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Abstract

We apply Reinforcement Learning (RL) to
the problem of incremental dialogue pol-
icy learning in the context of a fast-paced
dialogue game. We compare the policy
learned by RL with a high performance
baseline policy which has been shown to
perform very efficiently (nearly as well as
humans) in this dialogue game. The RL
policy outperforms the baseline policy in
offline simulations (based on real user data).
We provide a detailed comparison of the
RL policy and the baseline policy, includ-
ing information about how much effort and
time it took to develop each one of them.
We also highlight the cases where the RL
policy performs better, and show that un-
derstanding the RL policy can provide valu-
able insights which can inform the creation
of an even better rule-based policy.

1 Introduction

Building incremental spoken dialogue systems
(SDSs) has recently attracted much attention. One
reason for this is that incremental dialogue pro-
cessing allows for increased responsiveness, which
in turn improves task efficiency and user satisfac-
tion. Incrementality in dialogue has been studied in
the context of turn-taking, predicting the next user
utterances/actions, and generating fast system re-
sponses (Skantze and Schlangen, 2009; Schlangen
et al., 2009; Selfridge and Heeman, 2010; DeVault
et al., 2011; Dethlefs et al., 2012a,b; Selfridge
et al., 2012, 2013; Hastie et al., 2013; Baumann and
Schlangen, 2013; Paetzel et al., 2015). Over the
years researchers have tried a variety of approaches
to incremental dialogue processing. One such ap-
proach is using rules whose parameters may be
optimized using real user data (Buß et al., 2010;

Ghigi et al., 2014; Paetzel et al., 2015). Reinforce-
ment Learning (RL) is another method that has
been used to learn policies regarding when the sys-
tem should interrupt the user (barge-in), stay silent,
or generate backchannels in order to improve the
responsiveness of the SDS or increase task success
(Kim et al., 2014; Khouzaimi et al., 2015; Dethlefs
et al., 2016).

We apply RL to the problem of incremental dia-
logue policy learning in the context of a fast-paced
dialogue game. We use a corpus of real user data
for both training and testing. We compare the poli-
cies learned by RL with a high performance base-
line policy which uses parameterized rules (whose
parameters have been optimized using real user
data) and has a carefully designed rule (CDR) struc-
ture. From now on, we will refer to this baseline as
the CDR baseline.

Our contributions are as follows: We provide
an RL method for incremental dialogue processing
based on simplistic features which performs better
in offline simulations (based on real user data) than
the high performance CDR baseline. Note that this
is a very strong baseline which has been shown
to perform very efficiently (nearly as well as hu-
mans) in this dialogue game (Paetzel et al., 2015).
In many studies that use RL for dialogue policy
learning, the focus is on the RL algorithms, the
state-action space representation, and the reward
function. As a result, the rule-based baselines used
for comparing the RL policies against are not as
carefully engineered as they could be, i.e., they are
not the result of iterative improvement and opti-
mization using insights learned from data or user
testing. This is understandable since building a very
strong baseline would be a big project by itself and
would detract attention from the RL problem. In
our case, there was a pre-existing strong CDR base-
line policy which inspired us to investigate whether
it could be outperformed by an RL policy. One of
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our main contributions is that we provide a detailed
comparison of the RL policy and the CDR baseline
policy, including information about how much ef-
fort and time it took to develop each one of them.
We also highlight the cases where the RL policy
performs better, and show that understanding the
RL policy can provide valuable insights which can
inform the creation of an even better rule-based
policy.

2 RDG-Image Game

For this study we used the RDG-Image (Rapid Di-
alogue Game) (Paetzel et al., 2014) dataset and
the high performance baseline Eve system (Sec-
tion 2.2). RDG-Image is a collaborative, two
player, time-constrained, incentivized rapid con-
versational game, and has two player roles, the
Director and the Matcher. The players are given 8
images as shown in Figure 1 in a randomized order.
One of the images is highlighted with a red border
on the Director’s screen (called target image - TI).
The Matcher sees the same 8 images in a different
order but does not know the TI. The Director has to
describe the TI in such a way that the Matcher will
be able to identify it from the distractors as quickly
as possible. The Director and Matcher can talk
back-and-forth freely to accomplish the task. Once
the Matcher believes that he has made the right se-
lection, he clicks on the image and communicates
this to the Director. If the guess is correct then the
team earns 1 point, otherwise 0 points. Now the
Director can press a button so that the game can
continue with a new TI. The game consists of 4
rounds called Sets (from 1 - 4) with varying levels
of complexity. Each round has a predefined time
limit. The goal is to complete as many images as
possible, and thus as a team to earn as many points
as possible.

