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Abstract

To date, various Twitter-based event detec-
tion systems have been proposed. Most
of their targets, however, share common
characteristics. They are seasonal or
global events such as earthquakes and flu
pandemics. In contrast, this study tar-
gets unseasonal and local disease events.
Our system investigates the frequencies
of disease-related words such as “nau-
sea,” “chill,” and “diarrhea” and estimates
the number of patients using regression of
these word frequencies. Experiments con-
ducted using Japanese 47 areas from Jan-
uary 2017 to April 2017 revealed that the
detection of small and unseasonal event is
extremely difficult (r = 0.13). However,
we found that the event scale and the de-
tection performance show high correlation
in the specified cases (in the phase of pa-
tient increasing or decreasing). The results
also suggest that when 150 and more pa-
tients appear in a high population area, we
can expect that our social sensors detect
this outbreak. Based on these results, we
can infer that social sensors can reliably
detect unseasonal and local disease events
under certain conditions, just as they can
for seasonal or global events.

1 Introduction

Nowadays, the concept of social sensors (Sakaki
et al., 2010) has been shown to have great potential
feasibility for various practical applications. Par-
ticularly, disease detection is a core target of so-
cial sensor based studies. To date, detection has
been demonstrated for influenza (Aramaki et al.,
2011; Paul et al., 2014; Lampos et al., 2015; Iso
et al., 2016; Wakamiya et al., 2016; Zhang et al.,

Figure 1: Seasonal global event (a) vs. Unseasonal local

event (b). The X-axis shows the timeline (weekly based). The

Y-axis shows the incidence rate (IR), corresponding to the pa-

tient number per area during the latest two years. Thin line

with red square markers show the incidence rates of 2016.

The line with blue triangle markers show the incidence rates

of 2017. (a) Seasonal global event (Influenza in Japan). The

influenza portrays a single big peak. (b) Unseasonal local

event Gastroenteritis in the same area as (a). The Gastroen-

teritis shows numerous small peaks. It is difficult to detect

Peak periods.

2017; Lampos et al., 2017), E.Coli (Diaz-Aviles
and Stewart, 2012), and H1N1-type flu (Culotta,
2013; Lampos and Cristianini, 2010).

In this field, infectious diseases have drawn
much attention mainly for the following two rea-
sons. First, from a practical perspective, infectious
disease prevention is a crucially important mis-
sion for a nation because infectious diseases, es-
pecially influenza, cause many deaths and spread
rapidly. Next, from the perspective of informat-
ics, epidemics of these diseases are suitable targets
because some epidemics have the following char-
acteristics that make them easy to ascertain from
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social media:

1. Seasonal Event: some epidemics are sea-
sonal diseases that have basically one big
peak during one year (e.g. influenza).

2. Large Scale Event: some epidemics infect
thousands of people. Accordingly, the scale
of information related to the disease in twitter
also becomes large (e.g. more than 100,000
flu-related Japanese tweets per day).

Compared with previous works, this study tack-
les a more challenging task: detection of outbreaks
of infectious gastroenteritis (In the rest of the pa-
per, we simply call it gastroenteritis). Outbreaks
of gastroenteritis are often caused by viruses such
as Norovirus and Campylobacter. Symptoms in-
clude some combinations of various hard com-
plaints, diarrhea, vomiting, and abdominal pain,
fever, and dehydration, which typically last less
than two weeks. These features of gastroenteri-
tis make the task more difficult: unlike the flu,
the name of a particular disease agent is rarely
tweeted. The increased number of patients must
be estimated with tweets related to several symp-
toms.

Although gastroenteritis is sometimes called
stomach flu, the gastroenteritis characteristics in
social respects show quite a contrast to the flu.

1. Unseasonal Event: An outbreak of gastroen-
teritis is not seasonal. It can burst at any time
of a year. Moreover, there can be many peaks
during a single year.

2. Local Event: The scale of the gastroenteritis
varies, starting from a smaller event involving
a couple of patients to a larger event involv-
ing thousands of patients.

A comparison of influenza and gastroenteritis is
presented in Figure 1. These characteristics also
make it difficult to apply a method intended for
influenza detection to gastroenteritis detection.

