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Abstract

We approach the 2018 Shared Task on Com-
plex Word Identification by leveraging a cross-
lingual multitask learning approach. Our
method is highly language agnostic, as evi-
denced by the ability of our system to general-
ize across languages, including languages for
which we have no training data. In the shared
task, this is the case for French, for which our
system achieves the best performance. We fur-
ther provide a qualitative and quantitative anal-
ysis of which words pose problems for our sys-
tem.

1 Introduction

Complex word identification (CWI) is the task
of predicting whether a certain word might be
difficult for a reader to understand and is typi-
cally used as a first step in (lexical) simplification
pipelines (Shardlow, 2014; Paetzold and Specia,
2015, 2016a). This task has received significant
attention from the community over the past few
years, leading to two shared tasks and several other
publications (Shardlow, 2013a,b).

This paper presents our submission to the CWI
2018 shared task (Yimam et al., 2018), at the 13th
Workshop on Innovative Use of NLP for Build-
ing Educational Applications. This task includes
tracks targeting four languages: English, Spanish,
German and French. For each of these languages,
the task involves prediction of binary labels of
whether any of a range of annotators deemed some
word or phrase complex, or prediction of the ratio
of those who did. The task further differs from
previous approaches to CWI in extending the def-
inition of the target units from the word level to
multi-word expressions, such that annotations in
the training and test set spanned wider stretches of
text than single tokens.

Another difference from previous approaches to
CWTI is that the data is annotated by a mixture of
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native and non-native speakers, posing an interest-
ing challenge to reconcile the potentially different
complexity assessments of these groups.

One challenge in the CWI 2018 shared task is
the fact that one of the languages under consid-
eration (French) does not have any training data
available. We approach this problem by explor-
ing a combination of multitask learning and cross-
lingual learning. In doing so, we aim to answer the
following research questions:

RQ 1 How can multitask learning be applied to
the task of cross-lingual CWI?

RQ 2 How can complex words be identified in
languages which are not seen during training
time?

Our contributions also include a thorough quali-
tative and quantitative error analysis, which shows
that long and infrequent words are very likely to be
complex, but that non-complex words that display
these properties pose a challenge to our system.

2 Related work

2.1

Multitask learning (MTL) is the combined learn-
ing of several tasks in a single model (Caruana,
1997). This can be beneficial in a number of sce-
narios. Previous work has shown benefits, e.g., in
cases where one has tasks which are closely re-
lated to one another (Bjerva, 2017a,b), when one
task can help another escape a local minimum
(Bingel and Sggaard, 2017), and when one has
access to some unsupervised signal which can be
beneficial to the task at hand (Rei, 2017). A com-
mon approach to MTL is the application of hard
parameter sharing, in which some set of param-
eters in a model is shared between several tasks.
We contribute to previous work in MTL by us-
ing a hard parameter sharing approach in which
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we share intermediate layers between languages,
and use one output-layer per language, thus in
a sense seeing languages as tasks, similarly to
Bjerva (2017a).

2.2 Cross-lingual learning

Cross-lingual learning is the problem of training a
model on a given language, and applying it to an-
other (unseen) language. One common approach
is to apply cross-lingual word representations, al-
though this has the disadvantage that it tends to
place relatively high demands on availability of
parallel text. Another frequently used approach
in this context is to use machine translation (MT)
so as to obtain a monolingual training set (Tiede-
mann et al., 2014). However, this approach nec-
essarily increases the complexity of a system, as
a fully-fledged MT system needs to be incorpo-
rated in the pipeline. Furthermore, this approach
bypasses the problem of attempting to find meth-
ods or feature sets which can be successful across
languages. We therefore follow previous work by,
e.g. Bjerva and Ostling (2017) in that we use hard
parameter sharing with language-agnostic input
representations. We build upon this by leverag-
ing language-specific resources which are widely
available, such as Wikipedia dumps, and WordNet
(see Section 5.

