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Abstract

This paper presents a summary of the
first Workshop on Building Linguistically
Generalizable Natural Language Process-
ing Systems, and the associated Build It
Break It, The Language Edition shared
task. The goal of this workshop was to
bring together researchers in NLP and lin-
guistics with a shared task aimed at test-
ing the generalizability of NLP systems
beyond the distributions of their training
data. We describe the motivation, setup,
and participation of the shared task, pro-
vide discussion of some highlighted re-
sults, and discuss lessons learned.

1 Introduction

Machine learning techniques have had tremen-
dously positive impact on the field of natural lan-
guage processing, to the point that we now have
systems for many NLP problems that work ex-
tremely well—at least when the NLP problem is
carefully designed and these systems are tested
on data that looks like their training data. Espe-
cially with the influx of deep learning approaches
to NLP, we find ourselves more and more in the
situation that we have systems that work well un-
der some conditions, but we (and the models!)
may have little idea what those conditions are.

We believe that linguistic knowledge is critical
in many phases of the NLP pipeline, including:

1. Task design and choice of language(s)

2. Annotation schema design

3. System architecture design and/or feature de-
sign

4. Evaluation design and error analysis

5. Generalization beyond training data

1

Our goal in this workshop was to bring together
researchers from NLP and linguistics through a
carefully designed shared task. This shared task
was designed to test the true generalization ability
of NLP systems beyond the distribution of data on
which they may have been trained. In addition to
the shared task, the workshop also welcomed re-
search contribution papers.

In this paper, we describe the shared task, lay-
ing out our motivations for pursuing this twist on
the traditional set up (§2) and the various design
decisions we made as we took the initial idea and
worked to shape it into something that would be
feasible for participants and informative for our
field (§3). We then go on to describe our data (§4),
the participating systems and breaker approaches
(85), and our approach to scoring (§6). Finally, we
give an overview of the shared task results in §7,
and discuss lessons learned in §8.

Our hope is that in laying out the successes
and challenges of the first iteration of this shared
task, we can help future shared tasks of this type
to build on our experience. To this end, we also
make available the datasets collected for and cre-
ated during the shared task (§4).

2 Motivation: Robust NLP Systems

Natural language processing has largely embraced
the “independently and identically distributed”
(iid)  probably-approximately-correct ~ (PAC)
model of learning from the machine learning
community (c.f. Valiant, 1984), typically under a
uniform cost function. This model has been so
successful that it often simply goes unquestioned
as the “right way” to do NLP. Under this model,
any phenomenon that is sufficiently rare in a given
corpus (seen as a “distribution of data”) is not
worth addressing. Systems are not typically built
to handle tail phenomena, and iid-based learning
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similarly trains systems to ignore such phenom-
ena. This problem is exacerbated by frequent use
of overly simplistic loss functions, which further
encourage systems to ignore phenomena that they
do not capture adequately.

The result is that NLP systems are quite brittle
in the face of infrequent linguistic phenomena,’
a characteristic which stands in stark contrast to
human language users, who at a very young age
can make subtle distinctions that have little sup-
port in the distribution of data they’ve been ex-
posed to (c.f., Legate and Yang, 2002; Crain and
Nakayama, 1987). This ability also allows hu-
mans to avoid making certain errors due to over-
or under-exposure. A computational counter-
example is ignoring negations because they are
relatively infrequent and typically only have a
small effect on the loss function used in training.

The brittleness of current NLP systems, and the
substantial discrepancy between their capacities
and that of humans, suggests that there is much left
to be desired in the traditional “iid” model. This
applies not only to training and testing, but also to
error analysis: iid development data is unlikely to
exhibit all the linguistic phenomena that we might
be interested in testing. Even if one is uninterested
in the scientific questions addressed by testing a
model’s ability to handle less frequent phenomena,
it should be noted that any NLP system that is re-
leased is likely to be adversarially tested by users
who want to break it for fun.

