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Abstract

This paper describes our use of two recurrent
neural network sequence models: sequence la-
belling and sequence-to-sequence models, for
the prediction of future learner errors in our
submission to the 2018 Duolingo Shared Task
on Second Language Acquisition Modeling
(SLAM). We show that these two models cap-
ture complementary information as combining
them improves performance. Furthermore, the
same network architecture and group of fea-
tures can be used directly to build competitive
prediction models in all three language tracks,
demonstrating that our approach generalises
well across languages.

1 Introduction

Most recent work on second language acquisition
(SLA) has focused on intermediate-to-advanced
learners in assessment settings driven by a series
of shared tasks (Dale and Kilgarriff, 2011; Dale
et al., 2012; Ng et al., 2013, 2014; Lee et al.,
2015, 2016; Daudaravicius et al., 2016). The 2018
Duolingo Shared Task on Second Language Ac-
quisition Modeling (SLAM) (Settles et al., 2018)
targets early stage learners and aims to provide
personalised learning instructions. Participating
teams are provided with transcripts from exercises
submitted by learners over their first 30 days of
learning on Duolingo,1 which are annotated for to-
ken (word) level errors. The task is to predict what
errors each learner will make in the future based
on their learning history. There are three language
tracks in this shared task:

• en es: native Spanish speakers learning En-
glish;

• es en: native English speakers learning Span-
ish;

1https://www.duolingo.com

• fr en: native English speakers learning
French.

Teams can either focus on a particular language
track, or explore generalised models and features
across all three languages.

Inspired by the success of neural sequence
models in grammatical error detection and cor-
rection (Yuan and Briscoe, 2016; Rei and Yan-
nakoudakis, 2016; Yannakoudakis et al., 2017;
Schmaltz et al., 2017), we propose two recurrent
neural network sequence models for this prob-
lem: sequence labelling and sequence-to-sequence
modelling. We demonstrate the utility of these two
models for the future learner error prediction task.
We also provide evidence of performance gains by
using an ensemble of these two models, suggest-
ing that they are complementary to each other.

For model development, we focus on the En-
glish track only and language-specific features are
introduced and studied. When it comes to official
evaluation, two new prediction systems, one for
the es en track and another for the fr en track, are
built using the same network architecture and the
same (hyper-)parameter setting, without tuning for
new datasets or languages. Competitive results on
all three language tracks show that our approach
generalises well and might be used as a generic
solution across different languages.

The remainder of this paper is organised as fol-
lows: Section 2 describes our approach and two
neural sequence models in detail, Section 3 dis-
cusses the feature types that we exploit in our
models, Section 4 reports our experiments and re-
sults on the development set for the en es track,
Section 5 presents our official results on the test
sets for all three language tracks. Finally, Sec-
tion 6 provides conclusions and ideas for future
work.
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2 Approach

We introduce two models for the task of fu-
ture learner error prediction: a sequence labelling
model and a sequence-to-sequence model. The
following sections describe these two models.

2.1 Neural sequence labelling

We treat error prediction as a sequence labelling
problem. Similar to Yannakoudakis et al. (2017),
we construct a bidirectional recurrent neural net-
work for detecting future learner errors. Unlike
their system, error-free and correct sequences are
fed into our model, and the goal is to predict
where a learner is likely to make token-level er-
rors based on their learning history. The model
receives a sequence of tokens x = (x1, x2, ..., xT )
as input, and assigns a label y to each input to-
ken x. A bidirectional long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997) is
used to learn context-specific representations:

−→
ht = LSTM(xt,

−−→
ht−1) (1)

←−
ht = LSTM(xt,

←−−
ht+1) (2)

ht = [
−→
ht ;
←−
ht ] (3)

where
−→
ht is the hidden state of the forward-

moving LSTM at time t, that reads the input se-
quence from the first token to the last;

←−
ht is the

hidden state of the backward-moving LSTM at
time t, which reads the input sequence in reverse
order; and ht is the concatenation of both hidden
states, that captures both historical and future se-
quential information.