23 CWI

Automatic complex word identification has a rel-
atively short history as a research task, with first
publications including Shardlow (2013a,b)

A noticeable commonality of the highest-
scoring systems in the CWI 2016 shared task was
the use of ensemble methods, most notably ran-
dom forest classifiers, which drew on a range of
morphologic, semantic and psycholinguistic fea-
tures, among others (Paetzold and Specia, 2016b;
Ronzano et al., 2016).

Yimam et al. (2017) present first work on
CWI that considers languages other than English.
They release a German and a Spanish dataset and
present first CWI results for these languages. No-
tably, they also describe first cross-lingual experi-
ments, in which they train on some language and
test on another, i.e. without employing any of the
common strategies for cross-lingual learning that
we outline above.

Recently, Bingel et al. (2018) showed promising
results in predicting complex words from gaze pat-
terns of Danish children with reading difficulties,
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Language Training Dev  Test Complex
English 27,299 3,328 4,252 42.03%
Spanish 13,750 1,622 2,233 40.61%
German 6,151 795 959 39.21%
French - - 2,251 29.18%

Table 1: Data overview. The share of complex
words is computed across all data splits.

which opens up possibilities for personalized com-
plex word identification, but it is less certain how
well their method generalizes to other languages
or demographics.

3 Data

We use the data made available through the shared
task (Yimam et al., 2018). Each training instance
consists of a sentence, with a marked complex
phrase annotation, including the numbers of na-
tive and non-native annotators, and the fraction of
these who found the phrase to be complex. An
overview of the data is given in Table 1. The
number of entries which are considered complex
is quite skewed, and differs per language as French
has substantially fewer complex phrases than En-
glish. This is further illustrated in Figure 1.

In addition to the shared task data, we also use
external resources in our feature representations
(see Section 5).

4 Model

As outlined in Section 2, earlier work has shown
the aptitude of ensemble methods for CWI, espe-
cially such ensembles that feature random forests.
We further choose to address the problem in a
cross-lingual fashion, for which we deem multi-
task learning models particularly suitable.
Motivated by these observations, we devise an
ensemble that comprises a number of random
forests as well as feed-forward neural networks
with hard parameter sharing. The random forests
each consist of 100 trees that create splits based on
Gini impurity (Breiman, 2001). They do not im-
plement any form of explicit cross-lingual transfer
other than the reliance on language-agnostic fea-
tures, such that we simply train them on a single
language at a time, or on shuffled concatenations
of training data for several languages. We use
random forest classifiers for the binary task and
random-forest regressors for the probabilistic task.
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Figure 1: Histogram of numbers sentences (y-axis) which N annotators (x-axis) found to be complex.

Note that our random forests are single-task mod-
els, where we cannot define shared or language-
specific subparts. Instead, these are always trained
on data for the single test language.

The neural MTL models, in contrast, explic-
itly define parts pertaining to specific languages.
Concretely, for each language [, we define a func-
tion from a language-specific input layer to a hid-
den representation hg that we share between lan-
guages:

ho = tanh(x(l)ﬂfi(,ll) + bEQ) (D

Here and in the following equations, W) and b
consistently denote weight matrices and bias vec-
tors, respectively. Wi(i) and bZ(Q are the weights
and bias terms specific to input layer [, and the in-
put z() is a vector representation of the features
introduced in Sec. 5.

We then compute deeper hidden representa-
tions, such that the hidden layer at depth d is de-
fined as follows:

hg = tanh(hd_lwd + bd) (2)
Finally, each language [ defines its own output y®.
This output is defined slightly differently for the
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regression and classification models.

()

(l) + bout

Yreg = h‘DW(l)

out (3)
For the former, this is simply a linear transforma-
tion of the deepest hidden layer D. The classifica-
tion model adds a sigmoid activation to this:

(

1)
Ye

i

0

(hDW(l) + bout

out

) “

4.1 MTL training

Since our multitask model defines several outputs,
but our data is only labeled with a single anno-
tation layer (i.e. for a single language or “task”),
we need a training strategy that does not require
true labels for all tasks. The way this is normally
approached is to iteratively optimize for tasks in
isolation, e.g. by deciding at random which lan-
guage we sample a batch of data from at every pass
of the forward-backward algorithm we use to train
the model.