2.1 Human-Human Data

The RDG-Image data comes in two flavors, human-
human (HH) and human-agent (HA) spoken con-
versations. The HH data was collected by pairing
2 human players in real time and having their con-
versation recorded. The HA conversations were
recorded by pairing a human Director with the
agent Matcher (Section 2.2). In this section, we de-
scribe the HH part of the corpus. The HH data was
collected in two separate experiments, in-lab (Paet-
zel et al., 2014) and over the web (Manuvinakurike
and DeVault, 2015). Figure 1 shows an excerpt

from the HH corpus.
The HH corpus contains the user speech tran-

scribed, and labeled dialogue acts (DAs) along
with carefully annotated time stamps as shown in
Figure 1. This timing information is important
for modeling incrementality. We can observe that
the game conversation involves rapid exchanges
with frequent overlaps. Each episode (dialogue
exchange for each TI) typically begins with the Di-
rector describing the TI and ends with the Matcher
acknowledging the TI selection with the Assert-
Identified (As-I) DA (e.g., “got it”) or As-S (skip-
ping action) DA (e.g., “let’s move on to the next
image”). The Director then requests the next TI
and the game continues until time runs out. Some-
times the Matcher may interrupt the Director with
questions or other illocutionary acts. A complete
list of DAs can be found in (Manuvinakurike et al.,
2016).

In this paper, we are interested in modeling in-
crementality for DAs related to TI selection by the
Matcher. As-I is the most common DA used by
the human Matchers. As-S was not frequently used
by the human Matchers but is used by the base-
line matcher agent to give up on the current TI
and proceed to the next TI to try to increase the
total points scored. Further distinctions between
As-I and As-S are made in Section 2.2. The most
common DA generated by the Director was D-T
(Describe-Target).

2.2 Eve

The baseline agent called Eve (Paetzel et al., 2015)
was developed to play the role of the Matcher using
the HH data. The agent Eve relies on several kinds
of incremental processing. It obtains the 1-best
automatic speech recognition (ASR) hypothesis
every 100ms and forwards it to the natural language
understanding (NLU) module. The NLU module
is a Naive Bayes classifier trained on bag-of-words
features which are generated using a frequency
threshold (frequency >5) on unigrams and bigrams
(dt). The NLU assigns confidence values to the
8 images (called the image set). Let the image
set at time t be It = {i1, ..., i8}, with the correct
target image T ∈ It unknown to the agent. The
maximum probability assigned to any image at time
t is P ∗

t = maxj P (T = ij |dt). We call these
probability values (P (T = ij |dt)) as confidence.
The image with the highest confidence is chosen
as the best selection TI by the agent. Let tc be the
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Figure 1: Example interaction for a set of images in the human-human corpus.

time consumed on the current TI.
Eve’s policy decides between waiting and inter-

rupting the user with As-I or As-S to maximize the
score in the game. She can do it by taking three
actions: i) WAIT: Listen more in the hope that the
user provides more information; ii) As-I: Make the
selection and request the next TI; iii) As-S: Make
the selection and request the next TI as it might
not be fruitful to wait more.1 Eve’s policy depicted
in Algorithm 1, uses two threshold values namely
identification threshold (IT) and give-up threshold
(GT) to select these actions. The IT learned is
the least confidence value (P ∗

t ) above which the
agent uses the As-I action. GT is the maximum
time the agent should WAIT before giving up on
the current image set and requesting the human
Director to move on to the next TI. The IT and GT
values are learned using an offline policy optimiza-
tion method called the Eavesdropper simulation,
which performs an exhaustive grid search to find
the optimal values of IT and GT for each image
set (Paetzel et al., 2015). In this simulation, the
agent is trained offline on the HH conversations
and learns the best values of IT and GT, i.e., the
values that result in scoring the maximum points in
the game. For example, the optimal values learned
for the image set shown in Figure 1 were IT=0.8
and GT=18sec.

