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Abstract

On some level, human sentence comprehen-
sion must involve both memory retrieval and
structural composition. This study differen-
tiates these two processes using neuroimag-
ing data collected during naturalistic listening.
Retrieval is formalized in terms of “multiword
expressions” while structure-building is for-
malized in terms of bottom-up parsing. The
results most strongly implicate Anterior Tem-
poral regions for structure-building and Pre-
cuneus Cortex for memory retrieval.

1 Introduction

This study differentiates processes of structure-
building and memory retrieval in the brain, as they
occur during naturalistic language comprehension.
We use multiword expressions to investigate this
distinction. The term itself comes from computa-
tional linguistics; roughly it means expressions that
are better treated non-compositionally (Sag et al.,
2002). Figure 2 on page 2 highlights several exam-
ples.

MWESs raise an important theoretical question
about language processing, namely the balance be-
tween productivity and reuse (Goldberg, 2006; Jack-
endoff, 2002; O’Donnell, 2015). If MWEs indeed
lack internal structure, then perhaps their compre-
hension proceeds through a single, unitary memory
retrieval operation, rather than some kind of multi-
step composition process. Proceeding from this hy-
pothesis, the paper contributes a localization of these
two cognitive processes in the brain through an anal-
ysis of fMRI timecourses collected during naturalis-
tic listening.
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2 Memory Retrieval vs. Structure-building

The name MWE loosely groups a wide variety
of linguistic phenomena including idioms, perfunc-
tory greetings and personal titles.

(1) When I drew the baobabs, I was spurred on
by a sense of urgency

2)

“Good morning”, said the little prince po-
litely, who then turned around, but saw noth-

ing.

The syntactic or semantic properties of the bold-
faced expressions cannot be derived just from their
parts and in some way, they are conventionalized.
They are plausibly stored, rather than built on the fly
(Cacciari, 2014).

By contrast, other expressions are less likely to
have been explicitly memorized and therefore call
for some degree of structural composition, in com-
prehension. This sort of processing can be formal-
ized using parsing algorithms (Hale, 2014). Figure 1
on page 2 indicates the number of reduce steps that
a bottom-up parser would take, word-by-word, as it
builds the depicted phrase structure. Our analysis of
the neuroimaging data described in the next section
takes this number as an index of structure-building
effort.

3 {fMRI Study

3.1 Method

We follow Brennan et al. (2012) in using a spoken
narrative as a stimulus. Participants hear the story
over headphones while they are in the scanner. The
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Figure 1: Phrase structure tree with bottom-up parser action
counts in purple.
(2014).

For more on parsing algorithms see Hale

sequence of neuroimages collected during their ses-
sion becomes the dependent variable in a regression
against word-by-word predictors, derived from the
text of the story.

3.2 Stimuli

The audio stimulus was Antoine de Saint-Exupéry’s
The Little Prince, translated by David Wilkinson and
read by Nadine Eckert-Boulet.

Within this text, 1,274 MWEs were identified us-
ing a CRF tagger. This tagger was trained on exam-
ples from the English Universal Dependency tree-
bank, in combination with external lexicons as sug-
gested by Constant and Tellier (2012). The tagger
used feature templates, as seen in Table 1 below,
where w; stands for the token at the relative posi-
tion ¢ from the current token and [; is the label at the
relative position ¢. The external lexicons included
the Unitex lexicon (Paumier et al., 2009), SAID cor-
pus (Kuiper et al., 2003), Cambridge International
Dictionary of Idioms (White, 1998), and Dictionary
of American Idioms (Makkai et al., 1995).

Among these MWE:s, attestation rates for particu-
lar subtypes are given in Table 2.
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Figure 2: Samples MWE:s in the English text, visualized with
mwetoolkit (Ramisch et al., 2010)

wy =X, t€{2,1,0,1,2} &ly =

Lowercase form of wg = W &lp =

Prefix of wg = Pwith|P|<5 &lp =

Suffix of wg = Swith|S|<5 &lp =

wo contains a hyphen &lg =

wp contains a digit &ly =

wy is capitalized &lg =

wy is all in capital &ly =

wy is capitalized and BOS &lp =
wy is part of a multiword &ly

wiw; = XY, (4,k) € {(1,0),(0,1),(1,1)} &lp =
=1L &l

Table 1: Feature templates to detect MWEs

3.3 Participants

Participants were forty-two volunteers (26 women
and 16 men, 18-37 years old) with no history of



MWE Category Occurrence
Verb + Participle 145
Verb + Noun 37
Adj + Noun 285
Det + Noun 712
(Verb) + Noun + Prep + Noun 24
N-N Compounds 71

Table 2: MWE Attestation Rates

psychiatric, neurological, or other medical illness
or history of drug or alcohol abuse that might
compromise cognitive functions. All qualified as
right-handed on the Edinburgh handedness inven-
tory (Oldfield, 1971). They self-identified as native
English speakers and gave their written informed
consent prior to participation, in accordance with
Cornell University IRB guidelines.

