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Abstract

For practical chatbots, one of the essential
factor for improving user experience is the
capability of customizing the talking style
of the agents, that is, to make chatbots pro-
vide responses meeting users’ preference
on language styles, topics, etc. To ad-
dress this issue, this paper proposes to in-
corporate linguistic biases, which implic-
itly involved in the conversation corpora
generated by human groups in the Social
Network Services (SNS), into the encoder-
decoder based response generator. By at-
taching a specially designed neural com-
ponent to dynamically control the impact
of linguistic biases in response generation,
a Group Linguistic Bias Aware Neural Re-
sponse Generation (GLBA-NRG) model
is eventually presented. The experimen-
tal results on the dataset from the Chinese
SNS show that the proposed architecture
outperforms the current response generat-
ing models by producing both meaning-
ful and vivid responses with customized
styles.

1 Introduction

Automated Chat Agents (a.k.a chatbots) have
drawn great attention in Natural Language Pro-
cessing research in recent years (Shang et al.,
2015; Li et al., 2016; Wu et al., 2016; Xing et al.,
2017), and the springing up of the practical chat-
bots (e.g., Duer1, XiaoIce2, etc.) indicates the
great potential of such systems for naturally con-
necting human beings with various online ser-
vices.

1http://duer.baidu.com/
2http://www.msxiaoice.com/

The core functionality of chatbots is to inter-
act with users for the purpose of general conversa-
tion. This requires chatbots to generate responses
not only relevant to users’ queries but also in ac-
cordance with users’ preferred talking styles (All-
wood et al., 1992). State-of-art practical chatbots
are capable of providing basic chatting function-
ality with necessary task-oriented abilities. How-
ever, they all lack the capability of adapting the
generated responses to meet users’ preferences.
To improve the user experience, it is necessary to
add such talking style customization function in
these chat agents. In previous studies, inter-group
linguistic biases are observed and found in daily
conversations among people from different com-
munities (Maass et al., 1989). In this paper we
generalize such biases into those among groups of
people based on their profiles or social attributes.
People from different groups may have different
talking styles, including syntactic (sentence struc-
ture), semantic (choice of words) or even attitudi-
nal differences. Then such challenge of chatbots
could be defined as: how to express such differ-
ences in the generated responses for different user
preferences.

Benefiting from the nature of the Deep Neural
Networks (DNN) based encoder-decoder frame-
work (Sutskever et al., 2014), previous studies
tried to jointly learn the representation of each
individual’s talking habits in the training pro-
cedure of word embedding, and take such habits
as a part of the input to generate personalized re-
sponses (Li et al., 2016; Alrfou et al., 2016). It is
found that, given a large amount of high-quality
utterance data of each user, this methodology can
obtain promising results of personalized response
generation. For practical chat agents, however, it
is not trivial to collect such high-quality utterance
from users. As a consequence, it is observed that
the expected responses to similar queries tend to
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be uncharacteristic, that is, the effect of individual-
level personalized response generator is not signif-
icant. Therefore, it is more reasonable to generate
personalized responses by modeling the feature of
a group of users, rather than an individual (Hu
et al., 2014).

Query What are you doing?
Group A I am watching a basketball game.
Group B I am shopping on Amazon!
Query I uninstalled your game just now.

Group A How could you do that!
Group B You are so dead.

Table 1: Responses from two user groups (A &
B) categorized by user gender. The examples are
selected from the real Chinese Social-Network-
Service (SNS) dataset and translated into English.

In real world data, it is observed that the dis-
tinct features of generated responses are generally
reflected by keywords and sentence structures, as
shown in Table 1, which matches previous find-
ings. Therefore, in order to leverage the group lin-
guistic biases in an encoder-decoder based model,
we need to apply such biases in the process of
word generation. The model should be capable of
controlling the distribution of such biases, rather
than assigning equal intensities on each word in
the response. This could make the generated re-
sponses distinguishable in groups of people in the
distinctiveness of keywords and sentence struc-
tures while still guaranteeing the validity of the
sentence both on semantic and syntactic level.
This could thus prevent the generated responses
similar on structure and use of words.