This study investigates the estimation perfor-
mance for smaller events rather than previous tar-
gets. The results reveal that the event size is
a core factor affecting the social sensor perfor-
mance. From experimentally obtained results,
small events (related to about 150 people) were de-
tected with high accuracy (the correlation ratio be-
tween social sensor estimation and the actual value
is 0.8).

This result contributes to social sensor reliabil-
ity. This paper is the first reporting the overall re-
lation between social sensor performance and its
factors. Although detection of small and unsea-
sonal events is difficult, the sensor can be applied
in specified situations.

2 Related Work

Detection of infectious diseases is an important
part of national health control. Detection tasks are
classifiable into two types: (1) Seasonal infection
for diseases such as influenza, and (2) Unseasonal
infection such as food poisoning (infectious gas-
troenteritis) and bio-terror attacks.

For the earliest possible detection, most coun-
tries have infection prevention centers: The U.S.
has the Centers for Disease Control and Preven-
tion (CDC). The E.U. has its European Influenza
Surveillance Scheme (EISS). Japan has its Infec-
tion Disease Surveillance Center (IDSC). For each
of them, surveillance systems rely on virology
and clinical data. For instance, the IDSC gath-
ers influenza patient data from 5,000 clinics and
releases summary reports. Such manual systems
typically have a 1–2 week reporting lag, which is
sometimes pointed out as a major flaw.

In an attempt to provide earlier infectious detec-
tion, various new approaches have been proposed
to date, such as telephone triage based estimation
(Espino et al., 2003) and over the counter drug
sales based estimation (Magruder, 2003).

The first web-based infectious disease surveil-
lance was Google Flu Trends (GFT), which uses
the Google query log dataset to predict the number
of flu patients (Ginsberg et al., 2009). Although
GFT has illustrated the effectiveness of web-based
surveillance, the Google query log is not a public
dataset.

Recent advances of the Web-based infectious
disease surveillance depend mainly on open
datasets such as those of Twitter (Zhang et al.,
2017; Lampos et al., 2017; Iso et al., 2016;
Wakamiya et al., 2016; Paul et al., 2014).

Zhang et al. (2017) use several indicator in-
formation resources and report the prediction
performance obtained for the U.S., Italy, and
Spain. Lampos et al. (2017) use word embedding
(Mikolov et al., 2013) for enriching the feature se-
lection of the flu model and thereby increase the
inference performance. In Japan, the first success-
ful system is that of Aramaki et al. (2011). They
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classify whether a user is infected by the flu or
not for each tweet that includes a flu-related word.
Wakamiya et al. (2016) examines the popularity
difference between urban and rural cities for finer-
grained infectious disease surveillance.

A state-of-the-art system for use with a
Japanese infectious disease model by Iso et al.
(2016) uses a time lag for improving nowcasting
and for extending the forecasting model. However,
they merely examine the prevalence rate through-
out Japan; they do not consider the scale of user
popularity.

This paper presents an examination of Twitter
data through various scales of events, from infec-
tion of a few people to an epidemic affecting thou-
sands of people, to detect Twitter-based detection
performance.

3 Method

3.1 Extracting Tweets by Patients

To detect outbreaks of gastroenteritis with tweets,
we estimate the number of patients.

First, the system collects Japanese tweets via
Twitter API1. Then we select keyword sets of the
following three typical patient complaints: “nau-
sea”, “chill”, and “diarrhea”. This keyword sets
are selected in preliminary experiments that use
11 major complaints (Chester et al., 2011). Us-
ing the tweet corpus collected in the previous step,
we built a classifier that judges whether a given
tweet is sent by a patient (positive) or not (neg-
ative). This task is a sentence binary classifica-
tion. We used a SVM-based classifier under the
bag-of-words (BOW) representation (Cortes and
Vapnik, 1995; Joachims, 1998). Then we split a
Japanese sentence into a sequence of words us-
ing a Japanese morphological analyzer, MeCab2

(ver.0.98) with IPADic (ver.2.7.0) (Kudo et al.,
2004). The polynomial kernel (d=2) is used as the
kernel function. To build the training set, a human
annotator assigned either a positive or negative la-
bel. For the labeling process, we followed condi-
tions used in our previous study (Aramaki et al.,
2011). Table 1 presents samples of tweets with la-
bels.