A softmax output layer predicts the label distri-
bution for each input token, given the whole input
sequence x:

p(yt|x) = softmax(Woht) (4)

where Wo is an output weight matrix.
We optimise the model by minimising categori-

cal cross-entropy between the predicted label dis-
tributions and the gold labels:

E = −
T∑

t=1

log p(yt|x) (5)

2.2 Sequence-to-sequence modelling

We utilise a sequence-to-sequence model with a
soft attention mechanism similar to that of Yuan
and Briscoe (2016), which contains a bidirectional
LSTM encoder and an attention-based LSTM de-
coder. An encoder first reads and encodes an
input sequence x = (x1, x2, ..., xT ) into hidden
state representations h = (h1, h2, ..., hT ), which
is the same as the one used in our sequence la-
belling model (see Section 2.1, Equation 3). A
decoder then generates an output sequence y =
(y1, y2, ..., yT )

2 by predicting the next token yt
based on the input sequence x and all the previ-
ously generated tokens {y1, y2, ..., yt−1}:

p(yt|{y1, ..., yt−1}, x) = softmax(Wost) (6)

where Wo is a decoder output weight matrix,
and st is the hidden state of the LSTM decoder at
decoding time t:

st = LSTM(st−1, yt−1, ct) (7)

where ct is the input sequence representation for
predicting the output token yt, and is calculated
using a soft attention mechanism:

ct =
T∑

j=1

(αtjhj) (8)

The weight αtj is computed with a softmax
function:

αtj =
exp(etj)∑T
k=1 exp(etk)

(9)

A feedforward neural network is used to repre-
sent the energy function:

etj = tanh(Wαst−1 + Uαhj) (10)

where Wα and Uα are attention weight matri-
ces.

3 Feature space

Besides original word tokens, new features (in the
form of discrete labels) are introduced, which pro-
vide additional exercise and learner information.
These features are described briefly below.

2For the error prediction task, the number of tokens gen-
erated in the output sequence y must equal the number of
tokens in the input sequence x.
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3.1 Exercise-level feature set

user: a unique identifier for each learner;

format: the exercise format (reverse translate,
reverse tap, or listen);3

session: the exercise session type (lesson, prac-
tice, or test);4

client: the learner’s device platform (android,
ios, or web);

country: the country from which the learner has
done the exercise.

3.2 Token-level feature set

part of speech (POS): the POS tag of the word;

dependency edge label (DEP): the grammati-
cal relation (GR) between the word and its head.

3.3 Language-specific feature set

CEFR word level: The Common European
Framework of Reference (CEFR) (Council of Eu-
rope, 2011) describes what language learners can
do at different stages of their learning and defines
language proficiency in six levels: A1, A2, B1,
B2, C1 and C2, with A1 being the lowest and C2
the highest. These six CEFR levels can be grouped
into three broad levels: basic (A1 and A2), inde-
pendent (B1 and B2) and proficient (C1 and C2).

The CEFR levels for all the English words ap-
peared in the dataset are extracted from the En-
glish Vocabulary Profile (EVP),5 which is based
on the 50-million word Cambridge Learner Cor-
pus (CLC) and the 1.2-billion word Cambridge
English Corpus (CEC). The EVP is a free on-
line vocabulary resource that contains information
about which words and phrases are known and
used by learners at each CEFR level (Capel, 2012).

Even though we only focus on English words
here, it is worth noting that the CEFR levels were

3reverse translate: learners are asked to read a sentence
written in their L1, and then translate it into L2; reverse tap:
an easier version of reverse translate, where learners are
given a bank of words and distractors; listen: learners are
asked to listen to an utterance in L2, and then transcribe it.

4The lesson sessions (about 77% of all the data) intro-
duce new words; the practice sessions (22%) contain only
previously-seen words; and the test sessions (1%) are quizzes
that allow learners to “skip” a particular skill unit of the cur-
riculum.

