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Abstract

Abstract. In this work, we study the problem of relational similarity by combining different
word embeddings learned from different types of contexts. The word2vec model with linear bag-of-
words contexts can capture more topical and less functional similarity, while the dependency-based
word embeddings with syntactic contexts can capture more functional and less topical similarity. We
explore topical space and functional space simultaneously by considering these two word embed-
dings and different metrics. We evaluate our model on relational similarity framework, and report
state-of-the-art performance on standard test collections.

1 Introduction

Measuring relational similarity between two word pairs plays important roles in natural language pro-
cessing (NLP). The techniques for solving this problem can be applied to a variety of NLP tasks, such
as query expansion, word sense disambiguation, machine translation, information extraction and ques-
tion answering. Previous work addressing the problem can be roughly classified into three categories:
(1) learning word embeddings from large collections of text using variants of neural networks (Mikolov
et al. (2013a); Mikolov et al. (2013b); Mikolov et al. (2013c); Levy and Goldberg (2014)) or global
matrix factorization (Deerwester et al. (1990); Turney (2012)); (2) extracting knowledge from existing
semantic networks, such as WordNet (Yang and Powers (2005); Alvarez and Lim (2007); Hughes and
Ramage (2007)) and ConceptNet (Boteanu and Chernova (2015)); (3) combining the above two models
by various ways (Agirre et al. (2009); Zhila et al. (2013); Iacobacci et al. (2015); Summers-Stay et al.
(2016)).

The empirical evidence shows that the word representations learned from neural network models do
an especially good job in capturing not only attributional similarities between words but also similarities
between pairs of words (Mikolov et al. (2013c)). Levy and Goldberg (2014) generalize the skip-gram
model with negative sampling to include arbitrary word contexts and present the dependency-based word
embeddings, which are learned from syntactic contexts derived from dependency parse-trees. Qualitative
and quantitative analysis demonstrates that the word2vec model with linear bag-of-words contexts can
yield broad topical similarity while the dependency-based word embeddings with syntactic contexts can
capture more functional similarity. Turney (2012) is the first, to the best of our knowledge, to raise the
word vector representations in a dual space and unify semantic relations and compositions by the dual-
space model. The dual-space model consists of a domain space and a function space, where the domain
or topic of a word is characterized by the nouns that occur near it and the function or role of a word is
characterized by the syntactic context that relates it to the verbs that occur near it.

We detail our main contributions as follows. (1) In this paper, we use the word2vec model with linear
bag-of-words contexts to capture the domain of a word, and the dependency-based word embeddings
with syntactic contexts to characterize the function of a word. The broad contexts used in our model
can provide richer information for measuring domain similarity (i.e., topic, subject, or field similarity)



and function similarity (i.e, role, relationship, or usage similarity) than noun or verb-based patterns for
contexts in Turney’s (2012) model. (2) The two existing models for measuring relational similarity are:
the directional similarity model (Zhila et al. (2013)) and the dual-space model consisting of domain
and function space (Turney (2012)). Both models suffer some drawbacks. The directional similarity
model explores the difference of two relationships in multiple topicality dimensions in the vector space.
However, it ignores the spatial distances between word vectors, which can reveal the function similarity
of words in function space. The dual-space model can measure the domain similarity and function
similarity between words. However, it only computes the domain similarity between two single words
and places less emphasis on the domain similarity between two relations. In this work, we propose a
new dual-space model for measuring relational similarity, which combines the advantages of the two
existing models. (3) We evaluate our model on relational similarity framework and report state-of-the-art
performance on SAT analogy questions.

2 Related Work

Vector space models have a long, rich history in the field of natural language processing, where each word
is represented as a real-valued vector in a continuous vector space. All these models depend in some way
or another on the distributional hypothesis which states that words that occur in similar contexts tend to
have similar meanings (Harris, 1954; Firth, 1957). There are the two main model families for learning
word vectors: (1) global matrix factorization methods, such as latent semantic analysis, which generates
embeddings from term-document matrices by singular value decomposition (Deerwester et al. (1990));
(2) neural network models, such as the skip-gram and continuous bag of words models of ()Mikolov
et al. (2013a); Mikolov et al. (2013b); Mikolov et al. (2013c)), referred to as word2vec, which learn
embeddings by training a network to predict neighboring words. Levy and Goldberg (2014) generalize
the skip-gram model with negative sampling to include arbitrary word contexts, learn embeddings from
syntactic contexts and demonstrate that the dependency-based embeddings can capture more functional
similarity than the original skip-gram embeddings (word2vec).

Several algorithms have been proposed for solving SAT-style analogy questions. A good algorithm
for recognizing analogies can also help to solve the classification problem of semantic relations, which
has potential applications in machine translation, information extraction and word sense disambiguation.
Quesada et al. (2004) propose LSA as a method to represent the relations between words and use a
prediction to represent relation comparisons in the LSA semantic space. Veale (2004) considers the
utility of the taxonomic structure of WordNet to the solution of SAT analogies. Turney and Littman
(2005) show that the cosine metric in the Vector Space Model of information retrieval can be used to
solve analogy questions and to classify semantic relations. Turney (2012) introduces a dual-space model,
which consists of a space for measuring domain similarity and a space for measuring function similarity.
The dual-space model has been applied to measuring relation similarity and compositional similarity.

