Dangerous Relations in Dependency Treebanks

Chiara Alzetta*, Felice Dell’Orletta”, Simonetta Montemagni®, Giulia Venturi®
* Universita degli Studi di Genova
“Istituto di Linguistica Computazionale “A. Zampolli” (ILC-CNR), ItaliaNLP Lab
chiara.alzetta@edu.unige.it,
{felice.dellorletta, simonetta.montemagni,giulia.venturi}@ilc.cnr.it

Abstract

The paper illustrates an effective and innovative method for detecting erroneously annotated
arcs in gold dependency treebanks based on an algorithm originally developed to measure the
reliability of automatically produced dependency relations. The method permits to significantly
restrict the error search space and, more importantly, to reliably identify patterns of systematic
recurrent errors which represent dangerous evidence to a parser which tendentially will replicate
them. Achieved results demonstrate effectiveness and reliability of the method.

1 Introduction

Dependency-based syntactic representations are playing more and more a key role in applications such as
machine translation and information extraction (Kiibler et al., 2009). If on the one hand current state-of-
the-art approaches to dependency parsing require large training corpora, on the other hand dependency
treebanks are very expensive to build in terms of both time and human effort.

The process of developing a treebank can be carried out in different ways, i.e. through: fully manual
annotation; semi-automatic annotation, obtained via human editing of the automatic output of relevant
NLP tools (e.g. POS taggers, dependency parsers); (semi-)automatic conversion from pre-existing re-
sources. If fully manual annotation is time-consuming, costly and prone to inconsistencies even from
a single annotator (Fort et al., 2012), semi-automatic annotation is faster, less prone to inconsistencies
deriving from arbitrary decisions of the single annotator, but is subject to so-called “anchoring” effects
according to which human decisions are affected by pre-existing values, which include parser errors
(Berzak et al., 2016). More recently, available resources are more and more the result of a conver-
sion process exploiting already existing annotated corpora: depending on whether conversion is carried
out within the same syntactic representation paradigm, approaches can be constituency-to-dependency
(Magerman, 1994; Yamada and Matsumoto, 2003; Nivre et al., 2006; Johansson and Nugues, 2007) or
operate against dependency-based representations. Conversion can also be combined with merging and
harmonization of different resources (Bosco et al., 2012): Nivre and Megyesi (2007) refers to this case
as “cross-corpus harmonization”. The conversion approach is particularly significant for less-resourced
languages with limited annotated corpora or in the case of multi-lingual resources. The latter case is
exemplified by the Universal Dependencies (UD) initiative (Nivre, 2015),' a recent community-driven
effort to create cross-linguistically consistent dependency annotated corpora, where 70% of the released
treebanks originate from a conversion process and only 29% of them has been manually revised after
automatic conversion.

Whatever strategy is adopted for treebank construction, the resulting annotated corpus unavoidably
contains errors. For this reason, the treebank annotation phase is usually followed by another step aimed
at detecting and correcting errors. But treebank validation is as time-consuming as the annotation pro-
cess: from this, the need follows for methods and techniques to support treebank validation by making
the overall task fast and its result consistent and reliable. In principle, treebank validation is concerned

"http://universaldependencies.org

201

Proceedings of the 16th International Workshop on Treebanks and Linguistic Theories (TLT16), pages 201-210,
Prague, Czech Republic, January 23-24, 2018. Distributed under a CC-BY 4.0 licence. 2017.

Keywords: error detection, Universal Dependency Treebanks, quality control of treebanks

with different types of errors. Following Agrawal et al. (2013), we distinguish: random errors, which are
inherently unpredictable being typically due to annotators’ distraction; errors connected with the anno-
tation guidelines, due either to misinterpretation of the guidelines by the annotator, or to constructions
not explicitly or comprehensively covered in the annotation guidelines and even errors in the provided
guidelines, which are always evolving as long as annotation continues. To these, conversion errors should
be added, i.e. errors due to either erroneous automatic mapping of an original annotation scheme to a
new scheme or grey areas in the annotation of specific linguistic constructions. Whereas random errors
are caused by unpredictable decisions by annotators, all other errors types can be classified as systematic
and recurrent errors, that are not just determined by chance but are introduced by inaccuracies inherent to
the procedure which generated them (automatic pre-annotation or conversion) or gaps in the annotation
guidelines. In this paper, we will mainly focus on systematic and recurrent errors, which we qualify as
“dangerous” for the fact of providing potentially “misleading” evidence to a parser during training, i.e.
evidence leading to the replication of errors in the parser output.

