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Abstract

This paper explores variants of multi-modal computational models that aim to distinguish be-
tween abstract and concrete nouns. We assumed that textual vs. visual modalities might have differ-
ent strengths in providing information on abstract vs. concrete words. While the overall predictions
of our models were highly successful (reaching an accuracy of 96.45% in a binary classification and a
Spearman correlation of 0.86 in a regression analysis), the differences between the textual, visual and
combined modalities were however negligible, hence both text and images seem to provide reliable,
non-complementary information to represent both abstract and concrete words.

1 Introduction

Over the years, different disciplines have been interested in exploring the contributions of contextual
and perceptual information in human language acquisition and processing. From a psycholinguistic
perspective, the grounding theory indicates that the mental representation of a concept is built not only
through linguistic exposure but also incorporating multi-modal information extracted from real world
situations, including auditory, visual, etc. stimuli (Barsalou, 1999; Shapiro, 2007; Glenberg and Kaschak,
2002). From a computational perspective, multi-modality has been shown to enhance corpus-based co-
occurrence models that predict lexical information on various tasks, such as simulating word association,
predicting semantic and visual similarity, determining the compositionality of multi-word expressions,
and distinguishing between abstract and concrete concepts (Andrews et al., 2008; Silberer and Lapata,
2012; Roller and Schulte im Walde, 2013; Bruni et al., 2014; Hill et al., 2014; Lazaridou et al., 2015).

One focus of interest on the computational side has addressed the question of when and which per-
ceptual information is helpful for semantic predictions in computational models, i.e., under which con-
ditions perceptual information enhances or even outperforms textual information. For example, previous
work described filters that added visual information to corpus-based information into a computational
model of word meaning only in specific conditions: Kiela et al. (2014) suggested the dispersion filter
that integrates only images that resemble each other to a certain degree. Köper and Schulte im Walde
(2017) applied the same filter to a computational model of compositionality and added two more filters:
the imageability filter integrating only images for highly imaginable words, as determined by existing
imageability ratings; and the clustering filter only using images for a word that were similar to each
other, as determined by a cluster analysis.

In this paper, we explore variants of multi-modal computational models that aim to distinguish be-
tween abstract and concrete nouns, to contribute to both psycholinguistic research by exploring dif-
ferences in abstract vs. concrete concept representation and processing (Murphy, 2002; Barsalou and
Wiemer-Hastings, 2005; Pecher et al., 2011), and to computational linguistic research by exploring dif-
ferences between textual and visual information in modelling semantic knowledge. More specifically,



we apply a binary classifier as well as a regression model to differentiate between abstract vs. concrete
English nouns, as determined by concreteness ratings from Brysbaert et al. (2014). As features we com-
pare standard textual count co-occurrences from a web corpus (Schäfer and Bildhauer, 2012), word2vec
embeddings (Mikolov et al., 2013), GoogLeNet image vectors (Szegedy et al., 2015), and variants of
text and image vector concatenation. As qualitative analysis, we compare classification errors across
modalities, to zoom into the strengths and limits of the modalities and model parameters.

2 Material and Methods

2.1 Target Words

For our studies, we extracted nouns from the Brysbaert et al. (2014) collection of concreteness ratings for
40,000 English words. In this collection, each word was evaluated by at least 25 participants on a scale
from 1 (abstract) to 5 (concrete). Given that participants were not aware of the part-of-speech (POS)
of the word they were rating, we automatically assigned each word its most frequently occurring POS
in our corpus (see Section 2.2). We focused our analyses on nouns because they are usually easier for
humans to classify according to their concreteness compared to adjectives and verbs. In total we had
9,241 nouns that were also covered in an extensive selection of behavioural measures, such as valency
scores (Warriner et al., 2013) and reaction times (Balota et al., 2007), which we aim to include in further
analyses.

In one of our classification experiments (see Section 2.3), we included only a subset of the 9,241
nouns, i.e., the 1,000 most abstract and the 1,000 most concrete nouns, in order to assess a binary dis-
tinction of the most extreme noun instances regarding their abstractness vs. concreteness.

Figure 1 shows the distribution of the abstractness/concreteness scores across the 9,241 target nouns
in two different ways. In the upper plot, the histogram indicates that there are considerably more concrete
than abstract target nouns, which is the reason why we did not select nouns from specific ranges (e.g.,
1–2 for abstract nouns vs. 4–5 for concrete nouns) for the binary classification, but rather an identical
number of nouns from the two extremes (i.e., 1,000 nouns from the extreme ranges of each category). In
the lower plot, the boxplots show the quartiles for the two sets of selected abstract/concrete targets vs.
the remaining “middle” set of 7,241 nouns. This view once more illustrates that the 1,000 most abstract
nouns cover a larger range of scores (from 1.07 for spirituality to 2.17 for skill) than the 1,000 most
concrete nouns (from 4.97 for e.g. shoe to 5.00 for e.g. lemon), and also that the median of the middle
part is rather high (i.e., confirming that many targets are highly concrete).