3 Word Embeddings with Different Context Types

Word2vec (W2V) is one of the most popular word embedding methods that learn word vectors from raw
text. It has two models for generating dense embeddings: the skip-gram model and the continuous bag-
of-words (CBOW) model. The training objective of the skip-gram model is to predict each surrounding
word in a context window of 2k words from the target word. So for k =2, the contexts of the target word
Wy are wi—g, Wi—1, W41, We2 and we are predicting each of these from the word w;. However, a con-

text window with a smaller size k£ may miss some important contexts while including some accidental
ones. Recently, Levy et al. propose the dependency-based word embeddings (DEP), which generalize
the skip-gram model with negative sampling, and move from linear bag-of-words contexts to syntactic
contexts that are derived from automatically produced dependency parse-trees. Embeddings produced
from different kinds of contexts can induce different word similarities. The original skip-gram embed-



dings can yield broad topical similarities, while the dependency-based word embeddings can capture
more functional similarities (Levy et al., 2014).

4 Relational Similarity

Relational similarity measures the degree of correspondence between two relations (Jurgens et al. (2012)).
The task can be modeled as an analogy problem, where given two pairs of words, A:B and C:D, the goal
is to determine the degree to which the semantic relation between A and B is similar to that between C
and D. We first introduce two types of existing models for relational similarity.

4.1 Directional Similarity Model

Zhila et al. (2013) propose a directional similarity model to evaluate the correspondence between re-
lations. Given two pairs of words A:B and C:D, suppose (v4,vg) and (vc,vp) are the corresponding
vectors of these words. Relational similarity of these two word pairs is defined as the cosine function
between the two directional vectors of (v4 — vp) and (ve — vp):

Similarity(A: B :: C: D) = (va —vp) - (vo = UD).

lva = vB|l[lve = vpl|
In this model, the relationship between two words is represented by the difference of corresponding two
word vectors, which reveals the change from one word to the other in terms of multiple topicality di-
mensions in the vector space. From the geometric point of view, if two relationship vectors are relatively
parallel (i.e., share the same direction), then the two word pairs can be considered as they have similar
relations. They apply the model to the problem of relation classification which determines whether two
pairs share the same relation. The goal here is to design a model for answering the more difficult SAT
analogy questions. However, sometimes this directional similarity model can not measure the analogy
problem correctly.

4.2 A Dual-Space Model

Why does the directional similarity model fail on some analogy questions? One possible reason is
that the model depends on direction alone and ignores spatial distance between word vectors. Turney
(2012) presents a dual-space model to unify semantic relations and compositions. The dual-space model
consists of a domain space for measuring domain similarity and a function space for measuring function
similarity. He gives a good example to explain this model. Consider the analogy example, traffic:street

: water:riverbed. Traffic and street share the same domain, the domain of transportation. Water and
riverbed share the same domain, the domain of hydrology. On the other hand, fraffic and water share
the same function, the function of flow, and street and riverbed share the same function, the function of
carry. The model can recognize that the semantic relation between fraffic and street is analogous to the
relation between water and riverbed by considering the combination of domain and function similarity.
A general explanation for the model is, given an analogy A:B :: C:D, A and B, C and D have relatively
high domain similarity in their respective domains; A and C, B and D have relatively high function
similarity in respective function spaces.

4.3 A New Dual-Space Model: Refining the Directional Similarity Model and the Dual-
Space Model

The directional similarity model (Zhila et al. (2013)) explores the difference of two relationships in
multiple topicality dimensions in the vector space. However, it ignores the spatial distance between
word vectors, which can reveal the function similarity of words in function space. The dual-space model
(Turney (2012)) can measure both domain similarity and function similarity between words. However,
it only computes the domain similarity between two single word vectors and places less emphasis on



the domain similarity between two relations. Moreover, Turney’s (2012) model uses only noun or verb-
based patterns for contexts to model domain or function space. In this paper, we propose a novel dual-
space model, which combines the advantages of the above two existing models. We use the word2vec-
based directional similarity model to measure the similarity of two relations in domain space, and the
dependency-based word embeddings to represent the word vector in function space. The two embeddings
used in our model consider broader contexts than those in the original dual-space model, which can
provide richer information for measuring domain similarity and function similarity.