In the literature, both pattern-based and statistical approaches have been adopted for carrying out error
detection and correction in a rapid and reliable way. Relying on the intuition that “variation in annotation
can indicate annotation errors”, Dickinson and Meurers (2003, 2005) and Boyd et al. (2008) proposed
a variation n-gram detection method where the source of variation is the so-called variation nucleus,
i.e. “a word which has different taggings despite occurring in the same context, in this case surrounded
by identical words”. This methodology has been recently reimplemented and extended by de Marneffe
et al. (2017) to detect inconsistencies in the UD treebanks. The idea that the cases where two “parsers
predict dependencies different from the gold standard” are “the most likely candidates when looking for
errors” was experimented by Volokh and Neumann (2011), who trained two parsers based on completely
different parsing algorithms to reproduce the training data (i.e. the Penn Treebank). A similar pattern-
based approach has been also proposed by Ambati et al. (2011) who complemented their method with a
statistical module that, based on contextual features extracted from the Hindi treebank, was in charge of
pruning previously identified candidate erroneous dependencies.

If all the aforementioned methods exploit corpus-internal evidence to detect inconsistencies within a
given treebank, van Noord (2004) and de Kok et al. (2009) use external resources, i.e. they rely on the
analysis of large automatically parsed corpora external to the treebank under validation. The underlying
idea of these error mining techniques is that sentences with a low parsability score, i.e. sentences which
have not received a successful analysis by the parser, very likely contain a parsing error.

This paper aims at testing the potential of algorithms developed to measure the reliability of automat-
ically produced dependency relations for detecting erroneously annotated arcs in gold treebanks. In the
literature, the result of this type of algorithms varies from a binary classification (correct vs. wrong) as in
Che et al. (2014), to the ranking of dependencies on the basis of a quality score reflecting the reliability
and plausibily of the automatic analysis (Dell’Orletta et al., 2013). Although these algorithms typically
work on corpora automatically annotated (Dickinson, 2010), they have also been tested against corpora
with manually revised (i.e. “gold”) annotation: in this case, the typical aim is the identification of errors
or simply inconsistencies in the annotation (Dickinson, 2015). In this work, we used an algorithm rank-
ing dependencies by reliability, LISCA (Dell’Orletta et al., 2013), that was applied to a gold treebank
to limit the search space for bootstrapping error patterns, i.e. systematic recurring errors (as opposed to
random errors). Identified error patterns were then projected against the whole corpus. Like Ambati et al.
(2011), here error detection is driven by statistical evidence which, in our approach, is acquired from an
external automatically annotated large reference corpus.

2 Error Detection Methodology

The methodology devised to detect candidate errors in dependency treebanks is based on the parse qual-
ity assessment algorithm named LISCA (LInguiStically—driven Selection of Correct Arcs) (Dell’ Orletta
et al., 2013). As illustrated in details in Section 2.1, the algorithm exploits statistics about a wide range
of linguistic features (covering different description levels, going from raw text to morpho-syntax and
dependency syntax) extracted from a large reference corpus of automatically parsed sentences and uses

202

closest leaf

furthest leaf

Figure 1: Features used by LISCA to measure arc(d, h, t) plausibility.

them to assign a quality score to each dependency arc contained in a target corpus belonging to the
same variety of use (e.g. textual genre) of the automatically parsed corpus, thus producing a decreasing
ranking of arcs from correct to anomalous ones, potentially including incorrect ones. The underlying
assumption is that syntactic structures that are more frequently generated by a parser are more likely to
be correct than less frequently generated structures.

