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Abstract 

In this paper, we explore a variety of lin-
guistic and cognitive features to better un-
derstand second language acquisition in 
early users of the language learning app 
Duolingo. With these features, we trained 
a random forest classifier to predict errors 
in early learners of French, Spanish, and 
English. Of particular note was our finding 
that mean and variance in error for each 
user and token can be a memory efficient 
replacement for their respective dummy-
encoded categorical variables. At test, the-
se models improved over the baseline 
model with AUROC values of 0.803 for 
English, 0.823 for French, and 0.829 for 
Spanish.  

1 Introduction 

Learning a new language is often a challenging 
task for adults. However, there are many linguis-
tic and cognitive factors that can facilitate (or im-
pair) acquisition of a non-native language, rang-
ing from properties of the languages a learner al-
ready knows, to the methods and nature of study. 
Much work has sought to manipulate these fac-
tors in order to both further our understanding of 
the cognitive systems in play and facilitate learn-
ing. 

Here, we present a model that explores these 
factors to predict outcomes for three populations 
of language learners that use Duolingo, a language 
learning app that gamifies lessons for a wide vari-
ety of to-be-learned languages. We start by de-
scribing the various features we developed from 
the data before describing the random forest mod-
el used and the subsequent outcomes. 

2 Related Work 

Little work has been done building predictive 
models of adult language acquisition, but many 

studies have explored the linguistic factors that 
impact vocabulary learning in a non-native lan-
guage. Semantic properties of nouns, for example, 
have been found to impact word learning. Cog-
nates, or words that overlap in form and meaning 
in both languages (e.g. lemon in English and 
limón in Spanish), have been shown to be easier to 
learn (de Groot & Keijzer, 2000). The same study 
showed that words that are rated as more concrete 
(hat as opposed to liberty) are easier to learn. 
While perhaps more surprising than the cognate 
result, this effect is often explained by the fact that 
more concrete words create more perceptual con-
nections to their conceptual referents (it is easier 
to imagine a physical hat than the abstract concept 
of liberty), and it is therefore easier to connect 
new words to concepts via those connections. 

There are likewise many factors than can hin-
der word learning. For example, interlingual hom-
ographs, or words that share surface form but 
have different meanings (pan as something to fry 
on in English and bread in Spanish) are harder to 
process and may therefore also be harder to learn 
(Dijkstra, Timmermans & Schriefers, 2000). 

Beyond the linguistic particulars of individual 
words, the temporal dynamics of learning can 
powerfully moderate memory. One of the most 
well established results in cognitive psychology is 
that two repetitions of a to-be-learned item are 
best separated by some temporal gap, if the goal is 
long-term retention (Ebbinghaus 1885/1964, 
Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006; 
Cepeda, Vul, Rohrer, Wixted, & Pashler, 2008; 
Donovan & Radosevich, 1999; T. D. Lee & 
Genovese, 1988). That is, given a fixed amount of 
available time to learn something, a learner is bet-
ter off distributing that time over multiple learning 
sessions than cramming it all into a single session. 
Further, the more time that is allowed to pass be-
fore a learner encounters a previously learned item 
again, the longer into the future the learner can 
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expect to retain that item (or equivalently, the 
greater the probability of successful retrieval of 
that item at a particular future time; but see 
Cepeda et al. 2008).  

Over a century of research has shown this spac-
ing effect to be robust across the human lifespan 
(e.g. Vander Linde, Morrongiello, & Rovee-
Collier, 1985; Ambridge, Theakston, Lieven, & 
Tomasello, 2006; Carpenter, 2009; Cepeda et al., 
2008; Balota, Duchek, & Paullin, 1989), over 
many varieties of learning tasks (Cepeda et al., 
2006; Donovan & Radosevich, 1999; T. D. Lee & 
Genovese, 1988), and perhaps most strikingly, for 
nearly every inter-repetition temporal gap that has 
been investigated, from seconds (Ebbinghaus, 
1964), to a range of days (e.g. Cepeda et al., 
2008), to years (Bahrick & Phelphs, 1987).  