5http://www.englishprofile.org/
wordlists

designed in a way that can be applied to all lan-
guages. Therefore, if resources for other lan-
guages similar to the EVP became available, we
can then make use of this feature for other lan-
guages.

CLC error rate: We collect error rate informa-
tion from the CLC, which is a large annotated cor-
pus of learner English developed by Cambridge
University Press and Cambridge English Lan-
guage Assessment since 1993 (Nicholls, 2003). It
comprises examination scripts written by learners
of English who took Cambridge English examina-
tions around the world with over 80 L1s and rep-
resenting all six CEFR levels.

Two criteria are applied to create two sub cor-
pora:

• CLC(KET): contains examination scripts for
A2 Key, formerly known as Cambridge En-
glish: Key (KET)6; and A2 Key for Schools,
formerly known as Cambridge English: Key
for Schools (KETfS)7.

KET is the lowest level General English ex-
amination in the Cambridge English range,
which targets at A2 level. KETfS is at the
same level as KET, but its examination con-
tent is targeted at the interests and experi-
ences of schoolchildren.

• CLC(ES): contains examination scripts writ-
ten by native speakers of Spanish, which ac-
count for around 24.6% of the non-native
speakers represented in the CLC.

For every word w, an error rate E(w) is defined
as:

E(w) =
count(s 6= w, t = w)

count(t = w)
(11)

where count(t = w) is the number of times the
wordw is seen in the target side (i.e. corrected ver-
sion) of the corpus, and count(s 6= w, t = w)
is the number of times any word except w in the
source side (i.e. original version) has been cor-
rected to the word w in the target side.

We compute E(w) from the CLC, CLC(KET)
and CLC(ES); and then create two new features
CLC-KET and CLC-ES:

6http://www.cambridgeenglish.org/
exams-and-tests/key

7http://www.cambridgeenglish.org/
exams-and-tests/key-for-schools
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CLC-KET =





1 if
ECLC(KET)
ECLC

> 1

0 otherwise
(12)

CLC-ES =





1 if
ECLC(ES)
ECLC

> 1

0 otherwise
(13)

All the exercise-level and token-level features
are directly extracted from the metadata and pre-
processed data provided by the shared task organ-
isers. The language-specific features are only gen-
erated for the English data to be used in the en es
track.

4 Experiments and results

4.1 Dataset and evaluation
The shared task dataset comprises answers sub-
mitted by more than 6,000 Duolingo users over the
course of their first 30 days. Token-level binary la-
bels are provided:

Correct reference : She is my mother
Learner answer: She is mader
Label: 0 0 1 1

Matched tokens are given the label ‘0’; and
missing or misspelt tokens (ignoring capitalisa-
tion, punctuation and accents) are given the la-
bel ‘1’ to indicate an error. Only correct refer-
ences and label sequences are provided, not orig-
inal learners’ responses. Therefore, in our exper-
iments, we map correct reference to its label se-
quence.

The dataset is partitioned sequentially into
training, development and test sets, which all con-
tain the same group of learners. The training set
contains the first 80% of the sessions for each
learner, followed by the next 10% for development
and the final 10% for testing. Each learner’s test
items are subsequent to their development items,
which in turn are all subsequent to their training
items.

During development, we focus on learners of
English. The training set provided for the en es
track contains approximately 2,622,958 tokens
(however, only 13% are labelled with ‘1’) in
about 824,012 sentences. The development set in-
cludes additional 387,374 tokens in 115,770 sen-
tences. All the data has been pre-processed using

the Google SyntaxNet dependency parser8 by the
shared task organisers.

System performance is evaluated in terms of
area under the ROC curve (AUROC) and F1 (with
a threshold of 0.5).

4.2 Training

All our models are built using OpenNMT (Klein
et al., 2017). For the sequence labelling model,
our training procedure is similar to Yannakoudakis
et al. (2017)); while for the sequence-to-sequence
model, we follow Yuan and Briscoe (2016). Ad-
ditionally, we set the source and target word em-
bedding sizes to 750, as well as the LSTM hidden
layer size. We no longer limit the vocabulary size
or the maximum sentence length as both of them
are small enough to train effectively. New features
defined in Section 3 are added to the models in-
crementally and results are presented in the next
section.