2.1 The LISCA Algorithm

LISCA takes as input a set of parsed sentences and it assigns a plausibility score to each dependency,
which is defined as a triple (d, h, t) where d is the dependent, h is the head, and ¢ is the type of de-
pendency connecting d to h. The algorithm operates in two steps: 1) it collects statistics about a set of
linguistically motivated features extracted from a dependency annotated corpus obtained through auto-
matic dependency parsing, and 2) it combines the feature statistics extracted from the corpus used during
the previous step. The final plausibility score associated with a given dependency arc results from the
combination of the weights associated with these features: the score is computed as a simple product of
the individual feature weights.”

Figure 1 summarizes the features taken into account by LISCA for measuring the plausibility of a given
syntactic dependency (d, h, t). For the purposes of the present study, LISCA has been used in its de—
lexicalized version in order to abstract away from variation resulting from lexical effects. In particular,
two different types of features are considered: local features, corresponding to the characteristics of the
syntactic arc considered (e.g. the distance in terms of tokens between d and h, or the associative strength
linking the grammatical categories, i.e. POS4 and POSy, involved in the relation, or the POS of the head
governor and the type of syntactic dependency connecting it to h); global features, aimed at locating
the arc being considered within the overall syntactic structure of the sentence, with respect to both its
hierarchical structure and the linear ordering of words (for example, the distance of d from the root of
the tree, or from the closest or most distant leaf node, or the number of “siblings” and “children” nodes
of d, recurring respectively to its right or left in the linear order of the sentence).

LISCA was successfully used against both the output of dependency parsers and gold treebanks. While
in the first case the plausibility score was meant to identify unreliable automatically produced depen-
dency relations, in the second case it was used to detect shades of syntactic markedness of syntactic
constructions in manually annotated corpora. The latter is the case of Tusa et al. (2016), where the
LISCA ranking was used to investigate the linguistic notion of “markedness” (Haspelmath, 2016): a
given linguistic construction is considered “marked” when it deviates from the “linguistic norm”, i.e. it

?For a detailed description of the features and the metrics used by LISCA see Dell’Orletta et al. (2013).

203

is “abnormal”. Accordingly, unmarked constructions are expected to be characterized by higher LISCA
scores and — conversely — constructions characterized by increasing degrees of markedness are associated
with lower scores. In the analysis of their linguistic results, Tusa et al. (2016) noticed that low scored
relations also included annotation errors. This observation prompted our hypothesis of research, i.e. that
the identification of problematic areas of human annotation can be carried out by measuring the distance
of the linguistic context characterizing the arcs in a gold treebank from the “linguistic norm” computed
by LISCA with respect to a large reference corpus.

2.2 Chasing errors with LISCA

According to these premises, errors in gold treebanks were searched for with LISCA assuming that a
higher number of variations of the linguistic context for an arc in the manual annotation with respect
to the automatically generated arcs corresponds to a greater chance for the observed variation to be an
error. In this respect, arc variation is observed whenever the linguistic context of an arc in the treebank
differs with respect to the corresponding one captured in the large reference corpus used to compute the
LISCA score. Similarly to Ambati et al. (2011), we exploited the contextual features of an arc to identify
erroneous annotations but differently from them we looked for these features outside the treebank under
analysis, thus overcoming the widely ackowledged data sparsity problem. By doing so, the error search
space is restricted to relations with lower LISCA scores.
The proposed error detection method is articulated into the following steps:

1. LISCA is run against the gold treebank and arcs are ordered by decreasing LISCA scores;

2. the resulting ranking of arcs is partitioned it into 10 groups, henceforth “bins”, each corresponding
to 10% of the total (plus an 11th bin for the remaining ones);

3. the analysis was limited to the last three bins containing relations associated with the lowest LISCA
scores: these bins were expected to gather a higher occurrence of “abnormal” annotations, be they
errors or less frequent constructions;

4. the selected bins were manually inspected to identify errors, both random errors and systematic
errors (i.e. “dangerous relations”);

5. recurring systematic errors which emerged from this manual inspection were formalized as error
patterns which were then projected onto the whole treebank;

6. potentially erroneous identified arcs in all bins were manually validated and - whenever needed -
corrected.