Moreover, the advantage of spacing seems to 
be enhanced when combined with active retrieval 
from long-term memory (as compared to passive 
restudy), making it particularly well-suited to a 
microtesting-based learning platform like 
Duolingo (Carpenter & DeLosh, 2006; Cull, 
2000; Karpicke & Roediger, 2007; Landauer & 
Bjork, 1978; Rea & Modigliani, 1985). Crucially 
for our present purpose, a number of studies have 
examined the efficacy of spaced repetition specif-
ically in second language learning, where it seems 
to be effective at least for vocabulary, and perhaps 
for grammar as well, although further research is 
needed (for a review, see Ullman & Lovelett, 
2018). 

3 Data  

The data were collected in 2017 from Duolingo, 
as part of the NAACL HLT 2018 Shared Task on 
Second Language Acquisition Modeling (SLAM, 
Settles, Brust, Gustafson, Hagiwara & Madnani, 
2018). The data consisted of exercise and phrase 
level information for three populations of lan-
guage learners in their first 30 days of using the 
app: English-speaking learners of Spanish and 
French as well as Spanish-speaking learners of 
English. 

The data were split into a training set, which 
consisted of each user’s first 80% of sessions, a 
development set (for testing model generalization 
before the test phase) that contained the next 10% 
of each user’s data, and a test set that contained 
the final 10% of exercises for each user. The train-
ing data set consisted of 1,882,701 exercises in to-
tal (38.9% from learners of Spanish, 43.8% from 

learners of English and 17.3% from learners of 
French), while the development data contained 
255,383 exercises (45.3% from learners of Span-
ish, 37.6% learners of from English and 17.1% 
from learners of French), and the test set con-
tained 249,484 exercises (45.9% from learners of 
Spanish, 37.4% from learners of English and 
16.7% from learners of French). 

4 Features  

Our approach to modeling errors in second lan-
guage acquisition was driven primarily by two 
distinct bodies of research: linguistic effects in se-
cond language acquisition, and drivers of robust 
memory in general. As such we discuss each set of 
features separately. 

4.1 Linguistic features 
In this section, we describe the semantic and 
morpho-syntactic features added to the model. 
Values for tokens that were not in databases listed 
below were set to the mean of the feature.  

 
Word length. Orthographic and phonological 
length (orthoLength and phonLength respectively) 
are predictive of word difficulty, and longer writ-
ten or spoken words generally leave more room 
for potential errors (Baddeley, Thomon & Bu-
chanan, 1975). Phonological length was taken 
from the CLEARPOND database (Marian, 
Bartolotti, Chabal & Shook, 2012). 
Word neighbors. A greater number of ortho-
graphic and phonological neighbors (orthoNei and 
phonNei) for a given word in both the to-be-
learned and known languages might cause inter-
ference leading to errors. These data were also 
taken from the CLEARPOND database. 
Word Frequency. The log transformed frequency 
(logWordFreq) of the English, Spanish and French 
words to be learned were also included as predic-
tors, as well as the average log frequency of the 
phonological (logOrthoNeiFreq) and orthographic 
neighbors (logPhonNeiFreq) in the to-be-learned 
as well as known language. 
Edit Distance. Because cognate status impacts 
language learning, the Levenshtein distance be-
tween a given token and its translation to user lan-
guage (English for Spanish and French learners, 
and Spanish for English learners) was calculated 
by feeding single word translations through the 
Google Translate API and calculating edit distanc-
es between the translations. Cognates like lemon 
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and limón should have a short edit distance, while 
words like boy and niño will have relatively long-
er distances. 
Interlingual homographs. Additionally, the 
interlingual homograph status for each token 
(whether or not the token shares its surface form 
with a translation of a different token) were added 
for each language by using the Google Translate 
API. 
Morphological Complexity. As a proxy for how 
morphologically complex any given word is, the 
number of morphological features present in the 
given morphology columns were summed and 
treated as a proxy for morphological complexity 
(morphoComplexity). 
Concreteness. Mean and standard deviations for 
concreteness ratings were taken from Brysbaert, 
Warriner and Kuperman (2014) and added to the 
model. 