The Eve agent is very efficient and carefully en-
gineered to perform well in this task, and serves
as a very strong baseline. In the real user study
reported in Paetzel et al. (2015), Eve in the HA
gameplay scored nearly as well as human users in
HH gameplay. Thus this study provides an opportu-
nity to compare an RL policy with a strong baseline

1For As-S Eve’s utterance is ‘I don’t think I can get that
one. Let’s move on. I clicked randomly’ and for As-I it is
‘Got it’.

Algorithm 1 Eve’s dialogue policy
if P ∗

t > IT & |filtered(dt)| ≥ 1 then
Assert-Identified (As-I)

else if elapsed(t) < GT then
WAIT (continue listening)

else
Request-Skip (As-S)

end if

policy that uses a hand-crafted carefully designed
rule structure (CDR baseline). In the Appendix,
Figure 6 shows an example from the HA corpus.
The data used in the current work comes from both
the HH and HA datasets (see Table 1).

Branch # users # sub-dialogues
Human-Human lab 64 1485
Human-Human web 196 5642
Human-Agent web 175 7393

Table 1: Number of users and number of TI sub-
dialogues used for our study.

2.3 Improving NLU with Agent Conversation
Data

Obviously, the success of the agent heavily depends
on the accuracy of the NLU module. In the earlier
work by Paetzel et al. (2015), the NLU module
was trained on HH conversations. We investigated
whether using HA data would improve the NLU
accuracy or not. Using data from all of the users
director’s speech for all the TIs in the HH branch
only the NLU accuracy was found to be 59.72%.
Using data from the HA branch only resulted in
a lower NLU accuracy of 48.70%. Combining
the HH and HA training data resulted in a higher
accuracy of 61.89%. The improvement associated
with training on HH and HA data is significant
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across all sets of images2. Thus in this work we
use the best performing NLU with the data trained
from both the HH and HA subsets of the corpus.
The overall reported NLU accuracy was averaged
across all the image sets. The NLU module was
trained with the same method as in Paetzel et al.
(2015). Note that for all our experiments, 10% of
the HH data and 10% of the HA data was used for
testing, and the rest was used for training.

2.4 Room for Improvement

Though the baseline agent is impressive in its per-
formance there are a few shortcomings. We in-
vestigated the errors being made by the baseline
policy and identified four primary limitations in
its decision-making. Examples of these limitations
are shown in Figure 2, depicting the NLU assigned
confidence (y-axis) for the human TI descriptions
plotted against the time steps (x-axis).

First, the baseline commits to As-I as soon as the
confidence reaches a high enough value (IT thresh-
old), or As-S when the time consumed exceeds the
GT threshold. In Case 1 the agent decides to skip
(As-S) because the time consumed has exceeded
the GT threshold, instead of waiting more which
would allow for a more distinguishing description
to come from the human Director.

Second, its performance can be negatively af-
fected by instability in the partial ASR results. Ex-
amples of partial ASR results are shown in Figure 8
in the Appendix. In Case 2, the agent could learn
to wait for higher time intervals as the ASR partial
outputs become more stable.

Third, the baseline only commits at high confi-
dence values. Case 3 shows an instance where the
agent can save time by committing to a selection at
a much lesser confidence value.

Fourth, as we can see from Algorithm 1, the base-
line policy does not use “combinations” (or joint
values) of time and confidence to make detailed
decisions.

Perhaps using RL can not only help the agent
learn a more complex strategy but could also pro-
vide insights into developing a better engineered
policy which would not have been intuitive for a di-
alogue designer to come up with. That is, RL could
potentially help in building better rules that would
be much easier to incorporate into the agent and
thus improve its performance. For example, is there

2All the significance tests are performed using student’s t
test.

a combination of time and confidence which is not
currently used by the baseline i.e., not committing
at some initial time slices for high confidence val-
ues and committing at lower confidence values as
the user consumes more time?