Let us exemplify how the decreasing LISCA scores assigned to different instances of the same relation
occurring within different linguistic contexts can be used to guide error detection.

Bl B2 B3 B4 BS B6 B7 B8 B9 B10

Total occurrences 785 543 449 353 333 168 132 97 106 114
Errors (occurrences) 0 0 0 1 6 5 12 7 9 4
Errors (percentages) 0 0 0 028 180 297 9.09 721 849 351

Table 1: Occurrences of mark relation in the IUDT newspaper section and erroneously annotated in-
stances across the LISCA bins.

Table 1 reports the distribution of the UD mark relation (linking the function word introducing a sub-
ordinated clause to the verbal head of the clause) across the LISCA bins in the newspaper section of the
Italian Universal Dependency Treebank (the gold treebank we used to test our methodology, as described
in Section 3). Although the relation occurs in all bins, the frequency of occurrence decreases proportion-
ally to the decreasing of the scores assigned by LISCA. The higher frequency of the mark relation in

204

the top LISCA bins can be explained by the generally fixed or slightly variable structure underlying it:
these occurrences correspond to canonical linguistic contexts which are closer to the “linguistic norm” as
computed by LISCA with respect to the large reference corpus. By contrast, anomalous mark structures
ended up in the last bins, in particular in the 7th-9th bins, for which a higher percentage of errors is
reported (ranging between 7% and 9%).

3 Corpora

The proposed error detection methodology was tested against the Italian Universal Dependency Treebank
(henceforth IUDT) (Bosco et al., 2013), which contains 13,815 sentences corresponding to 325,816 to-
kens. As de Marneffe et al. (2017) pointed out, UD treebanks represent a good testing bed for error
detection techniques: most part of them originate from a conversion process, often combined with merg-
ing and cross-corpus harmonization. In particular, IUDT results from the harmonization and merging
of smaller dependency—based resources adopting incompatible annotation schemes into the Universal
Dependencies annotation formalism, with the final aim of constructing a standard-compliant and big-
ger resource for the Italian language: the Turin University Treebank (TUT, Bosco et al. (2000)) and
ISST-TANL (originating from the ISST corpus, (Montemagni et al., 2003)).

For the specific concerns of this study, we focused on the section of IUDT containing newspaper
articles, composed by 10,891 sentences, for a total of 154,784 tokens. This choice was aimed at avoiding
possible interferences in detecting anomalies due to textual genre variation: in this case, “abnormal”
relations do not only include possible errors but also constructions peculiar to a specific genre.

The corpus used to collect the statistics to build the LISCA model is represented by the La Repubblica
corpus, a collection of newspaper articles part of the CLIC-ILC Corpus (Marinelli et al., 2003) for a total
of 1,104,237 sentences (22,830,739 tokens). The corpus was morpho-syntactically annotated and parsed
by the UDPipe pipeline (Straka et al., 2016) trained on IUDT, version 2.0 (Nivre et al., 2017).

4 Results

LISCA was used to rank the journalistic section of IUDT: the ranked relations were partitioned into 10
bins of about 14,600 arcs each, with an 11th bin with the remaining 8723 arcs. The manual revision
focused on the last three bins (from 9th to 11th), covering 24.5% of the total number of arcs.

At the end of the error detection and correction process, 789 arcs were modified, corresponding to
0.51% of the number of arcs in IUDT news, distributed into 567 sentences (i.e. 5.21% of the number of
sentences in IUDT news). Of those 789 arcs, 286 arcs (36.01%) are random errors: interestingly, 185
of them (i.e. 65% of random errors) are located in the 11th LISCA bin. The remaining detected errors,
i.e. 503 (63.99%), represent systematic errors which have been identified on the basis of error patterns
manually identified in the last bins and which have then been projected back onto the whole IUDT news
section. These error patterns turned out to represent real errors in 85.63% of the cases, involving 483
sentences: this demonstrates the effectiveness of identified potential error patters.