In this paper, we propose an encoder-
decoder based architecture, Group Linguistic
Bias Aware Neural Response Generation (GLBA-
NRG) model, which incorporates linguistic bi-
ases of human groups into an encoder-decoder
based response generator, in order to tackle the
talking style customization problem of practical
chatbots. We attempt to learn the representations
of the linguistic biases from a gender-split cor-
pora. Such representations are then used to bias
the word selection in the response generation pro-
cess. More importantly, we present a specially de-
signed neural network component, as a soft-switch
to conduct the dynamic controlling of the impact
of linguistic biases on each generation step. With
the adoption of the linguistic bias impact control-
ling mechanism, our model is able to generate re-
sponses highly corresponding to the specified talk-

ing style, while the semantic relevance between
queries and responses is well maintained.

The rest of this paper is organized as follows:
Section 2 surveys the related work. Our proposed
model is detailed in Section 3. Section 4 describes
the experimental setups and analyzes the results.
Finally, our work is concluded in Section 5.

2 Related Work

Along with the development of Neural Machine
Translation(NMT), many recent studies show that
the basic neural-based encoder-decoder frame-
work (Sutskever et al., 2014; Bahdanau et al.,
2014) can also be successfully applied in conver-
sation modeling (Vinyals and Le, 2015; Yao et al.,
2015; Zhou et al., 2016; Iulian et al., 2017), which
generates a response on the basis of a given query.
Based on the work of Vinyals and Le (2015) that
directly applies sequence-to-sequence (Seq2Seq)
architecture for response generation, Shang et al.
(2015) introduce the global and local scheme with
attention signal into the generation of response,
while Sordoni et al. (2015) take contextual infor-
mation into account to generate context-sensitive
responses.

Besides the query and contextual information,
several explicit and implicit factors (e.g. topic,
emotion) play great roles in response generation.
To utilize such factors for generating informative,
diverse and interesting responses, several works
incorporate topics, external knowledge, emotional
content, and responding mechanism into conver-
sation models. Xing et al. (2017) and Xu et al.
(2016) extract related topics or knowledge from
the query and context respectively, then add these
info into conversational models, so as guiding
them to generate informative and interesting re-
sponses. Ghosh et al. (2017) and Zhou et al.
(2017b) explore the influence of the affective in-
formation in response generation with Affect-LM
and emotional memory separately. Taking explicit
and implicit factors as the high-level semantic con-
tent of the response, Serban et al. (2017) and Zhou
et al. (2017a) propose latent variable and respond-
ing mechanism respectively to enrich the capabil-
ity of conversation models to generate diverse re-
sponses.

Moreover, the personality is of great impor-
tance for chatbots to respond coherently, as ar-
gued by Vinyals and Le (2015). The very first at-
tempt to model persona is from Li et al. (2016),
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Figure 1: Architecture of our Group Linguistic Bias aware Neural Response Generator (GLBA-NRG).

who propose to encode speaker-specific informa-
tion and conversation style with user embeddings
to influence each generation step. In contrast to
launch persona in response generation from indi-
vidual view (Li et al., 2016), this paper explores
to endow chatbots with language styles from the
human group aspect.

3 Learning to Generate Linguistic
Biased Responses

In this section, we will first formalize the prob-
lem, then present the model overview, and finally
describe the encoder and decoder architecture of
GLBA-NRG.

3.1 Problem Formalization

Our goal is to train an encoder-decoder based
model M to generate the response r =
{y1, y2, · · · , yj} conditioned on an input query
q = {x1, x2, · · · , xn} and the pre-defined user
group label gl, that is, the training target is to
maximize the conditional probability p(r|q, gl).
Here, the group label indicates the linguistic bi-
ases in the user generated contents.

3.2 Model Overview

Inspired by the research work of Schwartz et al.
(2013), who point out that the difference of word
distribution of distinct groups is revealed by a few
words usage, this paper aims at exploring a mech-
anism for introducing the linguistic bias into re-
sponse generating models, and meanwhile con-
trolling the impact of this factor in the generation

of each word. They also point out that gender
is the most distinguishable feature to split human
groups, and thus we take responses from males
and females respectively as the corpus for demon-
strating our idea. According to the work of Li et al.
(2016), it is reasonable to represent users with spe-
cial embeddings in Seq2Seq based models. This
paper follows this set-up by learning the gender
embedding gv and integrating it into our frame-
work.

In our model, a standard Bi-LSTM is taken as
the encoder to represent the query q. In this pro-
cess, the output of the Bi-LSTM is fed into the
decoder for response generation. Unlike the de-
coding procedure in classic Seq2Seq model, we
introduce a specially designed neural component
to attach to the decoder. This neural component
works as a soft-switch gate, converting the atten-
tion results based on the hidden layer outputs into
a scalar ranging from 0 to 1. Taking the scaled
gender embedding and the attention output as parts
of inputs, the decoder conducts general steps to
generate responses. Figure 1 illustrates the archi-
tecture of the proposed response generator.