We employ the above strategy and optimize the
regression model with a mean absolute error loss
function, as well as cross-entropy for the classi-
fication model. We monitor these losses on the
validation set as an early stopping criterion.



4.2 Ensemble voting

The different neural and random-forest based
model that we train as devised above finally make
independent predictions for new examples. For the
regression models, we use the median prediction
across all systems for a given input to make the fi-
nal ensemble prediction. For the classifiers, how-
ever, we have an additional parameter ¢ that we
optimize on a held-out development set. This is a
threshold indicating the fraction of classifiers that
need to cast a positive vote for us to finally accept
an example as complex. All neural and random
forest classifiers are weighted equally here, each
casting a single binary vote.

4.3 Language identification for cross-lingual
prediction

As we expect our system to be able to generate
predictions for unseen languages (for which we
have no explicit output layer), we implement a fur-
ther component in our neural model that we opti-
mize to predict the language of some input from
the set of available languages with explicit output
layers. This is an additional output layer of our
model, defined as a dense projection from the first
hidden layer followed by a sigmoid.

I = o(hoWiia + biia) &)

During training, we then supply a ground truth lan-
guage identifier [ as a second target variable and
perform optimization under a cross-entropy loss
that we add to the CWI loss. At test time, for a
language without an explicit output layer, we first
predict the most similar language we saw during
training using Eq. 5 and then use the output layer
for that language to generate CWI predictions. An
alternative to this could be to generate predictions
from all CWI output layers and ensemble these,
possibly weighted, with weights inferred in a sim-
ilar fashion to language identification.

For the random forest models, which do not de-
fine language-specific output functions, we simply
concatenate training data from all available lan-
guages, leveraging the fact that our feature space
is language-independent.

5 Features

Our systems build on the same set of features
for all input languages, although some of these
are computed from language-specific resources.
This means that the distributions of values attained
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for certain features may differ between languages,
which is the motivation for language-specific input
layers in our model. We further reduce language
idiosyncrasies by normalizing all features to the
[0, 1] range. The features are listed below.

Log-probability We compute unigram fre-
quencies for candidates as their log-probabilities
in language-specific Wikipedia dumps.  For
multi-word targets, we use the sum of the
log-probabilities of the individual items. Log-
probabilities are computed using KenLM
(Heafield, 2011).

Character perplexity Based on the same
Wikipedia dumps as above, we compute charac-
ter perplexities over the candidate strings using a
smoothed 5-gram character-based language model
(again using KenLLM).

Number of synsets As a measure of a tar-
get’s semantic ambiguity, we count the number
of synsets that include it. For this, we rely on
the language-specific WordNet resources for En-
glish (Fellbaum, 1998), Spanish (Gonzalez-Agirre
et al., 2012) and French (Sagot and FiSer, 2008).
For German, access to GermaNet (Hamp and
Feldweg, 1997) was harder to obtain, and we in-
stead automatically translate words from German
to English and use the English WordNet.! In case
of a multi-word target, we take the mean number
of synsets across the individual words.

Hypernym chain As a measure of semantic
specificity, we further consider the length of the
hypernym chain of an item, i.e. the number of
hypernyms that can recursively be obtained for a
word. These are also obtained using WordNet, and
again we average over individual words in a target.

Inflectional complexity As a proxy for inflec-
tional complexity (i.e. the number of suffixes ap-
pended to a word stem), we measure the differ-
ence in length (character count) between the sur-
face form and the stem of a word. For this, we use
language-specific instances of the Snowball stem-
mer (Porter, 2001) as implemented in NLTK (Bird
and Loper, 2004).

Surface features As basic surface features, we
include the length of an item (in characters) and
whether it is all-lowercase.

"For the translations, we used a bilingual dictionary
(https://www.dict.cc/).