4.1 Typology of Dangerous Relations

In what follows, we will illustrate the main systematic errors, corresponding to so—called “dangerous
relations”, which emerged from the analysis of relations in the last three bins and which were formalized
as the following six error patterns.>

Auxiliary verbs (aux_head): it refers to cases where an auxiliary verb (i.e. essere ‘to be’, avere ‘to have’,
modals, periphrastic or copular verbs) was erroneously treated as the head of a dependency relation, as
in the following example where the personal pronoun noi ‘us’ was erroneously governed by the auxiliary
verb e rather than by sufficiente, which represents the nonverbal predicate and root of the sentence:

3In the following examples the original wrong sentence is marked with O (Original), and the corrected one is marked with
C (Correct)

205

root
B

ADP PRON AUX AUX ADJ SCONJ VERB ADV
O Per noi ¢ stato sufficiente che andassero via
Lit. For us ithas been enough that they went away .

ADP PRON AUX AUX ADJ SCONJ VERB ADV
C Per noi ¢ stato sufficiente che andassero via
Lit. For us ithas been enough that they went away .

Clausal modifier of a noun (acl4amod): it refers to cases where bare past participles functioning as
adjectival modifiers of nouns were erroneously annotated as clausal modifiers (i.e. acl). In these cases,
the lemma, the part of speech and the type of dependency were modified, as in the following example
where the past participle getfonati ‘selected’ was erroneously i) associated with the lemma gettonare ‘to
select’ instead of the lemma getfonato ‘selected’, ii) morpho-syntactically tagged as VERB rather than
ADJ, and iii) linked to the head word nomi ‘names’ with the relation acl rather than amod:

@

PROPN CCONJ PROPN DET NOUN ADV VERB

O .. Mussi e Torrente i nomi pil gettonati ...
Lit. ... Mussi and Torrente the names most selected ...
nmod

[t}

[N
PROPN CCONJ PROPN DET NOUN ADV ADJ

C ... Mussi e Torrente i nomi pil gettonati ...

Lit. ... Mussi and Torrente the names most selected ...

Adjectival modifiers (amod4xcomp): it refers to cases where adjectives functioning as secondary pred-
icates of a verb were erroneously annotated as amod rather than xcomp, as in the following example
where the syntactic function of adjectival modifier (amod) holding between the adjective vivo ‘alive’ and
the head verb sepolto ‘buried” was erroneously identified:

punct

VERB ADJ ADP DET NOUN ADP+DET NOUN PUNCT
O Sepolto vivo sotto gli occhi del figlio
Lit. Buried alive under the eyes of the son

VERB ADJ ADP DET NOUN ADP+DET NOUN PUNCT
C Sepolto vivo sotto gli occhi del figlio
Lit. Buried alive under the eyes of the son

Coordinating conjunctions (conj_head): it refers to cases where a coordinating conjunction was erro-
neously headed by the first conjunct (coordination head), as in the following example where the conjunc-
tion e ‘and’ was headed by notte ‘night’ rather than by giorno ‘day’:

206

PROPN VERB NOUN CC NOUN
O Maricchia piangeva notte e giorno ...
Lit. Maricchia was crying night and day

PROPN VERB NOUN CC NOUN
C Maricchia piangeva notte e giorno ...
Lit. Maricchia was crying night and day

Nominal modifiers (nmod4obl): it refers to cases where an oblique argument was erroneously annotated
as nominal modifier (nmod) rather than as oblique nominal (obl) when occurring in multiword expres-
sions which were not correctly identified, as in the following example where the noun tabella ‘chart’ was
erroneously headed by the preposition di ‘of” rather than by the verb andando ‘going’, and linked by the
dependency relation nmod rather than obl:

(obl} nmod
o [t

VERB ADV ADP+DET ADP ADV ADP+DET NOUN
O ... andando addirittura al di sotto della tabella di marcia ...
Lit. ... going even below the roadmap ...

VERB ADV ADP+DET ADP ADV ADP+DET NOUN
C ... andando addirittura al di sotto della tabella di marcia ...
Lit. ... going even below the roadmap ...