Our model enjoys several advantages com-
paring with current response generators. On
one hand, through the newly introduced neural
component, the linguistic bias information could
be adopted into the encoding-decoding process
and thus the linguistic biases of different human
groups are integrated to the response generation
process effectively. On another, our model is able
to pick the keywords that reflect different language
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styles by dynamically control the impact of the
linguistic bias in each generating step. Due to
such advantages, our model is expected to gener-
ate vivid responses to queries.

3.3 Encoder

As is shown in Figure 1, a query q =
{x1, x2, · · · , xn} is fed into the encoder of our
model, and projected to a representation vector
H = [hq

1, · · · , hq
i , · · · , hq

n], where

hq
i =

[ −→
hq

i←−
hq

i

]
(1)

The encoding process of the query by bidi-
rectional LSTM (Schuster and Paliwal, 1997) is
detailed as follows. First, the forward states(−→
hq

1, · · · ,
−→
hq

n

)
are computed:
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it
ft

ot
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 =


σ
σ
σ

tanh

−→W
[ −−→
hq

t−1

et

]
(2)

−→ct = ft �−−→ct−1 + it � lt (3)

−→
hq

t = ot � tanh(−→ct ) (4)

where it, ft and ot indicate the input gate, memory
gate and output gate respectively, et ∈ R1×m de-
notes the word embedding for an individual word
at time step t,

−→
hq

t ∈ R|q| denotes the vector com-
puted by the LSTM model at time t, σ(·) is the lo-
gistic sigmoid function, and −→W ∈ R4|q|×(m+|q|) =[−→
Wi,
−→
Wf ,
−→
Wo,
−→
Wl

]
. � denotes the element-wise

multiplication.
The backward states

(←−
hq

1, · · · ,
←−
hq

n

)
are com-

puted similarly. We share the word embedding be-
tween the forward and backward LSTMs.

3.4 Group Linguistic Bias Aware Decoder

Basically, with the query representation H inher-
ited from the encoder, our proposed methodology
aims at building a decoding mechanism f(·) that is
able to systematically adopt both the query seman-
tics and the Group Linguistic Bias (GLB) to gener-
ate responses. Formally, this decoding mechanism
can be described by the following Equation:

h̃t = f(ht, H, e
g) (5)

where eg denotes the dense vector (a.k.a, embed-
ding) representing the human group g and this em-
bedding is designed to imply the group linguistic
bias. ht is the hidden state of the decoder at time
step t, and h̃t can be taken as an updated hidden
state integrated with group linguistic bias. Based
on h̃t, the decoding process follows:

p(yt = w|q, g) = softmax(W>v h̃t) (6)

where p(yt = w|q, g) indicates the output word
distribution at time step t, and Wv is the weight
matrix of the output layer.

The major motivation for proposing the GLBA
decoding mechanism is to make the impact of such
linguistic bias controllable in the generation of
each word in responses. As stated in Schwartz
et al. (2013), different human groups differs in use
of words in general and thus we can take advan-
tage of such distinct and specified words. There-
fore, a model that is capable of highlighting such
distinct words for different groups could express
group differences effectively.

In this part, we define the specified decoding
mechanism f(·) as

f(ht, H, e
g) = Wf [ht, at, e

g � gt] + bf (7)

where Wf and bf denote the NN related weights
and biases respectively. Especially gt indicates a
neural gate transferring the attention outputs upon
H into a scalar, so as to control the impact of eg by
performing the element-wise multiplication repre-
sented by�. The operations within the gate gt can
be described by:

gt = σ(Wgat + bg) (8)

where Wg and bg denote the weight and bias re-
spectively.

Noticing that Equation 7 and 8 have taken the
attention result denoted by at, the attention mech-
anism is formalized as follows:

at =
∑ T

j=1αtjhj (9)

αtj =
exp(etj)∑Tx

k=1 exp(etk)
(10)

etj = Wa[ht, hj ] + ba (11)

The reason for introducing attention model into
the gate is that, intuitively, the impact of the lin-
guistic bias (represented by the group embedding)
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on the response words is determined by the seman-
tic of the corresponding query, that is, based on
the content of a query, our model is expected to
locate the essential words in the response to apply
a stronger impact of linguistic bias.