This state of affairs has not gone unnoticed.
On the one hand, there is work on creating tar-
geted evaluation datasets that exhibit and are an-
notated for particular linguistic phenomena, in or-
der to facilitate fine-grained analysis of the lin-
guistic capacities of systems for tasks such as pars-
ing, entailment, and semantic relatedness (Rimell
et al., 2009; Bender et al., 2011; Marelli et al.,
2014). Additionally, there is an increasing amount
of work on developing methods of exposing ex-
actly what linguistic knowledge NLP models de-
velop (Kadar et al., 2016; Li et al., 2015) and what
linguistic information is encoded in models’ pro-
duced representations (Adi et al., 2016; Ettinger
et al., 2016). Our aim in organizing this work-

"During a panel at the 1st Workshop on Representa-
tion Learning for NLP (ACL 2016; https://sites.
google.com/site/repldnlp2016/) some panelists
acknowledged the fact that they could probably break any
NLP system with very little effort—meaning it shouldn’t be
hard to invent reasonable examples that would confuse the
systems.

shop was to build on this foundation, designing the
shared task to generate data specifically created to
identify the boundaries of systems’ linguistic ca-
pacities, and welcoming further related research
contributions to stimulate additional discussion.

3 Shared Task: Build It Break It, The
Language Edition

To address the issues identified above, we devel-
oped a shared task inspired by the Build It Break
It Fix It Contest? and adapted for application to
NLP. The shared task proceeded in three phases:
a building phase, a breaking phase, and a scoring
phase:

1. In the first phase, “builders” take a designated
NLP task and develop techniques to solve it.

2. In the second phase, “breakers”, having seen
the output of the builders’ systems on some
development data, are tasked with construct-
ing minimal-pair test cases intended to iden-
tify the boundaries of the systems’ capabili-
ties.

3. In the third phase, builders run their systems
on the newly created minimal pair test set and
provide their predictions for scoring.

Builders are scored based how well their sys-
tems can withstand the attacks of breakers, and
breakers are scored based on how well they can
identify system boundaries.

The goals of this type of shared task are multi-
fold: we want to build more reliable NLP tech-
nology, by stress-testing against an adversary; we
want to learn more about what linguistic phenom-
ena our systems are capable of handling so that
we can guide research in interesting directions; we
want to encourage researchers to think about what
assumptions their models are implicitly making by
asking them to break them; we want to engage lin-
guists in the process of testing NLP systems; we
want to build a test collection of examples that are
not necessarily high probability under the distribu-
tion of the training data, but are nonetheless repre-
sentative of language phenomena that we expect a
reasonable NLP system to handle; and we want to
increase cross-talk between linguistics and natural
language processing researchers.

https://builditbreakit.org



Sentence UCD finished the 2006 champi-
onship as Dublin champions, by

beating St Vincents in the final.

Predicate beating
Question  Who beat someone?
Answer ucCbh

Figure 1: Example QA-SRL item

3.1 Task Selection

In selecting the NLP task to be solved by the
builders, we had a number of considerations. The
task should be one that requires strong linguistic
capabilities, so that in identifying the boundaries
of the systems, breakers are encouraged to target
linguistic phenomena key to increasing the robust-
ness of language understanding. Additionally, we
want the task to be without significant barrier to
entry, to encourage builder participation.

In the interest of balancing these considerations
and testing the effectiveness of different tasks,
we ran two tasks in parallel: sentiment analysis
and question-answer driven semantic role label-
ing (QA-SRL; He et al., 2015). The sentiment task
consists of standard sentiment analysis performed
on movie reviews. In the QA-SRL task, the in-
put is a sentence and a question related to one of
the predicates in the sentence, and the output is a
span of the sentence that answers the question. See
Figure 1 for an example item. The task allows for
testing semantic role labeling without the need for
a pre-defined set of roles, or for annotators with
significant training or linguistic expertise.

3.2 Building

From the builders’ point of view, the shared task
is similar to other typical shared tasks in our field.
Task organizers provide training and development
data, and the builder teams create systems on the
basis of that data. We do not distinguish open ver-
sus closed tracks (use of provided training data is
optional). Our goal was to attract a variety of ap-
proaches, both knowledge engineering-based and
machine learning-based.

We considered requiring builders to submit sys-
tem code as an alternative to running their systems
on two different datasets (see Section 4). However,
ultimately we decided in favor of builder teams
running their own systems and submitting predic-
tions in both phases.

3.3 Breaking

The task of breaker teams was to construct min-
imal pairs to be used as test input to the builder
systems, with the goal of identifying the bound-
aries of system capacities. In order for a test pair to
be effective in identifying a system’s boundaries,
it needs to satisfy two requirements:

1. The system succeeds on one item of the pair
but fails on the other.

2. The difference between the items in the pair
is specific enough that the ability of the sys-
tem to handle one but not the other can be
attributed to an identifiable cause.

Satisfaction of requirement 1 is what we will re-
fer to as “breaking” a system (note that this also
applies if the system fails on the original example
but succeeds on the hand-constructed variant).