Nonfinite verbs (obl4advcl|acl): it refers to cases where nonfinite verbal constructions functioning as
nominals were erroneously annotated as oblique nominals (0bl) rather than adverbial or adjectival clauses
(advcl or acl), as in the following example represented by the verb pubblicare ‘publish’:

obl

(

ADP+DET VERB DET NOUN ADP DET NOUN VERB
o .. nel pubblicare gli atti di un convegno ... introducono ...
Lit. ... inthe publishing the proceedings of a conference ... introduce
ADP+DET VERB DET NOUN ADP DET NOUN VERB
C .. nel pubblicare gli atti di un convegno ... introducono ...
Lit. ... inthe publishing the proceedings of a conference ... introduce

4.2 Discussion

The patterns illustrated above can be classified under three main categories: 1) head identification errors
(aux_head, conj_head), 2) labeling errors (acl4amod, amod4xcomp, obl4advcl|acl), and 3) combined
head identification and labeling errors (nmod4obl). Table 2 shows the detail of the modified arcs for
each pattern, while Figure 2 visualizes their distribution across the LISCA bins. The chart confirms the
hypothesis we started from, i.e. that most part of systematic errors are concentrated in the last bins and
that, on the other hand, the first LISCA bins tendentially do not contain errors, or very few of them.

207

Note that the 11th bin is not included in the chart since it turned out to only contain random errors
(as opposed to systematic ones). If we try to track the origin of the identified and corrected recurrent
errors, it is worth noting that the most frequent error type recorded in Table 2 — acl4damod — corresponds
to a quite problematic annotation area for all treebanks, i.e. the distinction between participial and
adjectival usages. More interestingly, this corresponds to an area for which the original resources which
were combined in IUDT (i.e. TUT and ISST-TANL) followed different guidelines: for TUT, the verbal
reading was preferred, which naturally led to the interpretation of (reduced) relative clause, whereas
ISST-TANL resorted in these cases to a general modifier relation. The second and third most frequent
errors (namely, conj_head and aux_head) are connected with substantial changes from version 1.4 to 2.0
of Universal Dependencies annotation guidelines. Last but not least, the error types amod4xcomp and
nmod4obl seem rather to be connected to annotation inconsistencies internal to the treebank.

Modified arcs for each bin

Error pattern Frequency 100
Auxiliary verbs (aux_head) 13.32 (67) o ::2;;?23
Clausal modifiers of noun (acl4amod) ~ 36.98 (186) 7 ~amoddxcomp
Adjectival modifiers (amod4xcomp) 1252 (63) 5 = _Conjaheij

© 4 —hmod4o

Coordinating conjunctions (conj_head) 24.65 (124) 2 ~oblaadvdlac / %
Nominal modifiers (nmod4obl) 6.76 (34) 2 J
Nonfinite verbs (obl4advcl|acl) 5.77 (29) " -'”'//>f

Total number of errors: 503 LISCA bins

Table 2: Distribution (percentage and absolute

values) of error types in IUDT. Figure 2: Distribution of modified arcs for each

error pattern across the LISCA bins.
5 Conclusion and Current Directions of Research