3 Design of the RL Policy

The incremental policy decision making is mod-
eled as an MDP (Markov decision process), i.e.,
a tuple (S,A, TP,R, γ). S is a set of states that
the agent can be in. In this task S is represented
by (P ∗

t , tc) features where P ∗
t is the highest con-

fidence score assigned by the NLU for any image
in the image set (P ∗

t 7−→ IR; 0.0 ≤ P ∗
t ≤ 1.0)

and tc is the time consumed for the current TI
(tc 7−→ IR; 0.0 ≤ tc ≤ 45.0)3. The RL learns
a policy π mapping the state (S) to the action (A),
π : S → A, whereA = {As-I, As-S, WAIT} are the
actions to be performed by the agent to maximize
the overall reward in the game. The As-I and As-S
actions map to their corresponding utterances. R is
the reward function and γ a discount factor weight-
ing long-term rewards. TP is the set of transition
probabilities after taking an action.

When the agent is in the state St = (P ∗
t , tc),

executing the WAIT action results in moving to
the state St+1 which corresponds to a new dt+1

which corresponds to the new utterance (See Sec-
tion 2.2) and thus yielding new P ∗

t and tc for the
given episode. The As-I and As-S actions result
in goal states for the agent. Separate policies are
trained per image set similar to the baseline. The
difference between the As-I and As-S action is in
the rewards assigned. The reward function R is as
follows. After the agent performs the As-I action,
it receives a high positive reward for the correct
image selection and a high negative penalty for the
wrong selection. This is to encourage the agent to
learn to guess at the right point of time. There is
a small positive reward of δ for “WAIT” actions,
to encourage the agent to wait before committing
to As-I selections. No reward is provided for the
As-S actions. This is to discourage the agent from
choosing to skip and scoring the points by chance,
and at the same time not penalize the agent for
wanting to skip when it is really necessary. The
reward function for As-S prevents the agent from
getting heavy negative penalties in case the wrong
images are selected by the NLU. In those cases
the confidence would probably be low and thus the

3Each round lasts a maximum of 45 seconds.
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TI: H TI: A TI: B

Yeah so it’s a gray cat with blue eyes It’s a cat laying with eyes closed black Cat blue eyes on blanket black stripes like tiger
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Figure 2: Examples where the agent can do better. The red boxes show the wrong selection by the agent.

agent would not commit to As-I but choose the
action As-S instead.

R =


+δ if action is WAIT
+100 if As-I is right
−100 if As-I is wrong
0 if action is As-S

In this work we use the least squares policy it-
eration (LSPI) (Lagoudakis and Parr, 2003) RL
algorithm implemented in the BURLAP4 java code
library to learn the optimal policy. LSPI is a sample
efficient model-free off-policy method that com-
bines policy iteration with linear value function ap-
proximation. LSPI in our work uses State-Action-
Reward-State (SARS) transitions sampled from the
human interactions data (HH and HA). We use
Gaussian radial basis value function (RBF) rep-
resentation for the confidence (P ∗

t ) and time con-
sumed (tc) features. We treat the state features
as continuous values. The confidence values and
time consumed values are continuous in nature
within the bounds defined i.e., 0.0 ≤ P ∗

t ≤ 1.0
and 0.0 ≤ tc ≤ 45.0. We define 10 basis functions
distributed uniformly for the confidence features
(P ∗

t ) and 45 basis functions for the time consumed
(tc) features. The basis function returns a value
between 0 and 1 with a value of 1 when the query
state has a distance of zero from the function’s
“center” state. As the state gets further away, the

4http://burlap.cs.brown.edu/

basis function’s returned value degrades to a value
of zero.