For decoding, the N-best lists are generated us-
ing the decoder with beam size B=30. We set a
maximum length of 30 for the generated candi-
dates. At each time step of the decoding process,
we first examine allB×B possible next-word can-
didates, and add these next-word probabilities up
to the corresponding hypothesis’ joint probability,
which contain all the previous words’ probabilities
in a certain hypothesis. After that, the candidate
words are sorted by their joint probabilities and
pick out the new top-B unfinished hypotheses and
move to the next word position. If any hypothesis
meets an EOS token, this hypothesis will be added
to the result set as one of finished response.

4 Experiments

4.1 Data Preparation

For validating the capability to integrate group lin-
guistic bias into response generation of our model,
the dataset should possess group attributes. There-
fore, we collected data from one of Chinese real-
name social network sites (SNS), in which some
utterances have explicit group attributes (e.g. gen-
der, age, etc). We obtained about 240,000 ses-
sions with multi-turn conversations and user pro-
files from the SNSs. We filtered out potential
advertisements, forwards and non-original utter-
ances (including queries and responses), and only
kept Chinese words, English letters and digits in
each utterance. After the above preprocessing,
there are about 5 million query-response pairs re-
mained. The number of words (sequence length)
of query or response ranges from 1 to 30.

Each query-response pair has 4 parts of basic
information 〈q, qu, r, ru〉, where q is a query, r is
the response corresponding to q, and qu or ru in-
dicates user ID who posted the query or response.
If the profile of ru is accessible from his or her
home page, we tagged the query-response pair
with group linguistic label obtained from ru’s pro-
file. According to the group linguistic label, the 5
million query-response pairs were split into two
subsets: one subset includes 4 million pairs with-
out group linguistic label, the other is composed of
about 1 million labeled pairs. We take the 4 mil-
lion pairs to pre-train the models, and the details

will be given in Subsection 4.3. For the 1 million
labeled pairs that used in group linguistic bias ex-
periments, we firstly sampled 2,000 labeled pairs
as testing data, and then sampled training and val-
idation data from the remaining pairs. The sizes
of training and validation sets are illustrated in Ta-
ble 2.

Train
male 483,228

female 482,915

Valid
male 8,052

female 8,091

Table 2: Data Description

Notice that there is no overlap among pairs in
training, validation, and testing sets.

4.2 Baselines

We consider the following baselines in our exper-
iments.

S2S: the standard Seq2Seq model (Sutskever
et al., 2014; Bahdanau et al., 2014).

GLBA-Static: to verify the effectiveness of the
gate in GLBA-NRG, we keep the attention module
but remove the gate which is specially designed
to weight gender embeddings. Thus, the atten-
tion module only contributes to the output, with
no effect on the gender embeddings. The gen-
der embeddings are injected into the decoder as
their weights equal 1.0. This baseline is an vari-
ant of our GLBA-NRG model. It should be noted
that, the GLBA-Static model is equivalent to the
speaker model proposed by (Li et al., 2016).

For the sake of comparison, we rename our
GLBA-NRG model as GLBA-Dyna in order to
distinguish from GLBA-Static.

4.3 Training Protocols

Pre-Training: The 4 million query-response pairs
without group label were utilized to pre-train the
basic Seq2Seq model, to initialize the LSTM pa-
rameters including baselines and our approach.
This is based on the following considerations:

• To obtain better word embeddings benefiting
from a bigger dataset, which is trained from
random initialization;

• To accelerate convergence in the following
experiments since parameters are initialized
by a raw Seq2Seq conversation system (Er-
han et al., 2010);
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The S2S, GLBA-Static and GLBA-Dyna all fol-
low the training protocols below: 1) the encoder
is a 2-layer Bi-LSTM network with 1,000 hid-
den cells for each layer; 2) the decoder is a 1-
layer unidirectional LSTM network with 1,000
hidden cells; 3) the batch size is set to 128; 4)
use Adam optimizer with a fixed learning rate
0.0001; 5) parameters are initialized by sampling
from the uniform distribution [-0.1, 0.1]; 6) gradi-
ents are clipped to avoid gradient explosion with
a threshold of 1; 7) the vocabulary size is limited
to 100,000; 8) the dimensions of word and gender
embeddings are both 500.

In our experiments, S2S, GLBA-Static and
GLBA-Dyna use the same dataset, which consists
of 1 million query-response pairs with gender la-
bels (no overlapping with the 4 million query-
response pairs for pre-training). The details of
train/valid splitting are described in Table 2. No-
tice that when applying the dataset in S2S, we only
use query-response pairs and ignore group labels.