We proposed an effective and innovative method for detecting erroneously annotated arcs in gold tree-
banks based on an algorithm originally developed to measure the reliability of automatically produced
dependency relations, LISCA. This method permits to significantly restrict the error search space and,
more importantly, to reliably identify patterns of systematic recurrent errors which represent danger-
ous and misleading evidence to a parser. Achieved results demonstrate the effectiveness of the method.
Within the whole amount of corrected errors (both random and systematic), 64% corresponds to sys-
tematic errors, typically originating from semi-automatic annotation or conversion. The effectiveness
of identified patterns is demonstrated by the fact that in the whole IUDT news section 85.67% of the
sentences instantiating at least one error pattern contains real errors. In principle, this method, operating
within the dependency-based representation framework, is independent from language and annotation
scheme. As a preliminary experiment in this direction, we checked the presence of some detected error
patterns (i.e. those due to problematic annotation areas and guidelines changes between different tree-
bank versions) in other UD treebanks.* We looked for sentences instantiating the constructions corre-
sponding to our error patterns in different UD treebanks: patterns turned out to appear both in languages
typologically close to Italian (e.g. French, Spanish and Portuguese) and typologically distant (e.g. En-
glish, Arabic, Czech, Finnish, Turkish and Chinese). For most of those languages, the total number of
sentences containing the patterns is in line with the number of sentences we found for Italian (between
3-7% over the total number of sentences in the treebank), with the exception of Turkish and Chinese
where the number is much higher (around 15%). This holds true also for the distribution of patters: like
for Italian, the most frequent pattern observed in all UD treebanks taken into account is acl4damod. This
very preliminary evidence extracted from different UD treebanks needs however to be validated through
a collaboration between different UD national teams, to assess whether identified anomalous patterns
represent real errors. Current developments also include the assessment of impact and role of detected
and corrected errors in the performance of dependency parsers.

“For this purpose we used the Dep_search tool developed by the Turku NLP Group.

208

Acknowledgments

The work reported in the paper was partially supported by the 2—year project (2016-2018) Smart News,
Social sensing for breaking news, funded by Regione Toscana (BANDO FAR-FAS 2014). Thanks are
also due to the University of Pisa who funded a post-graduate fellowship with a Google gift.

References

B. Agrawal, R. Agarwal, S. Husain, and D.M. Sharma. 2013. An Automatic Approach to Treebank Error Detection
Using a Dependency Parser, Springer Berlin Heidelberg, Berlin, Heidelberg, pages 294-303.

B.R. Ambati, R. Agarwal, M. Gupta, S. Husain, and D. M. Sharma. 2011. Error Detection for Treebank Validation.
In Proceedings of 9th International Workshop on Asian Language Resources (ALR).

Y. Berzak, Y. Huang, A. Barbu, A. Korhonen, and B. Katz. 2016. Anchoring and Agreement in Syntactic An-
notations. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, Austin, Texas, pages 2215-2224.

C. Bosco, V. Lombardo, L. Lesmo, and D. Vassallo. 2000. Building a Treebank for Italian: a Data-driven Annota-
tion Schema. In Proceedings of the 2nd Language Resources and Evaluation Conference (LREC’00). Athens,
Greece, pages 99-105.

C. Bosco, S. Montemagni, and M. Simi. 2012. Harmonization and Merging of two Italian Dependency Treebanks.
In Proceedings of the LREC 2012 Workshop on Language Resource Merging. Istanbul, Turkey.

C. Bosco, S. Montemagni, and M. Simi. 2013. Converting Italian Treebanks: Towards an Italian Stanford Depen-
dency Treebank. In Proceedings of the ACL Linguistic Annotation Workshop & Interoperability with Discourse.
Sofia, Bulgaria.

A. Boyd, M. Dickinson, and W. D. Meurers. 2008. On Detecting Errors in Dependency Treebanks. Research on
Language & Computation 6(2):113-137.

W. Che, J.Guo, and T.Liu. 2014. Reliable Dependency Arc Recognition. Expert Systems with Applications
41(4):1716-1722.

D. de Kok, J. Ma, and G. van Noord. 2009. A Generalized Method for Iterative Error Mining in Parsing Results.
In Proceedings Workshop on Grammar Engineering Across Frameworks (GEAF 2009).

M.C. de Marneffe, M. Grioni, J. Kanerva, and F. Ginter. 2017. Assessing the Annotation Consistency of the Uni-
versal Dependencies Corpora. In Proceedings of the 4th International Conference on Dependency Linguistics
(Depling 2007). Pisa, Italy, pages 108—115.

F. Dell’Orletta, G. Venturi G., and S. Montemagni. 2013. Linguistically-driven Selection of Correct Arcs for
Dependency Parsing. Computacion y Sistemas 2:125-136.

M. Dickinson. 2010. Detecting Errors in Automatically-Parsed Dependency Relations. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics. Uppsala, Sweden, pages 729-738.