Initial experimentation with the Vanilla Q-
learning algorithm (Sutton and Barto, 1998) did
not yield good results, due to the very large state
space and consequently data sparsity. Binning the
features, in order to transform their continuous val-
ues into discrete values and thus reduce the size of
the state space, did not help either. That is, hav-
ing a large number of bins did not deal with the
data sparsity problem, and having a small number
of bins made it much harder to learn fine-grained
distinctions between the states. Note that LSPI is
generally considered as a more sample efficient
algorithm than Q-learning.

We run LSPI with a discount factor of 0.99 until
convergence occurs or a maximum of 50 iterations
is reached, whichever happens first. We use 250k
available SARS transitions from the HH and HA
interactions to train the policy. The LSPI returns a
Greedy-Q policy which we use on the test data.

Figure 3 shows the modus operandi of the pol-
icy in this domain. For every time step the ASR
provides a 1-best partial hypothesis for the speech
uttered by the test user. This partial speech recogni-
tion hypothesis is input to the NLU module which
returns the confidence value (P ∗

t ). The time con-
sumed (tc) for the current TI is tracked by the game
logic.
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ASR partials 

Figure 3: Actions taken by the baseline and the RL agent.

pets zoo kitten cocktail bikes yoga necklace
PPS P PPS P PPS P PPS P PPS P PPS P PPS P

Baseline 0.22 37 0.28 27 0.14 14 0.18 23 0.09 13 0.20 3 0.20 4
RL agent 0.23 39 0.31 32 0.13 16 0.19 25 0.14 22 0.11 18 0.12 20

Table 2: Comparison of points per second (PPS) and points (P) earned by the baseline and the RL agent
on the test set.

4 Experimental Setup

For testing, we use the real user held out conver-
sation data from the HH and HA datasets. The
IT and GT thresholds for the baseline Eve were
also retrained (Paetzel et al., 2015) using the same
data and NLU as used to train the RL policy. Fig-
ure 3 shows the setup for testing and comparing the
actions of the RL policy and the baseline. Every
ASR partial corresponds to a state. For every ASR
partial we obtain the highest assigned confidence
score from the NLU, use the time consumed fea-
ture from the game, and obtain the action from the
policy. If the action chosen by the policy is “WAIT”
then we sample the next state. For each pair of
confidence and time consumed values we obtain
the actions from the baseline and the RL policy
separately and compare them with the ground truth
to evaluate which policy performs better. Once the
policy decides to take either the As-I or As-S action
then we advance the simulated game time by an ad-
ditional interval of 750ms or 1500ms respectively.
This is to simulate the conditions in the real user
game where we found that the users on average

take 500ms to click the button to load the next set
of TIs, and the agent takes 250ms to say the As-I
utterance and 1000ms to say the As-S utterance.
The next TI is loaded at this point and then the
process is repeated until the game time runs out for
each user round.

5 Results

The policy learned using RL (LSPI with RBF func-
tions) performs significantly better (p<0.01) in scor-
ing points compared to the baseline agent in offline
simulations. Also, the RL policy takes relatively
more time to commit (As-I or As-S) compared to
the baseline.5 The idea of setting the IT and GT
threshold values in the baseline (Section 2.2) origi-
nally aimed at scoring points rapidly in the game,
i.e., the baseline agent was optimized at scoring
the highest number of points per second (PPS).
The PPS parameter is a measure of how effective
the agent is at scoring points overall, and is calcu-
lated as the ratio of the total points scored by the

5p=0.06; we cannot claim that the time taken is signifi-
cantly higher but there is a trend.
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Figure 4: The RL policy scores significantly more
points than the baseline by investing slightly more
time (graph generated for one of the image sets).

agent divided by the total time consumed. Table 2
shows the points per second and the total points
scored in some of the image sets by the baseline and
the RL. We can observe that the RL consistently
scores more points than the baseline, however this
comes at the cost of additional time. By scoring
more points overall than the baseline, the RL also
scores higher in the PPS metric (p<0.05). Table 3
shows the total points scored and the total time
spent across all the users by the baseline and the
agent. Each set here refers to one round in a game.

Baseline RL
Set P t (s) P t (s)
1 96 510.8 107 528.1
2 75 525.0 85 537.9
3 42 298.9 74 595.2
4 49 531.9 76 592.3

Table 3: The points scored (P) and the time con-
sumed (t) in seconds for different image sets (Set).

