
S Bandyopadhyay, D S Sharma and R Sangal. Proc. of the 14th Intl. Conference on Natural Language Processing, pages 290–297,
Kolkata, India. December 2017. c©2016 NLP Association of India (NLPAI)

Retrieving Similar Lyrics for Music Recommendation System

Braja Gopal Patra1, Dipankar Das2, and Sivaji Bandyopadhyay2

1School of Biomedical Informatics,
The University of Texas Health Science Center at Houston, Houston, Texas, USA

2Department of Computer Science & Engineering, Jadavpur University, Kolkata, India
brajagopal.cse@gmail.com, dipankar.dipnil2005@gmail.com,

sivaji cse ju@yahoo.com

Abstract

Presently, millions of music tracks are
available on the web. Therefore, a mu-
sic recommendation system can be helpful
to filter and organize music tracks accord-
ing to the need of users. To develop a re-
commendation system, we need an enorm-
ous amount of data along with the user
preference information. However, there is
a scarcity of such dataset for Western as
well as Hindi songs. This paper presents
a similar lyrics retrieval system for Hindi
songs using features collected from lyrics.
A romanized Hindi lyric dataset is col-
lected from the web. The collected data-
set is noisy, and several forms of a single
word are present in it, thus an unsuper-
vised stemming algorithm is proposed to
reduce the size of N-grams. The Self-
Organizing Feature Maps (SOFMs) based
similar lyrics retrieval system achieves the
maximum F-measure of 0.749.

1 Introduction

The improvement in digital technology has led
the music digitally available to all Internet users.
The development of nanotechnology made stor-
age devices portable, and nowadays, any handheld
devices can store thousands of tracks. Whenever a
user has an enormous number of choices for listen-
ing to music (like browsing web or personal stor-
age devices), the user is overwhelmed by options.
The recommender system comes as a savior and
filters the songs that are suitable for that user at
that moment. It also maximizes the user’s satisfac-
tion by playing appropriate song at the right time,
and, meanwhile, minimize the user’s effort (Hu,
2014). The recommendation problem can be seen

as a ranking problem, and it creates a list of suit-
able songs for users.

Many music streaming services for Western
music emerged in recent years, such as Google
Play Music1, Apple music2, Last.fm3, Pandora4,
Spotify5, and so forth; and some of them are not
available in India. These music streaming applica-
tions store user preferences and recommend users
what they want to listen. In India, several music
streaming services were started recently and those
are Apple music, Gaana6, Hungama7, Saavn8, and
Wynk music9 etc. Most of them do not recommend
songs and those are just a music library. You-
tube is one of the video streaming services which
provides recommendations based on the collab-
orative filtering (Davidson et al., 2010). It also
provides facility to search using title of song and it
can also search a video using any keywords within
a lyric body only when full lyric is available in the
description.

There is a keen interest in accessing music con-
tents nowadays. Available search engines or in-
formation retrieval (IR) systems allow users to
search a song by the metadata such as song title,
artist, album name. Incorrect metadata can lead to
wrongly searched data, and without any metadata,
it is not possible to search a song. Again, the
current IR systems give particular search results
based on the query rather than similar lyrics to a
query. It was observed that a lyrics provide differ-
ent semantic information than audio for some of
Hindi songs, i.e., the annotators perceived differ-

1https://play.google.com/music/listen
2https://www.apple.com/music
3https://www.last.fm
4https://www.pandora.com
5https://www.spotify.com
6https://gaana.com
7http://www.hungama.com
8https://www.saavn.com
9https://www.wynk.in/music290

ent moods while reading lyrics and listening to the
corresponding songs (Patra et al., 2016b). People
are interested in listening to songs specific to situ-
ation and mood (Duncan and Fox, 2005). There
is a need for recommendation system based on in-
formation within the music as well as the metadata
of music such as mood, genre, artist name, and so
on.