4.3 Results

Evaluation results on the development set for the
en es track are reported. We also include a base-
line model provided by the shared task organisers
for comparison purposes. The baseline model uses
L2-regularised logistic regression, trained with
stochastic gradient descent (SGD) weighted by
frequency (Settles et al., 2018).

Sequence labelling model Results for the se-
quence labelling models are presented in Table 1,
and all our models outperform the baseline (Ta-
ble 1 #0). We start by adding exercise-level
features incrementally (Table 1 #1-5). Introduc-
ing new exercise-level features yields consistent
improvements in overall performance. The one
trained on all our exercise-level features gives the
best AUROC and F1 scores (Table 1 #5).

Token-level features (Table 1 #6-7) and
language-specific features (Table 1 #8-10) are then
added to the current best model. However, none of
them yields further gains. A closer inspection of
the training data reveals a number of cases where
POS and DEP tags provided by the shared task
organises are not reliable, as in the following ex-
amples (incorrect tags are marked in red):

8https://github.com/tensorflow/models/
tree/master/research/syntaxnet
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# Feature AUROC F1
0 baseline 0.776 0.173
1 token + user 0.784 0.421
2 token + user + format 0.809 0.453
3 token + user + format + session 0.825 0.470
4 token + user + format + session + client 0.834 0.476
5 token + user + format + session + client + country 0.837 0.480
6 token + user + format + session + client + country + POS 0.807 0.447
7 token + user + format + session + client + country + DEP 0.830 0.474
8 token + user + format + session + client + country + CEFR 0.823 0.469
9 token + user + format + session + client + country + CLC-KET 0.825 0.471
10 token + user + format + session + client + country + CLC-ES 0.825 0.470

Table 1: Results of our sequence labelling models on the en es development set. The results of our best model are
marked in bold.

Token POS DEP Label
A DET det 0
man NOUN ROOT 0
a PUNCT punct 0
woman DET det 0

Token POS DEP Label
The DET det 1
judge ADJ amod 1
returns NOUN ROOT 1

Since we use the tags in the dataset directly,
without cleaning any noisy data or pre-processing
the data again, it is not surprising that adding these
features yields worse performance.

In terms of the language-specific features, we
also notice that the CEFR word level feature is
not very informative as not all the words in the
dataset are also in the EVP; and for words that are,
most of them turn out to be at either A1 or A2
level.

Sequence-to-sequence model We follow the
same training procedure to build sequence-to-
sequence models - see Table 2. Similar results are
observed: all our models perform better than the
baseline (Table 2 #0); exercise-level features con-
tribute to the overall performance improvements
(Table 2 #1-5); and token-level and language-
specific features seem to be detrimental and bring
performance down (Table 2 #6-10). The best
sequence-to-sequence model uses all the exercise-
level features, achieving an AUROC score of
0.837 and an F1 score of 0.464 - see Table 2 #5.

Combining two sequence models Our best se-
quence labelling model (seqlabel) and our
best sequence-to-sequence model (seq2seq)
achieve the same AUROC score of 0.837; while
seqlabel yields a better F1 score of 0.480, com-
pared to an F1 score of 0.464 for seq2seq.

We further combine these two best models us-
ing linear interpolation:

Pcombined = (1− λ)Pseqlabel + λPseq2seq (14)

where Pseqlabel represents the score from the
sequence labelling model, Pseq2seq represents
the score from the sequence-to-sequence model,
and λ is a parameter that controls the impact
the sequence-to-sequence model has on the final
score. After tuning λ on the development set, we
set it to 0.5.

Results of our best individual models and the fi-
nal combined model are reported in Table 3. We
can see that the combined model yields the overall
best results, which suggests that our two individ-
ual neural sequence models capture complemen-
tary information even though they are both trained
on the same group of features.