Language | MAE Rank A (system) ‘ P Rank A (system)
French 0.066 1 0.012 (TMU) | 0.7595 1 0.013 (TMU)
German 0.075 2 -0.013 (TMU) | 0.6621 5 -0.083 (TMU)
Spanish 0.079 3 -0.007 (TMU) | 0.7458 5 -0.024 (TMU)

Table 2: Official performance figures of our method for all non-English tracks. The A (system) column
indicates the difference in performance between our system and the best system in each track except for
ours. In accordance with the shared task report, classification performance is measured by macro F}
between the complex and non-complex class in the official results.

Bag-of-POS For each tag defined in the Univer-
sal Part-of-Speech project (Petrov et al., 2011), we
count the number of words in a candidate that be-
long to the respective class. We obtain POS tags
from spacy.”

Target-sentence similarity Motivated by the
conjecture that words or phrases are easier to
understand if they display higher semantic simi-
larity with their context, we compute the cosine
distances between averaged word embeddings
for the target word or phrase and the rest of
the containing sentence. To mitigate out-of-
vocabulary problems, we use pretrained subword
embeddings that we retrieve from the BPEemb
project (Heinzerling and Strube, 2017).

The data provided for the shared task further
includes information on how many of the annota-
tors are native and non-native speakers. While this
information is potentially helpful (assuming that
non-native speakers would have a stronger bias
for annotating as complex), we do not make use
of it, considering that access to such information
cannot be assumed in a real-world scenario.

6 Results

We present an overview of the results that our
method (as well as our best contender) achieved
in Table 2 and discuss results for the individual
languages below.>

6.1 French

Due to the lack of training data for this track, it
poses a challenging test for the ability of our mod-
els to generalize across languages. While the exact
performance figures are at least partly subject to
idiosyncrasies in the text samples and annotators,

https://spacy.io/
3We did not submit solutions for the English track.
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the results obtained here are a good benchmark of
of what we can achieve for languages for which
we do not even have validation data to monitor de-
velopment loss for early stopping.

As Table 2 shows, we achieve the best results
of all participating teams for French, both for the
classification and for the regression track. We
view this as evidence that our cross-lingual MTL
approach is an effective means to share knowledge
between different data sources and even different
languages.

6.2 German/Spanish

Our results for Spanish and German show that,
while we did not achieve the best results com-
pared to other participants, our method still per-
forms competitively. Especially for the regression
track, while not ranking first, the absolute perfor-
mance figures place us very close to the winning
systems. We see this as a validation of our ap-
proach, in particular under the consideration that a
gradual assessment of complexity is perhaps more
meaningful than a binary one, especially when the
definition of the latter makes no distinction be-
tween one or all out of 20 annotators judging an
item as difficult.

6.3 Analysis

Qualitative error analysis Table 3 exemplifies
some of the correct and incorrect predictions that
our system makes for the French test data. We
observe that the system picks up on the relatively
long targets listed as true positives. Note also that
the false positives are relatively long words, which
suggests that the system is deceived by this. The
targets listed as false negatives are shorter, but they
are examples of a (potentially unknown) named
entity and a relatively technical term, which might
pose difficulties to some readers. The words listed
as true negatives are correctly predicted by our



True positives

Il marque néanmoins sa désapprobation en voyant des Juifs prier devant le mur des Lamentations;
Einstein commente qu’il s’agit de personnes collées au passé et faisant abstraction du présent.
Rimbaud a donné ses lettres de noblesse a un type de poeme en prose distinct d’expériences plus
prosaiques du type du “Spleen de Paris” de Baudelaire.

False negatives

Le pays des vallées d’Andorre entre la France et I’Espagne, sur le versant sud des Pyrénées, est
constitué par deux vallées principales: celle du Valira del Orient et celle du Valira del Nord dont les
eaux réunies forment le Valira.

Autres cultures permanentes, la lavande et le lavandin occupent plusieurs milliers d’hectares et four-
nissent plusieurs milliers d’emplois directs.

True negatives

Beaucoup d’iles des Caraibes (les Antilles) — par exemple, les Grandes Antilles et les Petites Antilles
— sont situées au-dessus de la plaque caraibe, une plaque tectonique avec une topographie diffuse.
Avec un fort penchant a I’hermétisme qu’il partage avec d’autres de ses quasi contemporains (Gérard
de Nerval, Stéphane Mallarmé, sinon Paul Verlaine parfois), Rimbaud a le génie des visions saisis-
santes qui semblent défier tout ordre de description du réel.