Music similarity measures can help to under-
stand why two music pieces are perceived alike
by the listener and to guide the user in efficiently
retrieving desired piece of music (Schedl et al.,
2011). Query by hamming helps to find an exact
song with respect to a query humming. Again, a
lyrics based retrieval system could be helpful for
searching similar songs. Till date, there is no such
lyrics retrieval system developed for Hindi songs.

In the present task, we collected a huge lyric
dataset for Hindi songs written in Romanized Eng-
lish characters. Though, developing lyrics re-
trieval system for Hindi songs of Romanized char-
acters is a difficult task. The main reason is that the
processing of such text is difficult for an n-gram
based system as a single word is written with dif-
ferent variations, for example, “Ajnabi” and “Ajn-
abiii”. The existing stemming and parts-of-speech
taggers are available for either utf or WX format of
Hindi characters. All sentiment lexicons are also
available in utf format and these can not be used
for Romanized characters.

Several text normalization techniques and an
unsupervised stemming algorithm have been im-
plemented to handle unstructured data. Finally,
we developed unsupervised IR systems to retrieve
similar songs with respect to a query song us-
ing Self-Organizing Feature Maps (SOFMs) and
Document level word embeddings followed by
a baseline system using Fuzzy C-means (FCMs)
clustering. The similar lyrics retrieval system can
be combined with existing metadata based recom-
mender to give a better performance. It is also
useful for recommending a song where little or no
metadata (genre, mood) is available.

This paper is organized as follows: Section 2
describes the related work on similar lyrics re-
trieval and works on Indian music. The dataset and
preprocessing techniques are discussed in Sec-
tion 3. Section 4 describes SOFMs and Doc2Vec
for developing the retrieval system. The developed
systems with comparisons are described in Sec-
tion 5. Finally, Section 6 concludes and provides

avenues for further work.

2 Related Work

Automatic playlist generation is one of the fun-
damental problem in music information retrieval
(MIR) to overcome the manual song selection.
Automatic playlist generation can be seen as re-
commendation problem. The biggest challenges
faced while developing recommendation system
are collecting a huge dataset and metadata, then
getting user preferences or feedback. The recom-
mender system can be developed based on both
audio and lyrics to solve the problem of manual
playlist selection or generation.

There have been multiple experiments which
process lyrics. Mahedero et al. (2005) performed
the language identification, structure extraction,
theme extraction, and similarity searches mainly
on Western lyrics. The mood (Hu et al., 2009;
Zaanen and Kanters, 2010) and genre (Mayer et
al., 2008) classification have also been performed
using lyric features of Western music.

Another interesting task named as LYRIC-
SRADAR was developed by Sasaki et al. (2014)
and they visualized the topics of Japaneses lyr-
ics by using a Latent Dirichlet Allocation (LDA).
Several experiments were performed on retriev-
ing similar lyrics for Western songs by (Mahe-
dero et al., 2005; Knees et al., 2007; Schedl et al.,
2011), Mandarin lyrics by (Wang et al., 2010), and
Chinese lyrics by (Han et al., 2015).

2.1 Experiments on Indian Songs

MIR in Indian songs is at early stage. Recently,
mood classification of Hindi songs have been per-
formed using audio (Ujlambkar and Attar, 2012;
Patra et al., 2013; Patra et al., 2016a), lyrics (Patra
et al., 2015), and combination of both (Patra et al.,
2016b; Patra et al., 2016c). The datasets used in
above experiments are small and not adequate for
development of recommendation system.

Some other tasks like raga identification of
south Indian Carnatic music (Sridhar et al.,
2011), multimodal sentiment analysis of Telugu
songs (Abburi et al., 2016), melody identification
of Carnatic music (Koduri et al., 2011), rhythm
analysis of Indian art music (Srinivasamurthy et
al., 2014) etc. have been performed till date. To
the best of author’s knowledge, almost no work
exists for retrieving similar lyrics for any of the
Indian songs.291

3 Dataset and Preprocessing

3.1 Dataset

As no task on retrieving the similar lyrics has been
performed till date, no dataset is also available. A
total of 31,171 lyrics of Hindi songs have been
collected from several websites101112 using a web
crawler developed by us. Among them, 25,088
lyrics are in Romanized characters and 6,083 lyr-
ics are in utf-8 characters. It is good to develop
similar lyrics retrieval system on the lyrics hav-
ing utf-8 characters, but the number of such lyr-
ics is insufficient to develop an IR system. Thus,
we discarded the latter set of lyrics for the current
experiment and developed similar lyrics retrieval
system only on the Romanized lyrics.