5 Official evaluation results

Our submissions to the shared task are the results
of our best systems. As each participating team
is allowed to submit up to 10 runs, we first run
our best sequence labelling, sequence-to-sequence
and combined systems from the previous section
on the en es test set.

After determining that our language-specific
features are not helpful, we train new models for
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# Feature AUROC F1
0 baseline 0.776 0.173
1 token + user 0.787 0.353
2 token + user + format 0.800 0.431
3 token + user + format + session 0.811 0.441
4 token + user + format + session + client 0.825 0.448
5 token + user + format + session + client + country 0.837 0.464
6 token + user + format + session + client + country + POS 0.829 0.460
7 token + user + format + session + client + country + DEP 0.823 0.448
8 token + user + format + session + client + country + CEFR 0.805 0.433
9 token + user + format + session + client + country + CLC-KET 0.804 0.433
10 token + user + format + session + client + country + CLC-ES 0.805 0.433

Table 2: Results of our sequence-to-sequence models on the en es development set. The results of our best model
are marked in bold.

Model AUROC F1
seqlabel 0.837 0.480
seq2seq 0.837 0.464

combined 0.843 0.481

Table 3: Results of our best models on the en es de-
velopment set. The best results are marked in bold.

the es en and fr en tracks using the same network
architecture and the same group of features as for
en es. No tuning of (hyper-)parameters is per-
formed for new datasets or languages.

The official results of our submissions for all
three language tracks are reported in Table 4. Re-
sults on the en es test set are similar to those
on the en es development set (see Table 3) - no
significant drop is observed. The combined
model produces the best overall performance, and
the seqlabel model outperforms the seq2seq
model. In the fr en track, the combined
model again yields the highest AUROC and F1
scores, followed by the seq2seq model and the
seqlabel model. Our es en seq2seq model
had not finished training by the shared task sub-
mission deadline, therefore, we only submit the
es en seqlabel model. Based on the results for
the other two language tracks, we expect our es en
results might be further improved by combining a
seqlabel model and a seq2seq model.

6 Conclusions and future work

In this paper, we have described the use of recur-
rent neural sequence labelling and sequence-to-
sequence models for future learner error predic-

tion. We have provided evidence of further perfor-
mance gains by combining them together, showing
that these two types of sequence models are com-
plementary. We have also explored different types
of features, which capture exercise-level, token-
level and language-specific information. Further-
more, we have demonstrated that the same net-
work architecture and group of features can be ap-
plied directly to build competitive prediction sys-
tems across all three languages, without the need
for language-specific parameter tuning.

Results of our best systems on the official test
sets yield: AUROC=0.841 (ranked sixth out of the
fifteen participating teams) and F1=0.479 (ranked
third) for the en es track; AUROC=0.835 (ranked
sixth) and F1=0.508 (ranked third) for fr en;
and AUROC=0.807 (ranked sixth) and F1=0.435
(ranked fifth) for es en.

Plans for future work include combining the
training and development sets to train new mod-
els, using better quality token-level features, and
exploring other exercise-level features like the
amount of time it took for the learner to con-
struct and submit their answer and the number of
days since the learner started using Duolingo. We
would also like to test our approach as well as
our language-specific features on a broader scale
(i.e. using corpora which cover language learners
at different levels, ideally ranging from basic to
proficient).
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en es fr en es en
Model AUROC F1 AUROC F1 AUROC F1
seqlabel 0.836 0.467 0.825 0.498 0.807 0.435
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combined 0.841 0.479 0.835 0.508 - -
baseline 0.774 0.190 0.771 0.281 0.746 0.175
top-performing 0.861 0.561 0.857 0.573 0.838 0.530

Table 4: Official results of our submitted systems on the test sets for all three tracks: seqlabel is our best se-
quence labelling model, seq2seq is our best sequence-to-sequence model, and combined is the combination of
these two models. For comparison, we also include the baseline results provided by the shared task organisers
and the results from the top-performing systems.
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