear; this could be attributed
to the strength of the audio features as well as the
difference in dimensionality size between the au-
dio and syntax sets; the audio feature set is almost
5 times larger than the syntax set.

The syntax-informed fusion model is promising
because it does not possess the same limitation
as early fusion; with syntax-informed fusion we
can guarantee that information from both modali-
ties is considered. This could also be considered
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Modality/Features Fusion Type Precision Recall F1-score

A + S Early 0.34 0.70 0.45

A + S Informed 0.40 0.69 0.49

A + S Late - ensemble 0.36 0.78 0.49

A + S Hybrid - informed 0.36 0.78 0.49

A + S Hybrid - early 0.34 0.74 0.46

A + V Early 0.37 0.70 0.48

A + V Informed 0.36 0.77 0.49

A + V Late - ensemble 0.36 0.78 0.49

A + V Hybrid - informed 0.36 0.78 0.49

A + V Hybrid - early 0.50 0.74 0.35

A + S + V Early 0.37 0.70 0.48

A + S + V Late - vote 0.50 0.17 0.25

A + S + V Late - ensemble 0.36 0.78 0.49

Table 2: Results for fusion experiments using SVM.Results for fusion approaches including fea-
tures from audio (A), syntax (S), and video (V).

a drawback of syntax-informed fusion, in circum-
stances where one would like to be agnostic re-
garding the value of each modality. However, in
a task for which multiple modalities are known
to be important and interconnected, such as de-
pression detection, it is valuable to represent them
jointly. The syntax-informed fusion model in Fig-
ure 1 demonstrates that syntax-informed fusion is
able to capture important information from both
modalities. We find the best features used to dis-
tinguish between classes are spectral features that
span the production of pronouns, verbs, and ad-
verbials. In other words, the best syntax-informed
features represent a fused multimodal representa-
tion of the best features from each unimodal do-
main.

We also find further support of the relationship
between depression and syntax. From the syntax-
only model, we find pronouns (PRON) to be useful
in identifying the depressed class, which supports
previous findings that pronoun use can help iden-
tify depression (Rude et al., 2004). In addition, we
find the POS tag category X (other) to be useful
in distinguishing between classes. After manually
inspecting the transcripts, we find the X POS tag is
often assigned to filler words such as uh, um, mm.

These results suggest filler words can be helpful
in identifying depression. Lastly, we find adver-
bials (ADV) to be useful in distinguishing between
classes. These results are especially interesting be-
cause Zinken et al. (2010) argued that adverbial
clauses could help predict the improvement of de-
pression symptoms. To the best of our knowledge,
these results are the first to show support that ad-
verbial clauses could also help predict depression.

We find similar results for video-informed fu-
sion. Video-informed fusion outperforms early
fusion in recall and F1-score. Similar to syntax-
informed fusion we find that video-informed fused
features are able to jointly capture the most in-
formative features from each individual modality.
For example, we find the best performing acous-
tic features and AUs from the unimodal systems
to appear together in the video-informed system 5.

6.2 Fusion Experiments

In addition to evaluating how well our novel ap-
proach compares to early fusion, we also evalu-
ate other types of fusion such as late and hybrid
fusion. These series of experiments follow the

5Full charts of the the video-informed coefficient weights
can be viewed in Figure 2 of the Appendix
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same configuration as our first series of experi-
ments: 5 fold cross-validation using SVM (lin-
ear kernel, C = 0.1, class weights balanced). We
evaluate each method of fusion —early, informed,
late (vote/ensemble), and hybrid (early/informed)
—and report our results in Table ??.

As mentioned previously, in regards to early fu-
sion methods, the informed fusion approaches out-
perform simple early fusion. When we compare
the syntax and video-informed fusion techniques
with other approaches, such as late and hybrid fu-
sion, we do not find differences between the sys-
tems. When we evaluate systems that use all three
modalities (A + S + V), we find a late ensemble
approach performs best. We also find that late fu-
sion techniques which rely on voting perform the
worst. We believe these results can be attributed
to the low performing unimodal video system, as
demonstrated in Table ??. This finding highlights
a weakness of the late fusion (voting) approach.
Since it weighs the prediction from each system
equally, this can lead to poor performance when
one of the unimodal systems is weak.

7 Conclusion

In this work, we present a novel approach to early
fusion: informed fusion. The syntax-informed fu-
sion approach is able to leverage syntactic infor-
mation to target more informative aspects of the
speech signal. We find that syntax-informed fu-
sion approach outperforms early fusion. Given
some of the limitations to early fusion, we be-
lieve syntax-informed fusion is a promising al-
ternative dependent on the classification task. In
addition, we evaluate this approach’s robustness
by evaluating the technique with other modali-
ties. Specifically, we evaluate video-informed fu-
sion and confirm our findings that informed fusion
outperforms early fusion. We also confirm pre-
vious findings that spectral features and prosodic
features are useful in identifying depression. In
addition, we present further support for the rela-
tionship between syntax and depression. Specif-
ically we find pronouns, adverbials, and fillers to
be useful in identifying individuals with depres-
sion. Lastly, we perform an in-depth investigation
of fusion techniques and find that informed, late,
and hybrid approaches perform comparably. To
the best of our knowledge, this work represents
the most comprehensive empirical study of fu-
sion techniques for multimodal depression detec-

tion. However, this analysis is conducted on one
dataset. Future work will consider extending this
study to include many of the publicly-available ex-
isting datasets.
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A Appendix

POS Tag Description

ADJ Adjectives

ADV Adverbs

ADP Adpositions

AUX Auxiliaries

CONJ Conjunctions

DET Determiners

INTJ Interjections

NOUN Nouns

NUM Cardinal numbers

PPRON Proper nouns

PRON Pronouns

PRT Particles or other functions words

PUNCT Punctuation

SCONJ Subordinating conjunctions

SYM Symbols

VERB Verbs

X Other

Table 3: Description of POS tags.
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Action Unit Description

1 Inner brow raise

2 Outer brow raise

4 Brow lowerer

5 Upper lid raiser

6 Check raiser

7 Lid tightener

9 Nose wrinkler

10 Upper lip raiser

12 Lip corner puller

14 Dimpler

15 Lip corner depressor

17 Chin raiser

18 Lip puckerer

20 Lip strecher

23 Lip tightener

24 Lip pressor

25 Lips part

26 Jaw drop

28 Lip suck

43 Eyes closed

Table 4: Description of facial AUs.
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Figure 2: Illustration of linear kernel SVM’s coefficient weights by class. Blue checkered bars represent
the positive or depressed class. Red striped bars represent negative or healthy class.

24