Breakers were thus instructed to create minimal
pairs on which they expected systems to make a
correct prediction on one but not the other of the
items. Breakers were additionally asked, while
constructing minimal pairs, to keep in mind what
exactly they would be able to conclude about a
system’s linguistic capacity if it proved able to
handle one item of a given pair but not the other.
Along this line, breakers were encouraged to pro-
vide a rationale with each minimal pair, to explain
their reasoning in making a given change.’

In order to exert a certain amount of control over
the domain and style of breakers’ items, we re-
quired breakers to work from data provided for
each task. Specifically, we asked them to select
sentences from the provided dataset and make tar-
geted changes in order to create their minimal
pairs. This means that each minimal pair consisted
of one unaltered sentence from the original dataset
and one sentence reflecting the breakers’ change
to that sentence. This was done to ensure that sys-
tems had at least a reasonable chance at success,
by scoping down the range of possible variants
that breakers could provide.

As an example, let us say that the provided sen-
timent analysis dataset includes the sentence I love
this movie, which has positive sentiment (+1). A
breaker team could then construct a pair such as
the following:

(D) +1 Ilove this movie!

3Breaker instructions can be found here: https://
bibinlp.umiacs.umd.edu/sharedtask.html



+1 I’'m mad for this movie!

While the first item is likely straightforward to
classify, we might anticipate a simple sentiment
system to fail on the second, since it may flag
the word mad as indicating negative sentiment.
Breakers could choose to change the sentiment
with their modification, or let it remain the same.

For the QA-SRL task, breakers were only to
change the original sentence (and, if appropriate,
the answer), leaving the question unaltered. For
instance, breakers could generate the following
item to be paired with the example in Figure 1:

) Sent’ UCD finished the 2006 champi-
onship as Dublin champions, when
they beat St Vincents in the final.

Ans’ UCD (unchanged)

We might anticipate that the system would now
predict the pronoun they as the answer to the ques-
tion, without resolving to UCD.*

The sets of minimal pairs created by the break-
ers then constituted the test set of the shared task,
which was sent to builders to generate predictions
on for scoring.

4 Shared Task Data

4.1 Training Data

For the sentiment training data, we used the Senti-
ment Treebank dataset from Socher et al. (2013),
developed from the Rotten Tomatoes review
dataset of Pang and Lee (2005).° Each sentence
in the dataset has a sentiment value between 0 and
1, as well as sentiment values for the phrases in
its syntactic parse. In order to establish a binary
labeling scheme at the sentence level, we mapped
sentences in range (0, 0.4) to “negative” and sen-
tences in range (0.6, 1.0) to “positive”. Neutral
sentences—those with a sentiment value between
0.4 and 0.6—were removed. The sentiment train-
ing data had a total of 6921 sentences and 166738
phrases. Phrase-level sentiment labels were made
available to participants as an optional resource.

“Breakers were not allowed to change the sentence such
that the accompanying question was no longer answerable
with a substring from the original sentence. For instance,
breakers could not make a change such as Terry fed Parker
— Parker was fed with an accompanying test question of
Who fed Parker?, since the answer to that question would
no longer be contained in the sentence.

SSentiment training data available here:
nlp.stanford.edu/sentiment/

https://

For QA-SRL training data, we used the data
created by He et al. (2015).° These items were
drawn from Wikipedia, and each item of the train-
ing data includes the sentence (with the relevant
predicate identified), the question, and the answer.
The training data had a total of 5149 sentences.

4.2 Blind Development Data

Blind dev data was provided for builders to submit
initial predictions on, as produced by their sys-
tems. These predictions were made available for
breakers, to be used as a reference when creating
test minimal pairs. For sentiment, we collected
an additional 500 sentences from a pool of Rotten
Tomatoes reviews for movies in the years 2003-
2005. For annotations, we used the same method
of annotation via crowd-sourcing that was used by
Socher et al. (2013). For QA-SRL, we extracted a
set of 814 sentences from Wikipedia and annotated
these by crowd-sourcing, following the method of
He et al. (2015).

4.3 Starter Data for Breakers

As described above, breakers were given data
from which to draw items that could then be al-
tered to create minimal pairs. Sentiment break-
ers were provided an additional set of 500 sen-
timent sentences, collected and annotated by the
same method as that used for the 500 blind dev
sentences for sentiment. QA-SRL breakers were
provided an additional set of 814 items, collected
and annotated by the same method as the blind dev
items for QA-SRL.