A mathematical description of our dual-space model is given as follows:

Given two pairs of words A:B and C:D, suppose Viyav 4y, Vivav(s), Vwav (o), Vwav(p) are the
vectors of these words in domain space and Vprpa). Voep(B), VpEP(C)>» VDEP(D) are the vectors of
these words in function space. Based on the directional similarity model (Zhila et al., 2013), we define
the domain similarity of two pairs of words as follows:

Similarity ,(A: B :: C: D) — Vwava)y — Vivav(s)) - Vivavc) — Vivav(p))
b Viwvavay = Vivav )l lllVwav ey — Viwav o)l

The function similarity of A and C and the function similarity of B and D are defined respectively as

follows:

e Vbepa) - VbEP(©)
Similarity ;4 (A: C) = :
(A 0) Voerw)IIIVDEPQ@)]|

o Vpeps) - VDEP(D)
Similarity o (B: D) = .
r2(B:D) Vpeps)IIVDEPD) ||

We design the method Similarity 4, to combine the above similarities for relational similarity as
follows, which satisfies that the combined similarity is high when the component similarities are high:

1
Similarity 4 ,p(A: B :: C: D) = g(SimilarityD(A: B :: C: D)+Similarity o, (A: C')4Similarity o (B: D))

We give an SAT question in Table 1 to demonstrate how our compositional similarity works. An SAT
analogy question consists of a target pair of words and five option pairs of words. The task is to select
the option pair that “best expresses a relationship similar to that expressed in the original pair”, as stated
in the test’s directions. We use the 300-dimensional W2V and DEP vectors available for downloading .
For the target pair bruise:skin in Table 1, our method Similarity 4 , 5, (= 0.406) can recognize the correct
answer stain:fabric although Similarityp (= 0.189), Similarityr; (= 0.539) and Similarity 2 (= 0.491)
for the correct answer are all ranked second among five options.

bruise:skin Similarity, | Similarityyy | Similaritypo | Similarity 4pp
muscle:bone 0.023 0.457 0.622 0.367
smudge:blemish -0.135 0.540 0.320 0.242
rash:allergy 0.208 0.358 0.370 0.312
layer:veneer -0.091 0.273 0.468 0.216
**gtain:fabric** 0.189 0.539 0.491 0.406

Table 1: Experimental results of four models on SAT question bruise:skin

S Experiments and Evaluation

5.1 Relational Similarity Experiment

In the following experiments, we evaluate our approaches to solving analogies by a set of 374 SAT
analogy questions, which is the same set of questions as was used in Turney’s Dual-Space mode (Turney

"http://u.cs.biu.ac.il/~nlp/resources/downloads/embeddings—-contexts/



(2012)). Precision and Recall are two standard performance measurements used for evaluation. The
definitions of precision and recall are specified by (Turney and Littman (2005)). In all experiments, we
use the 300-dimensional W2V and DEP vectors pretrained on a concatenation of three large, diverse
English corpora, and those vectors are available for downloading !.

Table 2 shows the experimental results of four approaches presented in Section 4.3 on the set of 374
analogy questions. Two questions are skipped because the vector for the target pair is not available in
the collection. Since there are five options for each target pair of an SAT analogy question, random
guessing would yield a recall of 20%. Domain similarity Similarity p, function similarity Similarity r;
and Similarity 7o all perform much better than random guessing. Our compositional similarity model
Similarity 4 p p in the dual space clearly outperforms Similarity p, Similarity 7; and Similarity 2 in single
domain or function space.

Similarityp’13 | Similarityr1 | Similaritypo | Similarity app
Correct 170 139 144 185
Incorrect 202 233 228 187
Precision% 45.7 374 38.7 49.7
Recall% 45.5 37.2 38.5 49.5

Table 2: Experimental results on the set of 374 analogy questions

Table 3 splits out the results for different parts of speech of the 374 SAT questions, which include
noun:noun, adjective:adjective, verb:verb, noun:adjective or adjective:noun, noun:verb or verb:noun,
verb:adjective/adverb or adjective/adverb:verb. We compare the number of correct guesses of our model
Similarity o pp with two existing models Similarity p (Zhila et al. (2013)) and Dual-Space model (Tur-
ney (2012))>. Similarity 4pp works best on the questions with the labels noun:adjective and adjec-
tive:adjective. For the questions with the label verb:verb, Similarityp achieves the best performance.
Dual-Space’12 outperforms other two models on the noun:noun, noun:verb and verb:adj/adv questions.

Parts of speech Total | Similarity app | Similarityp’13 | Dual-Space’12
noun:noun 192 95 93 97
noun:adj or adj:noun 66 38 28 35
noun:verb or verb:noun 54 23 20 27
adj:adj 24 10 8 9
verb:adj/adv or adj/adv:verb 21 10 9 12
verb:verb 17 9 12 11

Table 3: Experimental results on the 374 SAT questions labeled with different parts of speech

6 Conclusion and Future Work

In this work, we explore domain space and function space simultaneously by considering two kinds
of word embeddings and different metrics. Word embeddings can capture topical and functional in-
formation of a word by using different types of contexts, however they are unable to model the words
with multiple meanings accurately because a word is represented as just a single vector which carries a
weighted average of different meanings. Existing lexical and knowledge databases, such as WordNet,
ConceptNet and Cyc, can be modeled as graphs in which words are represented as the nodes and the
relations between words are signified by the edges. These databases have more accurate information
although their coverage of words and types of relations is usually limited. We plan to look at ways to
combine our dual-space model with existing databases to improve the performance of our current system.

*In the paper (Turney (2012)), the number of questions labeled by noun:noun is 191, and the number of questions labeled
by noun:verb or verb:noun is 55.
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