There were many HTML tags and other junk
characters, thus, several preprocessing steps were
performed on the collected dataset to ensure the
quality. The variations in Romanized words mo-
tivated us to remove the duplicate characters and
perform stemming.

3.2 Preprocessing

We removed HTML tags and junk characters from
the lyrics. Mukhda (the starting stanzas of a song)
is repeated in lyric and the importance of words
in mukhda is higher than the words in antara (in-
side stanzas of a lyric) (Beaster-Jones and Sar-
razin, 2016). Again, we observed that the systems
are biased towards mukhda because of the higher
word frequency. We performed our experiments
both before and after removing repeated lines from
the lyrics.

As the number of n-grams is quite high, and a
huge computational power is required to perform
the search. Thus, preprocessing is an important
step reduce the n-gram size and the steps for pre-
processing are sequentially discussed as follows.

3.2.1 Removing Duplicate Characters
There were many words having multiple repeated
characters. To reduce the n-gram size, the fre-
quency of any repetitive character were reduced to
two. For example, the word ‘Ajnabiiiiiiiiii’ con-
tains multiple ‘i’ and those multiple occurrences
of ‘i’ was replaced by ‘ii’. At the end, word ‘Ajn-
abiiiiiiiiii’ became ‘Ajnabii’. Later on, the pro-
posed stemming algorithm is used on above word

10http://www.lyricsmint.com
11http://smriti.com
12http://www.indicine.com

to reduce ii to i.

3.2.2 Stemming Algorithm
It was observed that stemming algorithm improves
the performance of any information retrieval sys-
tem (Moral et al., 2014). Many words are written
in different forms, for example, the word ‘marega’
(to beat) is written as ‘maregaa’ in another lyric.
There are several tool for stemming or lemmatiz-
ation, but all of them are for either WX or utf-8
characters and these tools are not useful for cur-
rent scenario. Thus, an unsupervised stemming al-
gorithm was developed to reduce the number of n-
grams present in corpus and to improve the system
performance. We hope that the proposed unsuper-
vised stemming algorithm is useful for handling
noisy data from different languages.

The algorithm contains two main steps namely
collecting suffix and stemming. The first step de-
scribes how suffixes are collected from words by
comparing the similar words. Details of the first
step is given below.

First, all unique words are stored in a diction-
ary after sorting them alphabetically and length
wise. This step is performed to reduce the num-
ber of matching during stemming. For each word,
a suffix is searched by comparing with another
word starting with same character. If the differ-
ence between two words are less than equals to
three then rest of the words (after removing the
common characters) is considered as a suffix and
the word matching is done from the left to right.
For example, the words Ajnabi and Ajnabii have
only single character difference, i.e. i. Thus, i
is considered as suffix and inserted in the suffix
list. If difference between the words is more than
3, then rest of the words after removing common
characters may be a probable suffix. Such suf-
fixes are collected and checked manually before
implementing. The second step describes how
stemming is performed using the collected suffixes
and all inflected words are removed from the final
dictionary. The pseudo code for normalizing the
words is given in algorithm 1.

After using the stemming algorithm, the word
‘maregaa’ is normalized to ‘marega’. Several
words having different suffixes at the end were
observed in lyrics, for example, ‘dost’ (friend),
‘dosti’ (friendship), ‘doston’ (friends) and the
words ‘dosti’ and ‘doston’ are normalized to
‘dost’.