3.4 Presentation

After giving their informed consent, participants
were familiarized with the MRI facility and assumed
a supine position on the scanner gurney. The presen-
tation script was written in PsychoPy (Peirce, 2007).
Auditory stimuli were delivered through MRI-safe,
high-fidelity headphones (Confon HP-VSO1, MR
Confon, Magdeburg, Germany) inside the head coil.
The headphones were secured against the plastic
frame of the coil using foam blocks. Using a spo-
ken recitation of the US Constitution, an experi-
menter increased the volume until participants re-
ported that they could hear clearly. Participants then
listened passively to the audio storybook for 1 hour
38 minutes. The story had nine chapters and at the
end of each chapter the participants were presented
with a multiple-choice questionnaire with four ques-
tions (36 questions in total), concerning events and
situations described in the story. These questions
were used to confirm their comprehension and were
viewed by the participants via a mirror attached to
the head coil and they answered through a button
box. The entire session lasted around 2.5 hours.

3.5 Data Collection

Imaging was performed using a 3T MRI scan-
ner (Discovery MR750, GE Healthcare, Milwau-
kee, WI) with a 32-channel head coil at the Cor-
nell MRI Facility. Blood Oxygen Level Depen-
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dent (BOLD) signals were collected using a T2-
weighted echo planar imaging (EPI) sequence (rep-
etition time: 2000 ms, echo time: 27 ms, flip angle:
77deg, image acceleration: 2X, field of view: 216 x
216 mm, matrix size 72 x 72, and 44 oblique slices,
yielding 3 mm isotropic voxels). Anatomical images
were collected with a high resolution T1-weighted
(1 x 1 x 1 mm® voxel) with a Magnetization-
Prepared RApid Gradient-Echo (MP-RAGE) pulse
sequence.

4 Data Analysis

4.1 Preprocessing

fMRI data is acquired with physical, biological con-
straints and preprocessing allows us to make adjust-
ments to improve the signal to noise ratio. Primary
preprocessing steps were carried out in AFNI ver-
sion 16 (Cox, 1996) and include motion correction,
coregistration, and normalization to standard MNI
space. After the previous steps were completed,
ME-ICA (Kundu et al., 2012) was used to further
preprocess the data. ME-ICA is a denoising method
which uses Independent Components Analysis to
split the T2*-signal into BOLD and non-BOLD
components. Removing the non-BOLD components
mitigates noise due to motion, physiology, and scan-
ner artifacts (Kundu et al., 2017).

4.2 Statistical Analysis

The GLM typically used in fMRI is a hierarchical
model with two levels (see Poldrack et al., 2011).
At the first level, the data for each subject is mod-
elled separately to calculate subject-specific param-
eter estimates and within-subject variance such that
for each subject, a regression model is estimated for
each voxel against the time series. The second-level
model takes subject-specific parameter estimates as
input. It uses the between-subject variance to make
statistical inferences about the larger population.
The GLM analysis was performed using
SPM12 (Penny et al., 2011). The following re-
gressors were used. One regressor formalizes
structure-building using a standard bottom-up
parsing algorithm (see chapter 3 of Hale, 2014). We
computed the number of parser actions that would
be required, word-by-word, to build the correct
phrase structure tree as determined by the Stan-



ford parser (Klein and Manning, 2003). Another
regressor formalizes memory retrieval, by marking
multiword expressions (MWE; see section 3.2).
Each word in the text was annotated with a 0 or
1, depending on whether it was the last word of a
MWE. This coding scheme expresses the idea that
a different process occurs at the end of multiword
expressions, and this provisionally assumes a very
conservative approach to the Configuration Hypoth-
esis (Cacciari and Tabossi, 1988; Tabossi et al.,
2009). We regressed the word-by-word predictors
described above against fMRI timecourses recorded
during passive story-listening in a whole-brain anal-
ysis. Along with the parsing and MWE regressors
of theoretical interest, we entered four ‘“nuisance”
variables or regressors of non-interest into the GLM
analysis using SPM12. One regressor simply marks
the offset of each spoken word in time. Another
gives the log-frequency of the individual word in
movie subtitles (Brysbaert and New, 2009). The
last two reflect the pitch (fO) and intensity (RMS)
of the talker’s voice. These nuisance regressors are
added to the GLM analysis to improve sensitivity,
specificity and validity of activation maps (Bullmore
et al., 1999; Lund et al., 2006). In particular, we
sought to ensure that any conclusions about parsing
and memory retrieval would be specific to those
processes, as opposed to more general aspects of
speech perception.

5 Results

In the second-level group analysis, bottom-up pars-
ing and multi-word expressions were analyzed sep-
arately. Results are presented below in Tables 3 and

4 using region names from the Harvard-Oxford Cor-
tical Structure Atlas.