Figure 5: Decisions of the RL policy (in blue) vs.
the baseline policy (in red).

Figure 4 depicts this result for an image set of
bikes (images shown in Figure 1). We plot the
total time spent by the agent and the total points

scored. Clearly, the RL policy manages to score
more points than the baseline in a given amount
of time. In order to understand the differences in
the actions taken by the RL policy and the baseline
policy, we plot on a 3 dimensional scatter plot, the
action taken by the policy for confidence values
between 0 and 1 (spaced at 0.1 intervals) and the
time consumed between 0s to 15s (spaced at 100ms
intervals) for one of the image sets (bikes). Fig-
ure 5 shows the decisions made by the RL (in blue)
compared to the decisions made by the baseline (in
red). As we can see there is not much variety in the
decisions of the baseline policy; it basically uses
thresholds (see Algorithm 1) optimized using real
user data. Below we summarize our observations
regarding the actions taken by the RL policy.

i) Regardless of whether the confidence value is
high or low, the RL policy learns to wait for low val-
ues of the time consumed. This may be helping the
RL policy to avoid the problem illustrated in Case 2
in Figure 2, where instability in the early ASR re-
sults for a description can lead an incorrect guess
to be momentarily associated with high confidence.
The RL policy is more keen on waiting and decides
to commit early only when the confidence value
is really high (almost 1.0). ii) Requiring a lower
degree of confidence when the time consumed is
high was also found to be an effective strategy to
score more points in the game. Thus the RL policy
learns to guess (As-I) even at lower confidence val-
ues when the time consumed reaches high values.
This combination of time and confidence values
helps the RL agent perform better w.r.t. points and
consequently PPS in the task.

It is also important to note that the agent does not
wait eternally to make its selection. The human TI
descriptions are collected from real user gameplay
that lasts for a limited number of time steps. That is,
the maximum number of points that the RL policy
can score in simulation is limited by the number
of images described in the real user gameplay. In
the case of the “WAIT” action beyond this point
the agent fails to gather high rewards as the As-I
action was never selected. By the virtue of this
design feature, the RL agent has implicitly learned
the notion of playing the game at a high pace.

Note also that the RL agent has not learned to
always commit at a later time than the baseline.
Table 4 shows the percentage of times (in the test
games) where the RL policy chooses a different
strategy than the baseline. We can see that the RL
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% times Same commit times 48.06
% times Baseline has faster commit 44.77
% times RL has faster commit 7.17

Table 4: Comparison of commit strategies between
baseline and RL (%).

policy commits at the same time instances as the
baseline about 48% of the time. 44.77% of the time
the baseline commits to the TI faster and about 7%
of the time the RL decides to commit earlier to the
TI compared to the baseline.

6 Discussion & Future Work

The cases shown in Figure 2 provide examples of
how the RL policy can outperform the baseline. i)
As the RL agent has learned to not commit to a
decision early it can wait enough time to observe
more user words and thus reach higher confidence
(Case 1). ii) The RL agent is not keen on commit-
ting when it sees an early high confidence value
(like IT for the baseline) but rather waits which
may enable the ASR partials to become more sta-
ble (Case 2). iii) The RL agent also learns to com-
mit at low confidence values as the time consumed
increases and sometimes even committing earlier
than the baseline (Case 3).

6.1 Contrasting Baseline and RL Policy
Building Efforts

Building an SDS with carefullly crafted rules has
often been criticized as a laborious and time con-
suming exercise. This is in contrast to the alter-
native data oriented approaches, which are often
argued to require less time to engineer a solution
and be more scalable. Development of the baseline
system’s policy component took an NLP researcher
approximately two months, including experimen-
tation with alternative rule structures and devel-
opment of the parameter optimization framework.
Note that this effort does not include data collec-
tion. The same amount of effort was put into devel-
oping the RL policy by a researcher with similar
skills. Building the RL policy involved experiment-
ing with various reward functions to suit the task.
Though the reward function is simplistic in our
case, a high negative reward for wrong As-I actions
was required for RL to learn useful policies. It also
takes effort and experimentation to select the right
algorithm (LSPI with value function approxima-
tion vs. Vanilla Q-learning). It is thus hard to claim
which approach is more time-efficient (in terms