We removed stopwords while constructing the292

Algorithm 1 Pseudo code for unsupervised stemming
1: procedure COLLECTING SUFFIX

2: Store all unique words in dict after sorting them alphabetically and length wise
3: for each wordi in dict do
4: for each wordj in dict do
5: if wordj .startswith(wordi) and len(wordj)-len(wordi) ≤ 3 then
6: wordj is inflected form of wordi
7: suffix list.append(wordj .replace(wordi))
8: else
9: if wordj .startswith(wordi) and len(wordj)-len(wordi) ≥ 4 then

10: diff suffix list.append(wordj .replace(wordi))
11: else
12: continue
13: Each suffix in diff suffix list is manually checked
14: procedure STEMMING

15: for each wordi in dict do
16: for each wordj in dict do
17: if wordj .startswith(wordi) then
18: x← wordj .replace(wordi)
19: if x in diff suffix list then
20: wordj is removed from dict

21: else
22: continue

n-grams. Initially, we had a list of stopwords for
Hindi, but it was in utf-8 format. Thus, another
stopword list was prepared manually in Roman-
ized format. This list contains all possible form
of a single word, for e.g. ‘yun’ and ‘yuun’. The
stopwords list contains 307 words in Romanized
format.

A total of 95,415 unigrams were obtained from
the whole corpus after removing the HTML tags
and junk characters. The number reduced to
94,960 after removing the stopwords from lyrics.
Further, the duplicate characters were removed
and this process obtained a total of 75,620 uni-
grams. Finally, the unsupervised stemming tech-
nique was used and it reduced the unigram size
to 37,693, though some errors were observed dur-
ing the stemming process. For example, stem-
ming algorithm trimmed the word ‘waaris’ (heir)
to ‘waar’ (attack) after comparing with the later
and after removing the suffix is.

4 Methods

4.1 Doc2Vec
Bag-of-words gained immense popularity in the
field of text processing, though they have two
weaknesses: they lose the ordering of the words

and also ignore semantics of the words (Le and
Mikolov, 2014). The document level word embed-
dings have been quite successful in several classi-
fication tasks, and it has the advantage over the
word embeddings that it is trained to reconstruct
linguistic contexts of words. Similarly, Doc2Vec
is an extension of word embeddings that learns to
correlate labels and words, rather than words with
other words.13 Doc2Vec has been successfully
used for several NLP related tasks such as sum-
marization (Pontes et al., 2016), sentiment ana-
lysis (Le and Mikolov, 2014) etc.

Initially, we trained all the lyrics using
Gensim14 library. Then, top 10 retrieved vectors
for each of the query vectors have been collected
for manual checking. We also trained Doc2Vec
model on lyrics after stemming all words using the
proposed stemming algorithm.

4.2 Self-Organizing Feature Maps

SOFMs are useful for clustering several
tasks (Vesanto and Alhoniemi, 2000) and it
has been successfully used for information
retrieval (Ahuja and Goyal, 2012). SOFMs

13https://deeplearning4j.org/doc2vec
14https://radimrehurek.com/gensim/models/word2vec.html293

are a class of artificial neural networks, which
employ competitive learning (Kohonen, 1982).
SOFMs cluster similar data without the help
of training instances, and hence are said to
perform unsupervised learning. The algorithm is
started by initializing a set of randomly weighted
neurons in the input feature space, and care is
taken not to initialize two neurons with identical
weights. SOFMs work in two phases, namely
self-organizing phase and recall phase. In the
self-organizing phase, each neuron’s weight
vector is matched with an input vector, and the
best matching neuron and its neighborhood’s
weights are adapted to match the selected input.
As this kind of learning progresses, input-vectors
located far away from each other are mapped to
distant neurons. Thus, a grouping of close-by
input neurons is formed. In the recall phase, an
input vector which is unknown to the SOFMs are
matched with all the neurons, and the neighbor-
hood which forms its closest match is associated
with that new input vector (Kar et al., 2015).

In self-organizing phase, we considered fea-
ture vectors (N-grams) of songs and these were
mapped to the neurons to form an SOFMs cluster.
In recall phase, a query lyric feature vector was
matched with the cluster neighborhoods created
during the self-organizing phase. The nearest
matching SOFM neighborhood was selected as
the set of song ids corresponding to the query
song. The detailed steps of SOFMs are given in
algorithm 2.