4.2   Memory features 
Repetition & Experience. Each instance (i.e., 
each token in each exercise for each user) was 
labeled with (1) the number of times the current 
user had encountered that token, up to and in-
cluding the current instance (nthOccurrence) and 
(2) the number of instances the user had seen in 
total, up to and including the current instance 
(userTrial).  
Spaced Repetition. The amount of time that 
elapses between successive repetitions of a given 
item strongly moderate memory for that item 
(see “Related Work”, above). As such, we ex-
tracted a number of spacing-related features. To 
measure the temporal lag, and to capture the 
power law relationship between time and forget-
ting, we calculated (separately for each user) the 
log(days) that had elapsed between: (1) each to-
ken and its previous occurrence (tokenLag1), (2) 
each token’s previous occurrence and its next 
most recent occurrence (tokenLag2), (3) each to-
ken’s stem (e.g. help, for helping) and its previ-
ous occurrence (stemLag1), (4) each token’s 
stem’s previous occurrence and its next most re-
cent occurrence (stemLag2), (5) each token’s 
combination of several morphological features 
(number, person, tense, verbform) and the previ-
ous occurrence of that particular combination 
(morphoLag1; to capture any possible spacing 
effect for verb conjugation skills) and (6) each 
token’s combination of those same morphologi-
cal features and their next most recent occur-
rence. Finally, (7) since some evidence suggests 
that the temporal gap between an item’s first and 

second occurrence is particularly important for 
retention (Karpicke & Roediger, 2007), we also 
labeled each instance with the log(days) that 
elapsed between the first and second occurrence 
of the token’s stem (lagTr1Tr2).  

4.3 Categorical Features 
Included in our classifier were a number of cate-
gorical features, each encoded as binary indicator 
variables distributed over a number of columns 
equal to the number of levels in the category.  
Importantly, our approach to modeling was con-
strained by limited computational power and 
memory, so we chose to include only categorical 
features with a relatively small number of levels, 
to reduce the dimensionality of the data.  Those 
features were: part of speech (pos; 16 levels), 
countries (94 levels), session (3 levels), format 
(3 levels), and all of the morphological features 
available for each language (46 levels for learn-
ers of Spanish, 17 levels for learners of English, 
and 10 levels for learners of French). Client was 
also included, though we treated iOS and An-
droid as equivalent, preserving only the distinc-
tion between web and mobile access to the 
Duolingo application (2 levels).  

Notably, the above listing omits two of the 
categorical features we considered of greatest po-
tential value in predicting early learner errors: 
user (223 levels for learners of Spanish, 179 lev-
els for learners of English, and 216 levels for 
learners of French; 618 total) and token (2116 
levels for learners of Spanish, 1615 in learners of 
English, 1682 in learners of French). Some users 
inevitably learn faster and make fewer errors 
than others, and some tokens are simply harder 
to learn on average. Instead of encoding these 
with dummy variables, we elected to replace the 
user feature with two continuous values, deter-
mined jointly by the user and the combination of 
the levels of the features format, session, and cli-
ent for each instance: (1) the mean and (2) the 
variance of the error rate for that user under that 
combination of feature levels (userMeanError, 
userVarError, respectively), for a total of three 
values for each user. Similarly, we replaced the 
token feature with (1) the mean and (2) the vari-
ance of the error rate for each combination of the 
features token, stem, format, and pos, creating 
four values per token. This approach allowed us 
to substantially reduce demands on computation-
al resources while simultaneously capturing 
much of the predictive power that fully encoding 
each user and token would have provided. The 
particular features used to create means within 
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user and token were chosen to maximize poten-
tial differences between accuracy in different 
modalities. Indeed, to foreshadow our results, 
these features each ranked among the most im-
portant for our random forest classifier. 

4.4 Interactions 
Several interactions between features were also 
coded into the model. Due to time constraints, on-
ly the following interactions were added: 
stemLag1 x stemLag2 and stemLag1 x stemLag2 
x lagTr1Tr2, to capture spacing effects, lagTr1Tr2 
x morphoComplexity and lagTr1Tr2 x 
morphoLag1 to capture lag differences between 
morphological features, format x prevFormat to 
capture possible task switching effects, and 
orthoNei x format and phonNei x format and for-
mat x client to capture differences due to listening 
vs. typing, and finally morphoComplexity x pos as 
any complexity effect may be stronger nouns and 
verbs than function words. 

5 Model 

In order to focus on feature engineering, ran-
dom forest techniques were chosen over gradient 
boosting, logistic regression or other classification 
techniques. The random forest classifier scales 
well to large datasets, is not particularly prone to 
overfitting problems, and requires less parameter 
tuning.  