2.2 Text and Image Data

As textual modality for our target nouns, we compared standard count co-occurrence vectors and word2vec
embedding vectors. The count vectors used ENCOW14 (Schäfer and Bildhauer, 2012; Schäfer, 2015),
currently one of the largest web corpora, to induce co-occurrence frequency matrices for the target nouns.
As dimensions in the target noun vectors we compared two variants: on the one hand, we used the full
set of 9,241 target nouns as co-occurring word dimensions; on the other hand, we used the reduced set of
2,000 target nouns as co-occurring word dimensions. The main reason for using the targets also as vec-
tor dimensions was to enable explorations of interdependencies between the abstractness/concreteness
scores of our targets and their co-occurring words (see Frassinelli et al. (2017) for details). As window
size for the co-occurrence counts we looked at two words to the left and to the right of the target words.
As embedding vectors, we used the publicly available representations obtained from the word2vec cbow
model (Mikolov et al., 2013). This model was trained on a Google-internal news corpus with 100 billion
tokens.

The visual features were extracted from images downloaded from the Google search engine, follow-
ing Kiela et al. (2016). We queried the search engine for up to 25 images per word, and converted all
images into high-dimensional numerical representations by using the Caffe toolkit (Jia et al., 2014) and
pre-trained models.
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Figure 1: Abstractness/concreteness scores across our 9,241 target nouns.



For image recognition, we applied state-of-the-art convolutional neural networks:

1. BVLC GoogLeNet (Szegedy et al., 2015), a 22-layer deep network. We obtained vectors by out-
putting the value of layer pool5/7x7 s1, which is the last layer before the final softmax and contains
1,024 elements. These 1,024 elements determine the dimensionality of our vectors.

2. BVLC AlexNet (Krizhevsky et al., 2012), a neural network with 60 million parameters and 500,000
neurons, consisting of five convolutional layers, some of which are followed by max-pooling lay-
ers, and two globally connected layers with a final 1,000-way softmax. We output the vectors from
layer fc7, a 4,096-dimensional feature vector for every image.

In all settings, a word is represented in the visual space by the mean vector of its (up to) 25 image
representations.

When concatenating the textual and visual target vectors, we compared two variants:

1. CONCAT-SIMPLE: We concatenated the two vectors for each target noun without normalisation,
i.e., disregarding the different dimensionalities of the vectors.

2. CONCAT-NORM: We concatenated the two vectors for each target noun after normalisation, i.e.,
we first calculated the proportion of each dimension in the two vectors separately, before concate-
nating them.

2.3 Classification

In order to evaluate the performance of our models in correctly classifying words according to their
concreteness scores, we performed 10-fold cross-validation on the output of two classification tasks.

1. BINARY CLASSIFICATION: A binary classification of the most extreme abstract vs. concrete nouns
should offer the best access to the relevance of the different modalities. This classification thus
makes use of the subset of 2,000 target nouns (1,000 extremely abstract and 1,000 extremely
concrete nouns), and applies a Random Forest Classifier. The binary classification is evaluated by
computing the accuracy of the class assignments.

2. REGRESSION MODEL: In the second classification setup, we apply Gradient Boosting to predict
the abstractness/concreteness scores for all 9,241 target nouns, for the subset of 2,000 target nouns,
and for the “middle” set of 7,241 target nouns. The predicted scores are evaluated against the
human ratings from the Brysbaert et al. (2014) collection using Spearman’s rank-order correlation
coefficient ρ.

3 Results

In this section, we present the classification and regression results of our experiments, across the various
sets of target nouns, their textual and visual features, and the two classification methods.

3.1 Quantitative Results

Table 1 shows a quantitative view on the results. For the binary classification, we compare the textual
and visual features for the 2,000 extreme abstract/concrete target nouns. For the regression model, we
compare the same features for the full set of 9,241 target nouns, the 2,000 extreme target nouns, as
well as the “middle” set. Since there were only marginal differences between using 2,000 vs. 9,241
count vector dimensions as well as between using AlexNet vs. GoogLeNet image vectors, we selected
only one from each of the alternatives for presentation. Regarding the concatenation of the vectors, the
normalised version CONCAT-NORM consistently outperformed the non-normalised concatenation, so we
focus on the former.