N-gram feature: The n-gram feature plays an
important role in information retrieval. The Term
Frequency-Inverse Document Frequency (tf-idf)
scores of up to trigrams were considered as fea-
ture because the sparsity of the feature vector in-
creases significantly and the results get worse after
including higher order n-grams.

4.3 Evaluation

Manual checking is a tedious and time-consuming
task requiring human resource. There was no gold
standard dataset available for comparing perform-
ances of the developed systems. Thus, manual
evaluation was performed for calculating simil-
arity between a query and retrieved lyrics. To
keep the annotation process simple and reduce the
manual checking load, we selected only top ten re-
trieved lyrics for each query lyric.

We asked the annotator, whether the song is

Algorithm 2 Pseudo code for SOFMs
1: procedure SELF-ORGANIZING PHASE

2: Initialize a neuron field of k × k dimen-
sion, each having 1 × d dimensional weight
vector (no two weight vectors would be the
same).

3: Select winning weight vector
having the least Euclidean distance

(di,j =
√∑d

i=1 (xi,j − wi,j)
2) to input

vector
4: The winning neuron adapted using wk,j =
wk,j + η(xk,j − wk,j)

5: for each iteration do decrease learning
rate η and neighborhood size till convergence

6: procedure RECALL PHASE

7: Map input data to nearest clusters centers
(weight vectors).

similar to query lyrics or not. Second, whether
they would like to listen to retrieved song after
listening to the query-song. The annotators were
asked to provide a score on a scale from 0 to
1 to each of the ten retrieved lyrics for a single
query lyric based on above mentioned points. The
retrieved lyric is considered to be matched with
the query lyric if the similarity score provided by
the annotator is more than 0.7; the threshold was
selected experimentally. We wanted a trade off
between the system performance and quality of the
annotation. This value is selected to reduce the
annotation disagreement as well as the subjectiv-
ity of the annotators. Two annotators checked
each of the results. We also calculated the inter-
annotator agreement and it was 87%. Finally, pre-
cision (P), recall (R) and F-measure (FM) are cal-
culated based on the manual checking.

5 Results and Discussion

We have selected a total of 100 query lyrics for
testing system performances. For the test, we
chose lyrics by searching the top lyrics on the web
which are present in the collected dataset. The
rest 31,070 lyrics from entire dataset were used
for training the system. The systems and their per-
formances with detailed analysis are described be-
low.

5.1 Baseline System

A baseline system was developed for identify-
ing similar lyrics using Fuzzy C-means (FCMs)294

clustering algorithm on 34,571 unigrams, and it
achieved F-measure of 0.42.

5.2 Doc2Vec based System
We trained Doc2Vec model using all data (i.e.
31,171 lyrics). There were two models, with and
without the unsupervised stemming algorithm. We
evaluated the Doc2Vec based system using same
100 query lyrics, and the systems achieved F-
measures of 0.670 without using the stemming al-
gorithm. Whereas F-measure increased to 0.692
after implementing the stemming algorithm, i.e.
an improvement of 0.022 was observed after per-
forming the stemming.

5.3 SOFMs based System
For the SOFMs based system, we changed the dis-
tance function from Euclidean to cosine similarity
as : Cosine Similarity (CS) = 1− u·v

||u||2||v||2
The n-grams were collected after removing

stopwords and duplicate characters as well as im-
plementing the unsupervised stemming algorithm.
The words having frequency one were also re-
moved from the total 37,693 unigrams and the fi-
nal unigrams dimension was 34,571. The main
reason was that we observed an improvement in
the F-measure of 0.008 after removing the uni-
grams with one frequency. The unigram based
system yields F-measure of 0.671 using the Euc-
lidean distance, and there was an improvement of
0.004 when cosine similarity was used for calcu-
lating the distance.