Finally, we classified tweets into areas for area-
based disease surveillance. The area is resolved
based on metadata attached to a tweet as follows:

1https://dev.twitter.com/overview/api
2http://taku910.github.io/mecab/

Table 1: Samples of labeled tweets

Tweet keyword P/N

When I got out of the bath I felt chilly.
chill PSo I am wearing long sleeves and long pants, but now it’s hot (’-‘).

I changed clothes (’-‘) It might be a cold ...

I feel nauseous... I thought it resulted from coccyx pain, but I wonder.
nausea Pif I caught a cold.

I have diarrhea. I am going to a public restroom. diarrhea P

I really hate mantis. I hate them more than pigeons.
chill NI feel chilly when I think about it.

whole-body exposure: 1 Gy nausea, Death year exposure is 10 Gy 1 ms nausea N

Meanwhile, Chiba prefecture announced on January 1 that 39 people

diarrhea Nthat 39 people in Ichikawa City, Ibaraki prefecture, had group
food poisoning complaining of symptoms such as diarrhea.

The tweet on the table are Japanese translations of English.

GPS Information: A tweet includes GPS data
if a user allows the use of the location func-
tion. However, most users turn off this func-
tion for privacy reasons. Currently, the ratio
of tweets with GPS information is only 0.46%
(=35,635/7,666,201) in our dataset.

Profile Information: Several users include an
address in a profile. We regard the user as near the
profile address. The ratio of tweets with profile
location is 26.2% (=2,010,605/7,666,201). To dis-
ambiguate the location names, we use a Geocod-
ing service provided by Google Maps3.

We removed the tweets without inferred geo-
location for the study.

3.2 Linear Regression Analysis of Patient
Numbers

Next we investigate the relation between the num-
ber of infected people and the number estimated
using positive tweets. We use the number of in-
fected people reported from the National Institute
of Infectious Diseases (NIID) 4. The number of in-
fected people in each area is reported per sentinel
weekly. To remove the population bias in areas,
we calculate the Incidence Rate (IR) of people in
an area during a week as follows.

IRrepo(a, t) =
pata,t

popa
× 10k (1)

In that equation, pata,t is the total number of all
patients reported in the specified area a within the
week index t, popa is the area’s population, and k
is a constant for correcting the value. In the exper-
iment, k is set to 5.

3https://developers.google.com/maps/
documentation/\geocoding/start

4https://www.niid.go.jp/niid/en/
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Then, we estimate the linear association be-
tween the IRrepo and the estimated one, IRest, by
application of multivariate linear regression as

IRest = bs1
a xs1

a + bs2
a xs2

a + bs3
a xs3

a + bp, (2)

where xs
a represents the number of positive tweets

containing the specific word s. In addition, bs
a and

bp are variables to be estimated.

4 Experiment

4.1 Setting

For this experiment, we estimated the Incidence
Rate from positive tweets with the exploratory
variables derived in Section 3.2. The experimental
data consist of a training set and a test set. The
data are shown in Table 2. For training, we used
1,720,325 tweets for 52 weeks from March 19,
2016 through December 31, 2016 for each area (47
areas in Japan).

Table 2: Dataset statistics

keyword training test

nausea 560,620 (53%) 594,443 (50%)
chill 378,652 (37%) 498,748 (35%)

diarrhea 781,053 (74%) 493,693 (69%)

Total 1,720,325 (34%) 1,586,884 (51%)

In brackets represents proportion of positive tweet

For clinical research, we estimated IRest from
the test set for 16 weeks from January 1, 2017
through April 19, 2017.

4.2 Results

The overall result is shown in Figure 2. Figure 3a
and Figure 3b present details of results from two
areas. Figure 3a presents a moderate example in
Nagano area, where tweet-based estimation highly
correlates with the reported values. In contrast,
Figure 3b corresponding to Tokyo area reveals the
weakness of our approach: the estimated value dif-
fers greatly from the reported value.