Random forest classifiers combine the outputs 
of multiple decision tree classifiers with random 
features taken in each decision in order to gener-
ate one final prediction (Breiman, 2001). Each de-
cision-tree classifier split the data along some 
number of parameters (equal to the square root of 
the total number of features in this model) that fits 
a classifier. Each split of the data was again split 
along the other included parameters until the 
leaves of the tree contained only data points with 
the same label (i.e., only error or only no-error in-
stances). For each learner population, we generat-
ed 1000 decision trees to generate predictions. 
Out-of-bag errors were used to estimate errors in 
training.  

6 Results and Discussion  

Figure 1 shows the top 20 importance scores for 
each language (out of an across-language total of 
174 features or interactions). The importance  

 

Figure 1: Top 20 importance features grouped by to-
be-learned language. Error bars represent standard 
deviation of the importance of each feature across de-
cision trees. For categorical features, the importances 
of each level, and their variances (to generate stand 
deviations), were summed to calculate the overall im-
portance and variability in importance, respectively. 

score of a random forest model conveys the pre-
dictive power of a given feature relative to the 
other predictors. Color depicts which features 
were engineered and which were provided in the 
raw data. Full importance values, for each lan-
guage are listed in Appendix A, including the di-
rectionality of the relationship between each con-
tinuous feature and the error rate. For example, 
because userMeanError is higher on incorrect tri-
als than correct trials, the directionality is consid-
ered positive.  

The mean and variance in error rate for each 
user (userMeanError and userVarError) were the 
most important features, indicating that each us-
er’s history was strongly predictive of their per-
formance at test, and that the variability within 
each user was nearly as predictive as the differ-
ence between users. 

Countries, the third most important feature, 
may have ranked third in all three languages be-
cause the importance measure was calculated by 
summing over each feature level, possibly over-
stating the value of that feature in total. Never-
theless countries may represent user background 
information not given in the dataset including 
their previous language experience (as a Portu-
guese speaking user from Brazil may be learning 
Spanish via English, but would likely make dif-
ferent errors than an English monolingual from 
Canada).  

The next most important generated feature was 
the average time spent on each token within an 
exercise (timePerToken). This likely captures time 

234



 
 
 

   

spent on each exercise better because it accounts 
for the length of the exercise at the token level. 

Next is userTrial, which was calculatedly simp-
ly as which learning instance a given user is on. 
This likely captures the experience a user accumu-
lates with the language and perhaps the app more 
generally. 

Next of note is the mean and variance in error 
rate for each token, showing that each token has 
some properties that capture difficulty. This is es-
pecially true for learners of French, as the im-
portance of tokenMeanError is ranked fourth in 
French as compared to eighth in both English and 
Spanish.  

The interaction between format and previous 
format shows that there is some cost associated 
with task switching, perhaps to a slightly higher 
degree in English and Spanish, as this feature did 
not quite rank among the top ten in French, but 
was surpassed in that language by the lag between 
the first two occurrences of a token’s stem.  

Finally, the various lag features that reflect re-
cent experience and many of their interactions 
comprise of the next most important features, in-
dicating that spacing effects are generally predic-
tive of errors of the overall model, the highest of 
these being the lag between the first two instances 
of a given token. This is an important and poten-
tially useful feature. A measure of this lag is easy 
to calculate and necessarily occurs early in learn-
ing, making it useful in predictions that are 
memory intensive and catered to particular users 
or tokens. 

Overall these features, and indeed many of the 
engineered features, improved the models over 
baseline, as seen in Table 1. This is particularly 
noteworthy considering user and token were re-
moved in our model (and replaced with user- and 
token-level error rates), but were included in the 
SLAM baseline provided with the data. Indeed, 
the mean and variance across users and tokens ac-
count for ~25% of the importance across all lan-
guages. Though the importance of these features 
aggregate error rates in the training data, the met-
rics did not differ considerably when evaluated 
with the development data (AUROC = .824, .818, 
and .802 for English, French and Spanish respec-
tively). This shows that aggregating is a feasible 
approach in cases where computational con-
straints prohibit the exact representation of im-
portant high dimensional categorical features. No-
tably, the within-user variability was an important  

 AUROC F1 Log-loss 
SLAM English .7730 .1899 .3580 

English .8286 .4242 .3191 
SLAM French .7707 .2814 .3952 

French .8228 .4416 .3561 
SLAM Spanish .7456 .1753 .3862 

Spanish .8027 .4353 .3571 
 
Table 1: Final model outcomes in all three metrics 
as compared to baseline. 
 
feature in our model, but would not automatically 
be captured by dummy-coding user and token IDs 
across hundreds or thousands of instances. Thus, 
substantial computational savings can be achieved 
using low dimensional summary statistics where 
significant CPU time and memory resources 
would be required.   