After adding bigrams to the above system, the
feature dimension increased to 50,321. The bi-
grams having frequency one is also removed from
the lists. The SOFMs based system obtained
F-measure of 0.711 using Euclidean distance,
and cosine similarity improved the F-measure by
0.007. We developed another system using n-
grams up to three, and the feature dimension
was 57,321. The similar lyrics retrieval system
achieved F-measure of 0.737 using SOFMs with
Euclidean distance. An improvement of 0.012 in
F-measure was observed using cosine similarity.
The detailed results were shown in Table 1.

The higher order n-grams were not included in
the study due to computational complexity. The
proposed stemming algorithm provides significant
computational cost cutting. In fact, we believe that
implementing SOFMs for this problem would not
be useful if the stemming algorithm was not used.
Finally, we removed the repeated lines of mukhda

from lyrics and developed another system using
only unigrams. We observed that the F-measure
fell by 0.12 in comparison to system developed
using all the words of mukhda. Thus, we have not
performed any experiments further using this set-
ting.

Algorithms P R FM
FCMsU (Baseline) 0.431 0.410 0.420
Doc2VecWTS 0.670 0.670 0.670
Doc2VecWS 0.691 0.693 0.692
SOFMsU (EU) 0.721 0.663 0.671
SOFMsU (CS) 0.721 0.667 0.674
SOFMsUB (EU) 0.727 0.696 0.711
SOFMsUB (CS) 0.732 0.704 0.718
SOFMsUBT (EU) 0.764 0.710 0.737
SOFMsUBT (CS) 0.779 0.718 0.749

Table 1: Performances of SOFMs and FCMs
based systems.
EU: Euclidean Distance, CS: Cosine Similarity,
WTS: Without Stemming, WS: With Stemming,
U: Unigram, UB: Unigram + Bigram, UBT: Uni-
gram + Bigram + Trigram

5.4 Discussion

The similar lyrics retrieval systems based on
SOFMs and Doc2Vec performed well as com-
pared to baseline system using FCMs. The
Doc2Vec based system failed to perform as good
as the system developed using SOFMs with n-
grams up to three. The Doc2Vec requires a huge
amount of training data to train itself and this
may be one of the reasons for low performance
of Doc2Vec system. Calculating the similarity in
the general text is much easier than doing it in the
lyrics due to the free word order nature and this
may be another reason for poor performance of
Doc2Vec based system. It can be stated that the
SOFMs work well for clustering similar lyrics. By
improving the accuracy of unsupervised stemming
algorithm, performances of SOFMs based similar
lyrics retrieval system can be increased. Again,
adding more number of lyrics can significantly im-
prove the accuracies of such systems.

We investigated the errors in SOFMs based sys-
tem. We found that there were some mistakes
due to spelling variations. For example, the song
“ab to hai tumase har kushii apanii” does not
match with a single song. There are many spelling
mistakes in this lyrics such as “kushii” (it should295

be “khusii”), “apanii”, “tumase”, “mashahuur”,
“budanaam” etc. After removing stopwords, only
these words left for the test; thus no match is found
with the training dataset. The use of similar words
in a different sense makes it harder to identify
the similar lyrics in the case of SOFMs based
systems. In the case of Doc2Vec, we have not
removed stopwords while training the Doc2Vec
model; again this model observes the context in-
formation rather than only syntactic information
(matching the exact word); thus the above lyric has
fetched the results.

Searching the similar lyrics was also performed
by Mahedero et al. (2005) for Western songs.
They used cosine similarity to identify similar lyr-
ics. Another task, identifying similar lyrics based
on topics in Japanese songs was performed by Sa-
saki et al. (2014). They identified topics of lyrics
using LDA, and the evaluation was performed us-
ing the perplexity. To the best of author’s know-
ledge, no other comparable task has been per-
formed in either in Hindi or Western music.

6 Conclusions and Future Work

We developed a Hindi lyric dataset and implemen-
ted several techniques to clean the unstructured
data. An unsupervised stemming algorithm was
proposed to reduce the number of n-grams. We
hope these methods can be used in IR systems for
cleaning several unstructured data. The SOFMs
based similar lyrics retrieval system achieved the
maximum F-measure of 0.749 calculated on 100
query lyrics. We believe that this research will fa-
cilitate the development of recommendation in In-
dian music specifically for Hindi songs.