4.4 Evaluation Methods
According to (Liu et al., 2016), the perplexity
and BLEU metrics are not suitable for evaluating
the response generators, although they are widely
used in translation evaluation. Hence, we only use
the human judgement in our experiment.

We recruit 3 annotators for human evaluation.
The annotators are instructed to judge responses
from 2 aspects, response quality and accuracy.

Response Quality: The response quality refers
to whether a response is appropriate and attractive
to the input query. Three levels are assigned to a
response with scores of 0, +1, +2:

• Attractive (+2): the response is evidently a
vivid and informative response to the query;

• Neutral (+1): the response is plain and gen-
eral but suitable to the query;

• Unsuitable (0): it is hard or impossible to
find a scenario where the response is suitable.

To make the annotation task operable, the suit-
ability of generated responses is judged from the
following four criteria:

(a) Grammar and Fluency: Responses should
be natural language and free of any fluency or
grammatical errors;

(b) Logic Consistency: Responses should be
logically consistent with the test query;

(c) Semantic Relevance: Responses should be
semantically relevant to the test query;

(d) Vividness: Responses are vivid and
information-rich but should not contradict the first
three criteria;

If any of the first three criteria (a), (b), and (c)
is contradicted, the generated response should be
labeled as “Unsuitable”. The responses that con-
form to the first three criteria (a), (b), and (c) but
general or flat should be labeled as “Neutral”. The
responses that completely satisfy the four criteria
(a), (b), (c), (d) should be labeled as “Attractive”.

Accuracy: Besides the measure of response
quality, we also consider whether a response cor-
responds to its expected group category (as input
to the model). For GLBA-NRG models (GLBA-
Static and GLBA-Dyna), we ask the annotators to
provide a rating score 0, 1 for the judgement.

S2S, GLBA-Static and GLBA-Dyna generate
B = 30 responses separately using the beam
search algorithm described in Section 3.4. Re-
sponses generated by different models are pooled
and randomly shuffled for each annotator.

4.5 Results & Analysis

Table 3 shows an overall evaluation by calculating
the average score of the generated responses. It
is clear that GLBA-Dyna outperforms the baseline
models, whose average score is up to 1.404, while
others’ scores are both below 1.0. This means that
the responses generated by GLBA-Dyna are gram-
matical and query-relevant, and also possess vivid-
ness which is crucial for making chatbots attrac-
tive to users.

Method Average Score
S2S 0.923

GLBA-Static 0.944
GLBA-Dyna 1.404

Table 3: Average Score of Human Evaluation.

Table 4 details the human evaluation scores
of generated responses from all approaches in
this paper. Compared with S2S, GLBA-NRG
models (GLBA-Static and GLBA-Dyna) achieve
higher scores on responses labeled as “+2”, es-
pecially GLBA-Dyna. This phenomenon demon-
strates that GLBA-NRG models generate more
vivid and informative responses. The improve-
ment on vividness is ascribed to the group linguis-
tic bias of GLBA-NRG models.
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Method
Score

0 +1 +2
S2S 14.56% 78.56% 6.88%

GLBA-Static 17.56% 70.50% 11.94%
GLBA-Dyna 8.22% 43.11% 48.67%

Table 4: Human annotation results for responses
quality. The grade evaluation criteria is described
in detail in Section 4.4.

As illustrated in Table 4, in contrast to S2S,
GLBA-Dyna increases 41.79% on “+2” responses
and reduces 35.45% on “+1” ones, while GLBA-
Static achieves ∼5% improvement on “+2” re-
sponses. Since both GLBA-Static and GLBA-
Dyna introduce the group linguistic features as in-
puts, this phenomenon is ascribed to the different
strategies of controlling group linguistic biases.
That means the proposed mechanism biasing the
general S2S probability distribution is more effec-
tive for incorporating the linguistic features, which
renders the responses vivid. On one hand, the
proposed mechanism dynamically explore possi-
ble positions for keywords that implied gender, on
the other hand, it is dynamically aware of which
keyword is suited in such a position. Under this
mechanism, GLBA-Dyna could select out lively
and cute words to make responses vivid.