5.1 Group level results for bottom-up parsing

MNI Coordinates Region p-value k-size T-score
X y z (corrected) (cluster) (peak-level)
52 8 -22 Temporal pole 0.000 2769 12.72
54 40 12 Supramarginal Gyrus 0.000 2212 12.69
s34 18 -12 Frontal Orbital Cortex 0.000 2380 10.40
12 20 58 Superior Frontal Gyrus 0.000 7191 9.27
42 2 48 Middle Frontal Gyrus 0.000 286 9.19
-38 26 36 Middle Frontal Gyrus 0.000 382 8.47
-40 -78 6 Lateral Occipital Cortex 0.000 693 7.42
=52 -56 32 Angular Gyrus 0.000 802 7.12
28 52 8 Temporal Occipital 0.001 83 6.74
Fusiform Cortex
-44 46 -12 Frontal Pole 0.000 176 6.28

Table 3: Significant clusters for bottom-up parser action count

after FWE voxel correction.

The largest clusters (p < 0.05 FWE) were ob-
served in Anterior Temporal regions (Temporal
Pole) and Frontal regions.

Figure 3, plotted with nilearn (Abraham et al.,
2014) is the T-score map for the bottom-up parser
action count regressor. This regressor formalizes
processing effort related to structural composition.

5.2 Group level results for MWE

MNI Coordinates Region p-value k-size T-score
X y z (corrected) (cluster) (peak-level)
6 -60 52 Precuneus Cortex 0.000 559 7.62
24 10 56  Superior Frontal Gyrus 0.000 182 7.23
-40 42 26 Frontal Pole 0.000 158 6.94
66 -38 34 Supramarginal Gyrus 0.000 103 6.77
34 38 36 Frontal Pole 0.001 58 5.83

Table 4: Significant clusters for MWEs after FWE voxel cor-
rection

The largest clusters (p < 0.05 FWE) were ob-
served in Precuneus Cortex and Frontal regions.

13

-13

Figure 3: T-score map for the Bottom-up Parser action count regressor. Red represents the positive score while blue represents the

negative score.
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Figure 4: T-score map for the MWE status regressor. Red represents the positive score while blue represents the negative score.

Figure 4 (also plotted with nilearn) is the T-score
map for the MWE status regressor, which is meant
to formalize the retrieval of these noncompositional
expressions.

6 Discussion

The operationalization of structure-building as
bottom-up parsing highlights Anterior Temporal as
well as Frontal regions. These results are consis-
tent with earlier work including deficit-lesion data
(Dronkers et al., 2004), fMRI studies of text com-
prehension (Ferstl et al., 2008), and magnetoen-
cephalography studies of phrasal composition (Be-
mis and Pylkkénen, 2011). This literature also con-
firms the sensitivity of Anterior Temporal regions
to parametric variation of phrase size (Pallier et al.,
2011).

With respect to MWEs, significant activation was
observed in the Precuneus. The Precuneus has not
traditionally been viewed as part of the language net-
work. However, it has been designated as part of the
Protagonist’s Perspective Interpreter Network (Ma-
son and Just, 2006). This network in fact appears
to be activated by many different sorts of story char-
acters, not just the protagonist (Wehbe et al., 2014).
Along these lines, the Precuneus activation in Fig-
ure 4 might be interpreted narrowly as an effect of
reference to dramatis personae in the narrative stim-
ulus. This restricted interpretation would be chal-
lenged by the fact that less than 25% of the MWEs
in the stimulus text are references to story charac-
ters. To account for the full collection, including
verbal MWESs, a more general characterization in
terms of memory retrieval seems appropriate.

This more general characterization is bolstered by
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data that implicate the Precuneus in memory tasks:

Verbal memory (Halsband et al., 2002)

Spatial memory (Wallentin et al., 2008)

Episodic memory (Andreasen et al., 1995)

Memory-related imagery (Fletcher et al., 1995;
Mashal et al., 2014)

As Spreng et al. (2009) suggest, the Precuneus could
be part of a wider, task-general network that is
also recruited in Theory-of-Mind, Prospection and
Autobiographical memory tasks. These considera-
tions strengthen the interpretation, based on MWEs,
that the Precuneus mediates memory retrieval during
naturalistic language comprehension.

The findings as a whole are broadly consistent
with existing neurocognitive models of language.
For example, within Hagoort’s (2016) MUC model,
MWE comprehension might tap memory resources,
whereas bottom-up parsing might involve unifica-
tion. With MUC, our analysis suggests a localiza-
tion of these memory resources to the Parietal lobe.
Within the Procedural/Declarative model (Ullman,
2001; 2004), rule-based linguistic knowledge would
be localized to Frontal regions. This is consistent
with the Frontal activations that we observe in re-
sponse to the bottom-up parsing regressor.

7 Conclusion

These results point to a spatial differentiation be-
tween reuse and composition in language compre-
hension. Reuse, here operationalized with multi-
word expressions, seems to involve the Precuneus.
Composition, in the sense of phrase-structure pars-
ing, seems to call upon Anterior Temporal areas.
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