There are several directions for future work.
One of the most immediate tasks is to evaluate per-
formance of the proposed unsupervised stemming
algorithm. We used document level word embed-
dings though, word level embeddings and latent
dirichlet allocation (LDA) can be used in future
for developing lyrics retrieval systems.

In future, the inter-cluster cosine similarity can
be used for automatic evaluation. A weighted
score can be assigned to each portions of lyrics
(starting, middle, and end) for evaluation.

The mood words from lyrics can be collected
using unsupervised approach such as word em-
beddings and the derived mood information can
be used for ranking the results of similar lyrics
retrieval system. Ranking the retrieved lyrics is

another important factor for recommendation sys-
tem and is not considered during the evaluation of
current system. It is one of the limitations of cur-
rent developed system and ranking based evalu-
ation can be implemented in future.

Acknowledgments

The work reported in this paper is supported by
a grant from the “Visvesvaraya Ph.D. Scheme for
Electronics and IT” funded by Media Lab Asia of
Ministry of Electronics and Information Techno-
logy (MeitY), Government of India. The authors
are also thankful to the anonymous reviewers for
their helpful comments.

References

Harika Abburi, Eswar S. A. Akkireddy, Suryakanth
Gangashetti, and Radhika Mamidi. 2016. Mul-
timodal sentiment analysis of telugu songs. In Pro-
ceedings of the 4th Workshop on Sentiment Analysis
where AI meets Psychology (SAAIP 2016), pages
48–52.

Sudhir Ahuja and Rinkaj Goyal. 2012. Information
retrieval in intelligent systems: Current scenario &
issues. arXiv preprint arXiv:1206.3667.

Jayson Beaster-Jones and Natalie Sarrazin. 2016. Mu-
sic in Contemporary Indian Film: Memory, Voice,
Identity. Taylor & Francis.

James Davidson, Benjamin Liebald, Junning Liu,
Palash Nandy, Taylor Van Vleet, et al. 2010. The
youtube video recommendation system. In Proceed-
ings of the fourth ACM conference on Recommender
systems, pages 293–296. ACM.

Nancy Duncan and Mark Fox. 2005. Computer–aided
music distribution: The future of selection, retrieval
and transmission. First Monday, 10(4).

Yong Han, Li Min, Yu Zou, Zhongyuan Han, Song Li,
Leilei Kong, Haoliang Qi, Wenhao Qiao, Shuo Cui,
and Hong Deng. 2015. Lrc sousou: A lyrics re-
trieval system. In Proceedings of the International
Conference of Young Computer Scientists, Engin-
eers and Educators, pages 464–467. Springer.

Xiao Hu, J Stephen Downie, and Andreas F Ehmann.
2009. Lyric text mining in music mood classifica-
tion. In Proceedings of the 10th International Soci-
ety for Music Information Retrieval Conference (IS-
MIR 2009), pages 411–416.

Yajie Hu. 2014. A Model-Based Music Recommend-
ation System for Individual Users and Implicit User
Groups. Ph.D. thesis, University of Miami.296

Reshma Kar, Amit Konar, Aruna Chakraborty, Basab-
datta Sen Bhattacharya, and Atulya Nagar. 2015.
Eeg source localization by memory network analysis
of subjects engaged in perceiving emotions from fa-
cial expressions. In International Joint Conference
in Neural Networks (IJCNN-2015). IEEE.

Peter Knees, Tim Pohle, Markus Schedl, and Gerhard
Widmer. 2007. A music search engine built upon
audio-based and web-based similarity measures. In
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, pages 447–454. ACM.

Gopala K. Koduri, Marius Miron, Joan Serrà Julià, and
Xavier Serra. 2011. Computational approaches
for the understanding of melody in carnatic mu-
sic. In Proceedings of the 12th International Society
for Music Information Retrieval Conference (ISMIR
2011), pages 263–268.

Teuvo Kohonen. 1982. Self-organized formation of
topologically correct feature maps. Biological cy-
bernetics, 43(1):59–69.