False positives

La construction de I’ Atomium fut une prouesse technique.
La proportion des musulmans, tous sunnites, est inférieure a 1%.

Table 3: Example wins and losses of our model for French. Target words or phrases are marked in bold.
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- ——
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™ N ™ P iz N ™ P
(a) Length in characters per error type (b) Log-probability per error type

Figure 2: Statistics of character length and language model log-probability for the French test set. The
darker-shaded boxes are complex words that we predicted correctly (TP) and incorrectly (FN), respec-
tively. The lighter-shaded boxes are non-complex words, predicted correctly (TN) and incorrectly (FP).
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Figure 3: Distributions of false negative predictions per complexity degree as measured by the fraction of
annotators that labeled items as complex in the French, German and Spanish test sets (left to right).

system as non-complex, possibly because of their
shortness.

Quantitative error analysis Investigating the
observations from the previous section in a more
quantitative fashion, Figure 2 presents distribu-
tions of two basic features across complex vs. non-
complex words, and correctly vs. wrongly pre-
dicted test set items for French. For item length,
we observe a clear pattern that complex words
tend to be significantly longer than non-complex
ones. Further, the longer they are, the easier it is
for our model to detect them as complex. Non-
complex words that are relatively long, however,
lead to incorrect predictions from our model.

A very similar pattern can be observed for
the log-probability of complex and non-complex
items. The former are assigned a much lower
probability by our language model, and particu-
larly unlikely words are very easy to detect as
complex. In turn, non-complex words with rel-
atively low probability pose a challenge for our
model.

False negatives per complexity degree We fur-
ther analyze the influence of the degree of com-
plexity on our model’s ability to detect complex
words. As stated in the Introduction, an item is
labeled as complex in the classification setting if
any of the annotators deemed it to be complex.
Effectively, no distinction is made in the classifi-
cation task between a “slightly complex” item that
was marked as such by just one out of ten anno-
tators, and one that was unanimously considered
complex.

A natural assumption is that our models would
more easily pick up on highly complex words and
predict false negatives mostly for items with low
complex annotation ratios. To verify this assump-
tion, we plot the total number of complex words

172

in the three non-English test sets against the false
negative predictions of our model, grouped by the
ratio of annotators who marked an item as com-
plex (Figure 3). The French and Spanish test
sets are somewhat inconclusive for our question as
they generally contain very few items with a com-
plexity ratio higher than 0.2. The German test set,
howeyver, is more balanced, and in fact we observe
that items with a complexity ratio above 0.2 are
very reliably detected by our model, confirming
our hypothesis.

7 Discussion

We approached RQ 1 by using one output layer
per language, and sharing intermediate parame-
ters. This approach was successful, at least in
part due to our language-agnostic input represen-
tations, which allowed the model to learn similar
internal representations for each language. Sepa-
rate output-layers per language, in turn, allow for
the model to make language-specific accommoda-
tions. We approached RQ 2 by using language-
agnostic feature representations, and language-
specific output layers which were chosen during
test time for unseen languages. This approach al-
lowed our model to perform well on the unseen
language French, and in fact outperformed our re-
sults on other languages. This is, however, not
strictly a fair comparison as it is possible that the
French test set was somehow easier than the oth-
ers.

8 Conclusion

We tackled the 2018 Shared Task on CWI with a
cross-lingual approach via multitask learning. Our
system is highly language-agnostic, as evidenced
by our high performance on French, which was not
seen during training time. Our analysis confirms
that word length and frequency are good, cross-



linguistic predictors of complexity. However, the
concrete relationships between these features and
complexity may differ between languages, which
is captured by our multitask learning approach.
Our approach is especially promising for the ap-
plication of CWI to unseen languages, as we do
not assume access to any target language training
data. Furthermore, this could even substantially
facilitate the creation of new CWI datasets, using
a bootstrapping or active learning approach.
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