Text (T) Images (V) Text+Images (T+V)
Targets 9241 (count) word2vec GoogLeNet 2000+GoogLeNet 9241+GoogLeNet word2vec+GoogLeNet

Binary Classification (evaluation: accuracy)
2,000 94.78 92.21 92.79 95.89 96.45 93.79

Regression Model (evaluation: ρ)
2,000 0.78 0.77 0.75 0.77 0.78 0.77
7,241 0.75 0.73 0.61 0.76 0.79 0.76
9,241 0.83 0.82 0.71 0.84 0.86 0.83

Table 1: Classification and regression results.

The differences between the textual (T), the visual (V) and the concatenated textual+visual (T+V)
features are marginal. Looking at the best results per category (T/V/T+V), the textual features are slightly
better than the visual features in the binary distinction between extremely abstract vs. concrete target
nouns, and the combined multi-modal features are slightly better than the text-only features. For both the
textual mode and the multi-modal mode, the count vectors slightly outperform the embedding vectors.

The same tendencies can be observed in the regression model, though the difference between the
count and embedding vectors vanishes, and the differences between the modalities differ across the target
noun sets: the predicted rankings of the concreteness scores have a better fit to the human rankings when
taking all 9,241 target nouns into account, in comparison to taking subsets into account. In addition, the
difference between relying on textual vs. visual information is stronger for the larger sets of 7,241 and
9,241 target nouns than for the set of 2,000 nouns.

3.2 Qualitative Results

The quantitative analysis showed that the improvements in semantic classification when using images
in addition to text information were only marginal. We therefore aimed to explore differences in our
abstractness/concreteness classifications across modalities by relying on a qualitative analysis.

Table 2 shows the strongest differences in abstractness/concreteness binary classification when com-
paring the best textual model (9241 count) and the best visual model (GoogLeNet), by calculating the
disagreements between predictions and human ratings. I.e., the column ’T > V’ lists the 15 target nouns
where the error between prediction and gold standard was much smaller across the many runs when rely-
ing on the textual vs. the visual features; vice versa for the column ’T < V’. We can see that –according
to our small sample– none of the differences in classification can clearly be attributed to only abstract
(see ’A’ and magenta font) or only concrete (see ’C’ and blue font) target nouns: 7 out of the top 15
words that are classified better when relying on textual rather than visual features are concrete, as are 9
out of the top 15 words that are classified better when relying on visual rather than textual features. More
or less the same applies in Table 3 when comparing the textual and the textual+visual features (9 out of
15 words for T vs. 7 out of 15 words for T+V are concrete).

4 Conclusion

In this paper, we explored variants of multi-modal computational models that aimed to distinguish be-
tween abstract and concrete nouns. While the overall predictions of many variants were highly successful
(reaching an accuracy of 96.45% in a binary classification and a Spearman correlation of 0.86 using a
regression model), the differences between the textual, visual and combined modalities were negligible,
hence the information types in the different modalities are not complementary. A small-scale qualitative
evaluation indicated that all variants of modalities do model both abstract and concrete words similarly
well, i.e., both text and images seem to provide sufficient information to represent both abstract and
concrete words.



T > V T < V
Target Score Abstract/Concrete Target Score Abstract/Concrete
trickery 1.90 A sausage 4.88 C
bamboo 4.86 C butter 4.90 C
satire 1.96 A firewood 4.93 C
bull 4.85 C snout 4.89 C
extravagance 1.73 A willingness 1.81 A
lightbulb 5.00 C underpants 4.89 C
marshmallow 4.85 C sociology 1.79 A
whim 1.69 A gutter 4.85 C
regression 1.92 A reason 1.93 A
thanks 2.15 A bone 4.90 C
oven 4.97 C purpose 1.52 A
pitcher 4.93 C frustration 2.06 A
sentimentality 1.73 A sparrow 4.85 C
bandage 4.85 C cowardice 2.10 A
dishonesty 1.90 A thought 1.97 C

Table 2: Most striking classification differences using textual vs. visual features.

T > T+V T < T+V
Target Score Abstract/Concrete Target Score Abstract/Concrete
beard 4.96 C principle 1.70 A
offensive 2.10 A sausage 4.88 C
severity 1.76 A purpose 1.52 A
ecstasy 2.04 A reason 1.93 A
bowl 4.87 C butter 4.99 C
lollipop 4.96 C impossibility 1.52 A
walnut 4.97 C sociology 1.79 A
breakup 2.00 A underpants 4.89 C
fridge 4.92 C willingness 1.81 A
complement 2.00 A bone 4.90 C
hotel 4.93 C gutter 4.85 C
butterfly 4.93 C firewood 4.93 C
wish 1.77 A frustration 2.06 A
jeans 5.00 C weird 1.59 A
cabin 4.92 C snout 4.89 C

Table 3: Most striking classification differences using textual vs. textual+visual features.
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