Quoc Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31st International Conference on
Machine Learning (ICML-14), pages 1188–1196.

Jose P.G. Mahedero, Álvaro MartÍnez, Pedro Cano,
Markus Koppenberger, and Fabien Gouyon. 2005.
Natural language processing of lyrics. In Proceed-
ings of the 13th annual ACM international confer-
ence on Multimedia, pages 475–478. ACM.

Rudolf Mayer, Robert Neumayer, and Andreas Rauber.
2008. Rhyme and style features for musical genre
classification by song lyrics. In Proceedings of the
9th International Society for Music Information Re-
trieval Conference (ISMIR 2008), pages 337–342.

Cristian Moral, Angélica de Antonio, Ricardo Imbert,
and Jaime Ramı́rez. 2014. A survey of stemming
algorithms in information retrieval. Information Re-
search: An International Electronic Journal, 19(1).

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2013. Unsupervised approach to hindi music
mood classification. In Proceedings of the Mining
Intelligence and Knowledge Exploration, pages 62–
69. Springer International Publishing.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2015. Mood classification of hindi songs
based on lyrics. In Proceedings of the 12th Interna-
tional Conference on Natural Language Processing
(ICON- 2015), pages 261–267.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2016a. Labeling data and developing su-
pervised framework for hindi music mood ana-
lysis. Journal of Intelligent Information Systems,
48(3):633–651.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2016b. Multimodal mood classification - a
case study of differences in hindi and western songs.
In Proceedings of the 26th International Confer-
ence on Computational Linguistics (COLING 2016),
pages 1980–1989.

Braja G. Patra, Dipankar Das, and Sivaji Bandyopad-
hyay. 2016c. Multimodal mood classification
framework for hindi songs. Computación y Sis-
temas, 20(3):515–526.

Elvys L. Pontes, Juan-Manuel Torres-Moreno,
Stéphane Huet, and Andréa C. Linhares. 2016.
Tweet contextualization using continuous space
vectors: Automatic summarization of cultural
documents. In Proceedings of the CLEF (Working
Notes).

Shoto Sasaki, Kazuyoshi Yoshii, Tomoyasu Nakano,
Masataka Goto, and Shigeo Morishima. 2014. Lyr-
icsradar: A lyrics retrieval system based on latent
topics of lyrics. In Proceedings of the 15th Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR 2014), pages 585–590.

Markus Schedl, Time Pohle, Peter Knees, and Ger-
hard Widmer. 2011. Exploring the music similarity
space on the web. ACM Transactions on Informa-
tion Systems (TOIS), 29(3):14:1–14:24.

Rajeswari Sridhar, Manasa Subramanian, B. M.
Lavanya, B. Malinidevi, and T. V. Geetha. 2011.
Latent dirichlet allocation model for raga identific-
ation of carnatic music. Journal of Computer Sci-
ence, 7(11):1711–1716.

Ajay Srinivasamurthy, André Holzapfel, and Xavier
Serra. 2014. In search of automatic rhythm analysis
methods for turkish and indian art music. Journal of
New Music Research, 43(1):94–114.

Aniruddha M. Ujlambkar and Vahida Z. Attar. 2012.
Mood classification of indian popular music. In
Proceedings of the CUBE International Information
Technology Conference, pages 278–283. ACM.

Juha Vesanto and Esa Alhoniemi. 2000. Clustering
of the self-organizing map. IEEE Transactions on
neural networks, 11(3):586–600.

Chung-Che Wang, Jyh-Shing Roger Jang, and
Wennen Wang. 2010. An improved query by
singing/humming system using melody and lyrics
information. In Proceedings of the 11th Interna-
tional Society for Music Information Retrieval Con-
ference (ISMIR 2010), pages 45–50.

Menno Van Zaanen and Pieter Kanters. 2010. Auto-
matic mood classification using tf* idf based on lyr-
ics. In Proceedings of the 11th International Society
for Music Information Retrieval Conference (ISMIR
2010), pages 75–80.

297