All models have a proportion of unsuitable re-
sponses (labeled as “0”) ∼10% but GLBA-Static
generates more bad responses (17.56%). After
checking its bad responses, we find that GLBA-
Static tends to generate swear words for most
queries as male, and tends to generate “Uh Hmm”
for most queries as female. This observation could
be ascribed to the fact that the GLBA-Static model
takes the external bias (as the gender embedding)
as an input augmentation in every time-step of re-
sponse generation without dynamic switch. Since
only the keywords in one response need such ex-
ternal bias to demonstrate the group distinction,
it’s unwise to apply external bias in the whole pro-
cess of response generation. In other words, over-
weighted group bias excessively intervene in the
word distribution when decoding, which leads to
less correlation between the response and query.
Therefore, the responses from GLBA-Static have
no much remarkable variation in the quality com-
pared with S2S.

To validate the capability of our model on gen-
erating group linguistic biased responses, this pa-

per evaluates whether the gender inferred from
the generated response is consistent with the pre-
defined gender label. Table 5 illustrates the evalu-
ation results.

Method Accuracy
S2S -

GLBA-Static 0.340
GLBA-Dyna 0.493

Table 5: Gender Consistency Results.

It can be seen that the proposed model GLBA-
Dyna achieves 49.3% on accuracy, which in-
dicates that half of the responses generated by
GLBA-Dyna are consistent with the input gender
linguistic bias. Comparing with the 34.0% ac-
curacy of GLBA-Static, our model GLBA-Dyna
is more effective on controlling the gender lin-
guistic bias in response generation. The reason
is that GLBA-Dyna moderates the gender embed-
ding information and dynamically regulates three
factors’ weights, current hidden state of decoder,
query context and gender embeddings, to produce
more suitable and reasonable responses. Instead,
GLBA-Static deactivates the gate so it can not con-
trol the external bias spontaneously.

4.6 Case Study

As is shown in Figure 2, S2S could generate re-
sponses relevant to queries but very few of them
is appealing to users since basically they are ac-
knowledgements of the queries and do not make
any new points to interact with the users. In com-
parison, the responses generated by both GLBA-
Static and GLBA-Dyna are more interesting while
keeping the relevance with the queries. We
find that GLBA-Dyna generates responses with
richer information, compared with GLBA-Static.
More importantly, GLBA-Dyna responses exhibit
prominent distinction of language styles between
males and females, on both semantic and syntac-
tical level. We believe this attributes to the gen-
der distinction aware dynamic switch mechanism
in GLBA-Dyna decoder.

In Figure 3, we visualize the gender gate of each
time-step in response generation, to illustrate the
dynamic controlling process of the gender distinc-
tion in GLBA-Dyna model. The different shades
of red reflect the degrees of the gate activation.
It can be seen that the gender gate is strongly
activated in the position where the keywords in-
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Query Reponse(Original) Response(Translated)

It is around minus 10 degrees here.

Female Poor child…

Male That is so cold.

Female
Wow that is so cold.

We do not even need to wear down jackets here.

Male That is so cold. Keep warm.

I would like to do so. I really miss you.

Female Yeah let us play it once you are back.

Male Yeah let us do it, dude.

Female
That is great!

We can play it together once you are back.

Male
Yeah let us do it bro.

Do you wanna play it at my place?

Yeah it is.

Female Thank you, darling.

Male Thanks for asking.

Female Ok I see, my dear.

Male Thanks for asking, dude.

Model

It feels so bad to get ill.

We should cherish the life when we are

healthy.

S2S

GLBA-Static

GLBA-Dyna

It has been below zero degrees for long.

S2S

GLBA-Static

GLBA-Dyna

OKOK

OK. I would really like to

play Mahjong tonight.

S2S

GLBA-Static

GLBA-Dyna

Figure 2: Cases selected from the testing set.

Query Gender Response

Male

Female

Female

Male

Male

Female

OKOK

Figure 3: Gate activation of each time step by GLBA-Dyna.

fer gender distinguishable information. The fact
that the gate value of the same word varies with
gender label corroborates the effectiveness of dy-
namic gate activation. In other words, our gate is
able to use gender information to control the re-
sponse generation.

5 Conclusion

In this paper, we have presented a group linguistic
bias aware neural response generation model, so as
to tackle the talking style customization problem
in chatbot implementation. The contributions of
our work can be summarized as follows.

a) Instead of modeling and adopting the lan-
guage style of each individual, this paper proposes
to learn the linguistic biases of human groups and
introduce such biases into the response generator,
which makes the style in responses more explicit
and reliable;

b) We have designed a special neural compo-
nent that is able to dynamically control the impact
of the introduced group linguistic bias in each gen-
eration step, to select the keywords reflecting lan-
guage styles, rather than rigidly enforcing linguis-
tic bias for each word.
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