of development effort). Figure 7 in the Appendix
shows a comparison of the baseline policy and the
RL policy learned with the Vanilla Q-learning al-
gorithm which did not perform well. It performed
worse than the baseline. We also need to keep in
mind that: i) We cannot claim that the rules learned
by the RL policy could not be implemented in the
hand-crafted system. Bounds on the time and con-
fidence (for example: do not commit as soon as the
confidence exceeds a threshold but rather wait for
a few additional time steps, it is okay to commit
at lower confidence values for higher time values
to perform better, etc.) can be included in the Al-
gorithm 1 and the system can be deployed with
ease. ii) It usually takes time and effort to build a
common infrastructure to experiment between the
two strategies. In this case, experimenting with
the incremental RL policy was simpler as the in-
frastructure and the methodology existed from the
previous work by Manuvinakurike et al. (2015) and
Paetzel et al. (2015). Despite the fact that both ap-
proaches required similar development effort, in
the end, RL did learn a better strategy automati-
cally, at least in our offline simulations (based on
real user data). RL provides advantages compared
to the baseline method. Adding new constraints
into the baseline can be hard. This is because the
baseline method uses exhaustive grid search to set
its parameter values, and it might be exponentially
costly to do this with more constraints. On the
other hand, RL is more scalable as adding features
is relatively easy with RL.

6.2 Future Work

In this work we have showed that RL has potential
for learning policies to make incremental decisions
that yield better results than a high performance
CDR baseline. Our experiments were performed in
simulation (albeit using real user data) and the next
step is to investigate whether these improvements
transfer to real time experiments (real time inter-
action of the agent with human users). Another
interesting avenue for future work is to implement
a hybrid approach of engineering a hand-crafted
policy using the intuitions learned from using RL.
There are still regions of the state space that were
not fully explored by RL. On the other hand, as we
saw, RL can potentially learn interesting policies
which would not have been intuitive for a dialogue
designer to come up with. Therefore, we plan to
explore incorporating intuitions from the RL into
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the high performance CDR baseline and see which
avenue would be more fruitful and if we can get the
best of both worlds. Finally, another idea for future
work is to experiment with Inverse Reinforcement
Learning (Abbeel and Ng, 2004; Nouri et al., 2012;
Kim et al., 2014) in order to potentially learn a
better reward function directly from the data.
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Gašić, James Henderson, Oliver Lemon, Xingkun
Liu, Peter Mika, Nesrine Ben Mustapha, Verena
Rieser, Blaise Thomson, Pirros Tsiakoulis, Yves
Vanrompay, Boris Villazon-Terrazas, and Steve
Young. 2013. Demonstration of the Parlance system:
a data-driven, incremental, spoken dialogue system
for interactive search. In Proceedings of the Annual
Meeting of the Special Interest Group on Discourse
and Dialogue (SIGDIAL). Metz, France, pages 154–
156.

Hatim Khouzaimi, Romain Laroche, and Fabrice
Lefèvre. 2015. Optimising turn-taking strategies
with reinforcement learning. In Proceedings of the
Annual Meeting of the Special Interest Group on Dis-
course and Dialogue (SIGDIAL). Prague, Czech Re-
public, pages 315–324.

Dongho Kim, Catherine Breslin, Pirros Tsiakoulis, Mil-
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Appendix

Example dialogue

Figure 6: Example dialogue for an episode in the
human-agent corpus for the same TI as in Figure 1.

Policy differences

Policy action 
Confidence 

ti
m

e 

Wait 
As-S As-S As-I 

Figure 7: Policy learned by the Vanilla Q-learning
algorithm (blue) compared to the baseline (red).
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ASR Partials 

Figure 8: Actions taken by the baseline and the RL agent for the 1-best ASR increments. The image set is
also shown.
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