The difference between the two areas reflects
the scale of the event. In Figure 3a, the reported
values have one large peak (starting from 20 peo-
ple to 30 people). In contrast, Figure 3b shows
a slight increase in the reported values (from 13
to 15 during 15 weeks). From these results, the
estimation of small events is difficult, causing nu-
merous false-positive results.

5 Discussion

5.1 Event scale and Estimation Performance
Results reveal that Twitter-based estimation is of-
ten adversely affected by small events, yielding
poor performance overall. However, in the case of
large-scale events, the social sensor usually works
well. For that reason, we investigated the rela-
tion between the (Sensor) Estimation Performance
(EP) and the Event Scale (ES). For this work, we
define these indicators as explained below.

Estimation Performance (EP): It is necessary to
ascertain how accurately social sensors can
estimate an event. We define this indicator as
the correlation between IRrepo and IRest.

Event Scale (ES): Fundamentally, the higher EP
should be obtained when the epidemic scale
(ES) is larger. We therefore assessed the cor-
relation between the ES and the EP. We sim-
ply define ES based on the difference of IR in
a time window as

ES = max
t∈T

IR(t)−min
t∈T

IR(t), (3)

where T stands for a time window in the tar-
get timeline. IR(t) is a function indicating
IR at the week index t.

As for a time window, we divided the test set ev-
ery 4 weeks (one window) and calculated IR. Cor-
relation between EP and ES is shown in Figure 4.
From Figure 4, correlation between EP and ES re-
vealed poor performance (only 0.13). This result
suggests that no overall correlation exists between
EP and ES.

5.2 Discussion based on Epidemic Pattern
Not only the Event Scale (ES) but also event pat-
tern would affect EP. We considered that event pat-
tern classified by epidemic phase, such as the be-
ginning and the end:

Increasing ↗ is the phase of the beginning of
the epidemic during which the IR increases during
the target time window.

Decreasing ↘ is the phase of the end of the
epidemic during which the IR decreases during the
target time window.

Peak ∧ is the phase of the epidemic peak during
which the maximum of the IR is observed.

Between ∨ is intermediate of two epidemic
peaks.
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Figure 2: Result for each area. The X-axis indicates the time line (week). The Y-axis indicates the
Incidence Rate (IR). T indicates the time window (4 weeks).
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(a) Example: Nagano (b) Example: Tokyo

Figure 3: Representative results in two areas: (a) Nagano and (b) Tokyo. The red line shows IRrepo.
The blue one shows IRest.

Figure 4: Relation between EP (X-axis) and ES (Y-axis).
This revealed poor performance (r = 0.13).

The detailed definition is presented in Table 3.
The table presents a window for which IRb −
IRi > 0 and IRb − IRe > 0 (represented as
IRb − IRi > 0 and IRb − IRe > 0) is regarded
as the increasing Pattern.

The results are presented in Table 4, indicating
correlation between the EP and ES for each Pat-
tern. As the table shows, the performance showed
divergence in each Pattern. For instance, the de-
creasing Pattern showed high correlation (r =
0.305). In contrast, the between Pattern shows
quite poor performance (less than 0 correlation).

5.3 Discussion based on Area Population

The number of tweets is related to the population
Therefore, we inferred that the EP is affected by
the population of each area. We classified each
window by four types based on population. We
defined the four types as explained below.

Super High population area (SHP) is area with
population of 2.5 million or more

High population area (HP) is area with popula-
tion of 1.5 million to 2.5 million

Low population area (LP) is area with popula-
tion of 1 million to 1.5 million

Super Low population area (SLP) is area with
population of 1 million or less

Table 5 shows the correlation between the EP
and ES in each population area. From Table 5, in
high population area (1.5 million to 2.5 million),
weak correlation was found (r = 0.214). Further-
more, correlation between EP and ES is related to
population.

5.4 Combination of Factors
As described above, we introduced three factors
that affected the estimation performance (EP): (1)
event scale (ES), (2) event pattern, and (3) area
population. In this section, we combined the
above findings, and investigated the correlation
coefficient between the performance and the (1)
ES in each factor, (2) event pattern (four types)
and (3) area population (four types). The 16 ob-
tained combinations are shown in Table 6.