7 Future work 

Due to the time-limited nature of this shared mod-
eling task, considerable work remains to be done 
to both optimize the performance of this model 
and further understand the cognitive processes in-
volved in early language learning. 

To improve the model, we would first refine the 
relative importance of the current features, by per-
forming ablation tests and model comparisons; 
some of the current features play little to no role 
in improving model performance. Furthermore, 
many interactions in the current feature space,  

 
such as userMeanAcc x tokenMeanAcc, may be 
important predictors given each individual fea-
ture’s importance, and that each user’s previous 
language experience will impact the difficulty as-
sociated with any given token. The spacing effect 
might likewise interact with individual user and 
token related information. 

There is additionally much work to be done in 
quantifying the benefit of using user- and token-
level error rates as opposed to dummy-encoded 
variables. While these features are a memory and 
time sensitive solution, we have not yet explored 
how much model performance is affected by this 
change relative to a dummy-encoded solution, 
how much time is saved, and how much data is 
required to achieve this performance.  

Our approach focused on linguistic and cogni-
tive features that are known in their respective lit-
eratures to impact learning, and so the bulk of our 
efforts were devoted to feature engineering. Fu-
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ture work will therefore dedicate more resources 
to model development. While in the present work 
only a random forest ensemble classifier was used 
to generate predictions, logistic regression, deep 
learning, and/or other modeling approaches may 
better suit this particular learning task, and should 
be thoroughly explored.  

Finally, there are many more features than can 
be developed, including word embeddings of to-
kens and syntactic structure differences. Our work 
has scratched the surface of linguistic and cogni-
tive theory that might be applied to modeling lan-
guage learning, but the vast scientific literatures in 
those and other fields no doubt offer rich possibili-
ties for new features. The relative contribution of 
all of these features and their interactions to ma-
chine learning models of error production is likely 
to greatly expand our knowledge of early second 
language learning.   
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Appendix A. 

 
English French Spanish 

Feature Import. SD Rank Direc. Import. SD Rank Direc. Import. SD Rank Direc. 