M. Dickinson. 2015. Detection of Annotation Errors in Corpora. Language and Linguistics Compass 9(3):119—
138.

M. Dickinson and W. D. Meurers. 2003. Detecting Inconsistencies in Treebank. In Proceedings of the Second
Workshop on Treebanks and Linguistic Theories (TLT 2003).

M. Dickinson and W. D. Meurers. 2005. Detecting Errors in Discontinuous Structural Annotation. In Proceedings
of the 43rd Annual Meeting of the ACL. pages 322-329.

K. Fort, A. Nazarenko, and S. Rosset. 2012. Modeling the Complexity of Manual Annotation Tasks: a Grid of
Analysis. In Proceedings of COLING 2012. pages 895-910.

M. Haspelmath. 2016. Against Markedness (and what to Replace it with). Journal of Linguistics 42:25-70.

R. Johansson and P. Nugues. 2007. Statistical Dependency Analysis with Support Vector Machines. In Proceed-
ings of NODALIDA 2007 .

209

S. Kiibler, R. McDonald, and J. Nivre. 2009. Dependency Parsing. Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool Publishers.

D. M. Magerman. 1994. Natural Language Parsing as Statistical Pattern Recognition. Ph.D. thesis, Stanford
University.

R. Marinelli, L. Biagini, R. Bindi, S. Goggi, M. Monachini, P. Orsolini, E. Picchi, S. Rossi, N. Calzolari, and
A. Zampolli. 2003. The Italian PAROLE Corpus: an Overview. Linguistica Computazionale XVIXVIIL:401—
421.

S. Montemagni, F. Barsotti, M. Battista, N. Calzolari, A. Lenci, O. Corazzari, A. Zampolli, F. Fanciulli, M. Mas-
setani, R. Basili, R. Raffaelli, M.T. Pazienza, D. Saracino, F. Zanzotto, F. Pianesi, N. Mana, and R. Delmonte.
2003. Building the Italian Syntactic-Semantic Treebank. In Anne Abeillé, editor, Treebanks. Building and
Using Parsed Corpora, Springer Science Business Media, LLCs, pages 189-210.

J. Nivre. 2015. Towards a Universal Grammar for Natural Language Processing. In Computational Linguistics
and Intelligent Text Processing - Proceedings of the 16th International Conference, CICLing 2015, Part I. Cairo,
Egypt, pages 3-16.

J. Nivre, J. Hall, and J. Nilsson. 2006. Maltparser: A Data-driven Parser Generator for Dependency Parsing. In
Proceedings of LREC2006.

J. Nivre and B. Megyesi. 2007. Bootstrapping a Swedish Treebank Using Cross-Corpus Harmonization and An-
notation Projection. In Proceedings of the 6th International Workshop on Treebanks and Linguistic Theories
(TLT). pages 97-102.

J. Nivre, A. Zeljko, and A. Lars et al. 2017. Universal Dependencies 2.0. LINDAT/CLARIN digital library at the
Institute of Formal and Applied Linguistics, Charles University.

M. Straka, J. Hajic, and J. Strakova. 2016. UD-Pipe: Trainable Pipeline for Processing CoNLL-U Files Performing
Tokenization, Morphological Analysis, POS Tagging and Parsing. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation (LREC).

E. Tusa, F. Dell’Orletta, S. Montemagni, and G. Venturi. 2016. Dieci sfumature di marcatezza sintattica: verso
una nozione computazionale di complessitd. In Proceedings of the Third Italian Conference on Computational
Linguistics (CLiC-it). Napoli, Italy, pages 3—16.

G. van Noord. 2004. Error Mining for Widecoverage Grammar Engineering. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Linguistics.

A. Volokh and G. Neumann. 2011. Automatic Detection and Correction of Errors in Dependency Treebanks. In
Proceedings of ACL-HLT (2011).

H. Yamada and Y. Matsumoto. 2003. Statistical Dependency Analysis with Support Vector Machines. In Proceed-
ings of 8th International Workshop on Parsing Technologies.

210