From Table 6, when the epidemic decreases
greatly in areas with low population, the perfor-
mance tends to be high. Especially, this trend is
significant for decreasing pattern in low and su-
per low population areas. In contrast, peak and
between pattern show poor correlation.

From practical viewpoints, the increasing pat-
tern is important because catching the increase or
decrease of patients contributes to prevention. Fig-
ure 5 presents the relation between the EP and ES
in increasing pattern in the high population area,
which shows moderate correlation (r = 0.378). In

23



Table 3: Patterns of Epidemic Phase. Each pattern is classified by three phase: IRb, IRi and IRe. The IRb is the IR at
the beginning of the target window. The IRi is the average IR of all weeks, except for the beginning and the end. In the
experiments, the window size is 4 weeks. Consequently, the IRi is the average IR of the second and third weeks. The IRe is
the IR at the end of the target window.

Pattern IRb − IRi IRb − IRe of samples

Increasing↗ + + 55
Decreasing↘ − − 45

Peak ∧ + − 56
Between ∨ − + 32

Table 4: Correlation between EP and ES in each
pattern

Pattern correlation

Increasing↗ 0.098
Decreasing↘ 0.305

Peak ∧ -0.024
Between ∨ 0.058

Table 5: Correlation between EP and ES in each
area population

Population correlation

SHP area 0.125
HP area 0.214
LP area 0.185

SLP area 0.059

the figure, moderate performance (r > 0.8 in the
X-axis) is obtained when the ES is greater than 7
in the Y-axis. It corresponds to a greater than 150
patient increase in a month.

From this result, we can estimate the borderline
of the reliable warning that is 150 patient increas-
ing or decreasing in the high population area.

Figure 5: Relation between EP (X-axis) and ES (Y-axis) in
the Increasing Pattern in the High Population area (plot with
blue triangle) and the Decreasing Pattern in the Low Pop-
ulation area (plot with red cross). This situation for which
performance depends on the scale.

Table 6: Correlation between EP and ES in the
combination of event pattern and population areas

SHP HP LP SLP
area area area area

Increasing↗ 0.255 0.378 0.01 -0.112
Decreasing↘ -0.678 0.164 0.550** 0.538*

Peak ∧ 0.144 0.063 -0.394 0.411
Between ∨ 0.494 0.411 -0.409 0.179

Bold font indicates significant correlation (** is p < 0.05, *
is p < 0.10).

5.5 Practical Contribution and Future
Direction

To date, social sensors have demonstrated their
potential feasibility for various event detec-
tions. However, the practical application is rarely
launched. One reason is the lack of reliability of
social sensors. In other words, we can never fully
trust social sensor-based information.

Results of this study demonstrated that the event
scale and the estimation performance of social
sensor are related. We think this finding is prac-
tically important because this characteristic pro-
vides important information for the following two
use cases:

1. In cases where a really big epidemic occurs,
we can believe that the system must detect the
clue of the epidemic.

2. In contrast, in cases where the system esti-
mation is normal, we can at least infer that
the current situation is not crisis.

From a practical viewpoint, these features that
can engage such safety are important. Based on
these results, we are developing a surveillance ser-
vice supported by Infectious Disease Surveillance
Center (IDSC). In the near future, we would like
to report a case of a system-running experience.

This report describes our attempt at the de-
tection of small and unseasonal disease events.
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The method employs the regression of disease-
related word frequencies. Results of the experi-
ment, based on Japanese 47 areas from January
2017 to April 2017, suggests that the detection
of small events is difficult (r = 0.13). Although
the overall performance is poor, the event scale
(change in the number of patients) and the detec-
tion performance size show correlation (the phase
of epidemic in high population area shows a cor-
relation ratio of r = 0.38). We think this finding
is practically important because it enables realiza-
tion of a practical system that is useful in the fol-
lowing two use cases. (1) If a truly large epidemic
occurs, we can infer that the system must detect it,
(2) In other words, the system estimation is low,
we can at least infer that the current situation is
not so severe. These characteristics are fundamen-
tally important for use in protecting public safety.

In future work, we plan to apply other classi-
fication algorithms and compare the performance.
Furthermore, we will examine the indicator to rep-
resent the ES more effectively.
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