Case 0.001 0.001 52           0.001 0.000 57   

client 0.004 0.001 44   0.005 0.001 41   0.005 0.001 38   

Concreteness (M) 0.007 0.001 31 + 0.011 0.004 26 - 0.010 0.001 25 + 

Concreteness (SD) 0.007 0.001 34 - 0.009 0.003 31 + 0.010 0.001 27 + 

countries 0.063 0.001 3   0.071 0.001 3   0.076 0.001 3   

days 0.058 0.001 5 + 0.050 0.001 6 + 0.058 0.001 4 + 

Definite 0.000 0.000 55   0.001 0.000 54   0.001 0.000 55   

Degree 0.001 0.000 53           0.000 0.000 61   

dependencyEdgeHead 0.011 0.001 22 - 0.011 0.001 25 + 0.012 0.001 21 - 

editDistance 0.007 0.001 32 - 0.010 0.003 29 - 0.010 0.001 26 + 

EngPhos 0.005 0.002 43 - 0.006 0.002 38 - 0.002 0.000 50 - 

Foreign                 0.000 0.000 63   

format 0.006 0.006 36   0.008 0.009 32   0.008 0.008 30   

format:client 0.010 0.006 24   0.012 0.009 22   0.012 0.007 22   

format:prevFormat 0.027 0.002 10   0.025 0.004 11   0.028 0.003 10   

Gender 0.000 0.000 54   0.004 0.001 47   0.004 0.000 42   

Homograph 0.002 0.001 49 - 0.002 0.001 51 - 0.002 0.001 49 - 

lagTr1Tr2 0.026 0.001 11 + 0.026 0.001 10 + 0.027 0.001 11 + 

lagTr1Tr2:morphoComplex 0.022 0.001 16 + 0.023 0.001 13 + 0.022 0.001 16 + 

logEngPhoNeiFreq 0.005 0.001 42 - 0.006 0.002 36 - 0.002 0.000 52 + 

logOrthoNeiFreq 0.007 0.001 35 - 0.007 0.002 33 - 0.005 0.001 39 - 

logPhonNeiFreq 0.006 0.001 37 - 0.006 0.001 37 - 0.005 0.001 40 - 

logWordFreq 0.008 0.002 28 - 0.009 0.003 30 - 0.005 0.001 35 - 

Mood 0.002 0.000 50   0.001 0.000 56   0.001 0.000 56   

morphoComplex 0.002 0.000 48 - 0.003 0.002 50 - 0.003 0.000 46 - 

morphoComplex:pos 0.006 0.001 38   0.007 0.002 35   0.006 0.001 33   

morphoLag1 0.008 0.000 30 + 0.005 0.000 42 + 0.005 0.000 36 + 

morphoLag1:morphoComplex 0.008 0.000 27 + 0.005 0.000 43 + 0.005 0.000 37 + 

morphoLag2 0.010 0.000 23 + 0.006 0.000 39 + 0.005 0.000 34 + 

nthOccurance 0.024 0.004 12 - 0.024 0.002 12 - 0.023 0.003 15 - 

Number 0.002 0.000 47   0.005 0.002 45   0.004 0.001 41   

NumType 0.000 0.000 56           0.000 0.000 59   

orthoLength 0.004 0.002 45 + 0.005 0.001 46 + 0.003 0.001 47 + 

OrthoNei 0.005 0.001 39 - 0.006 0.002 40 - 0.004 0.001 43 - 

OrthoNei:format 0.010 0.004 26   0.014 0.008 21   0.008 0.003 31   

Person 0.001 0.001 51 + 0.004 0.001 48   0.003 0.000 48   

phoLength 0.004 0.001 46 + 0.004 0.001 49 + 0.003 0.001 45 + 

PhonNei 0.005 0.001 41 - 0.005 0.002 44 - 0.003 0.000 44 - 

PhonNei:format 0.008 0.004 29   0.011 0.007 24   0.007 0.003 32   
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Polite                 0.000 0.000 64   

pos 0.007 0.001 33   0.012 0.004 23   0.009 0.000 29   

Poss                 0.000 0.000 58   

PrepCase                 0.000 0.000 60   

PronType         0.002 0.001 52   0.002 0.000 51   

Reflex                 0.000 0.000 62   

sentLength 0.013 0.001 20 + 0.014 0.001 20 + 0.013 0.001 20 + 

session 0.010 0.001 25   0.011 0.001 28   0.011 0.001 23   

stemLag1 0.023 0.001 13 + 0.023 0.001 14 + 0.025 0.001 12 + 

stemLag1:stemLag2 0.022 0.001 14 - 0.022 0.001 16 - 0.023 0.001 13 - 

stemLag1:stemLag2:lagTr1Tr2 0.018 0.002 17 + 0.020 0.001 17 + 0.017 0.001 18 - 

stemLag2 0.017 0.001 18 + 0.018 0.001 18 + 0.018 0.001 17 + 

Tense         0.001 0.000 55   0.001 0.000 54   

time 0.054 0.003 7 + 0.043 0.002 8 + 0.050 0.002 7 + 

timePerToken 0.062 0.005 4 + 0.048 0.002 7 + 0.056 0.003 6 + 

tokenIndex 0.012 0.001 21 + 0.011 0.001 27 + 0.011 0.001 24 + 

tokenLag1 0.022 0.001 15 + 0.023 0.002 15 + 0.023 0.002 14 + 

tokenLag2 0.016 0.001 19 + 0.017 0.001 19 + 0.017 0.001 19 + 

tokenMeanError 0.048 0.023 8 + 0.070 0.033 4 + 0.047 0.022 8 + 

tokenVarError 0.040 0.022 9 + 0.042 0.022 9 + 0.038 0.019 9 + 

userMeanError 0.102 0.016 1 + 0.083 0.016 1 + 0.098 0.016 1 + 

userTrial 0.058 0.001 6 + 0.050 0.002 5 + 0.058 0.001 5 + 

userVarError 0.090 0.015 2 + 0.074 0.015 2 + 0.086 0.015 2 + 

VerbForm         0.001 0.000 53   0.001 0.000 53   

wordLength 0.005 0.002 40 + 0.007 0.003 34 + 0.009 0.002 28 + 
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