4.4 Test Data

The test data for evaluating builder systems
consisted of the minimal pairs constructed by
the breaker teams. The labels for the pairs were
provided by the breakers themselves, though addi-
tional crowd-sourced labels were made available
for teams to check for any substantial deviations.

We release the minimal pair test sets, as well as
annotated blind dev and starter data for sentiment
and QA-SRL: https://bibinlp.umiacs.
umd.edu/data.

®QA-SRL training data available here:
dada.cs.washington.edu/gasrl/.

https://



S Task Participants

5.1 Builder Teams: Sentiment

Strawman Kyunghyun Cho contributed a sen-
timent analysis system intended to serve as a
naive baseline for the shared task. This model,
called Strawman, consisted of an ensemble of five
deep bag-of-ngrams multilayer perceptron classi-
fiers. The model’s vocabulary was composed of
the most frequent 100k n-grams from the provided
training data, with n up to 2 (Cho, 2017).

University of Melbourne, CNNs The builder
team from University of Melbourne (which also
participated as a breaker team), contributed two
sentiment analysis systems consisting of convolu-
tional neural networks. One CNN was trained on
data labeled at the phrase level (PCNN), and the
other was trained on data labeled at the sentence
level (SCNN) (Li et al., 2017).

Recursive Neural Tensor Network To supple-
ment our submitted builder systems, we tested
several additional sentiment analysis systems on
the breaker test set. The first of these was
the Stanford Recursive Neural Tensor Network
(RNTN) (Socher et al., 2013). This model is a
recursive neural network-based sentiment classi-
fier, composing words and phrases of input sen-
tences based on binary branching syntactic struc-
ture, and using the composed representations as
input features to softmax classifiers at every syn-
tactic node. This model, rather than parameter-
izing the composition function by the words be-
ing composed (Socher et al., 2012), uses a single
more powerful tensor-based composition function
for composing each node of the syntactic tree.

DCNN The second supplementary sentiment
system was the Dynamic Convolutional Neural
Network from University of Oxford (Kalchbren-
ner et al., 2014). This is a convolutional neu-
ral network sentiment classifier that uses inter-
leaved one-dimensional convolutional layers and
dynamic k-max pooling layers, and handles input
sequences of varying length.

Bag-of-ngram features Finally, we tested an
additional bag-of-ngrams sentiment system with
n up to 3, consisting of a linear classifier, imple-
mented by one of the organizers in vowpal wab-
bit (Langford et al., 2007).

5.2 Breaker Teams: Sentiment

Utrecht The breaker team from Utrecht Uni-
versity used a variety of strategies, includ-
ing insertion of modals and opinion adverbs
that convey speaker stance, changes based in
world knowledge, and pragmatic and syntactic
changes (Stalitinaité and Bonfil, 2017).

Ohio State University The breaker team from
OSU also used a variety of strategies, classi-
fied as morphosyntactic, semantic, pragmatic, and
world knowledge-based changes, to target hypoth-
esized weaknesses in the sentiment analysis sys-
tems (Mabhler et al., 2017).

University of Melbourne The breaker team
from University of Melbourne opted to generate
test minimal pairs automatically, borrowing from
methods for generating adversarial examples in
computer vision. They used reinforcement learn-
ing, optimizing on reversed labels, to identify to-
kens or phrases to be changed, and then applied
a substitution method (Li et al., 2017). Some hu-
man supervision was used to ensure grammatical-
ity and correct labeling of the sentences.

Team 4 The fourth sentiment breaker team did
not submit a description paper, but the results from
this team’s test set are reported below.

5.3 Builder Team: QA-SRL

The organizers provided a QA-SRL system, as
there were no external builder submissions for
this task. The provided system was a logistic re-
gression classifier, trained with 1-through-5 skip-
grams with a maximum skip of 4. Potential an-
swers were neighbors and neighbors-of-neighbors
in a dependency parse of the sentence (Stanford
dependency parser; De Marneffe et al., 2006), and
input to the classifier was the predicate, question
verb, question string, and dependency relation be-
tween the predicate and the potential answer. An
answer was marked as correct at training time if it
overlapped at least 75% in characters with the true
answer.

5.4 Breaker Team: QA-SRL

There was one breaker submission for QA-SRL.
This team did not submit a description paper—
however, the rationales provided for their submit-
ted minimal pairs indicate that they made a variety
of changes including adding modifiers, adding or



changing prepositional phrases, substituting syn-
onyms, using distractor noun phrases, and target-
ing pronoun resolution.

6 Shared Task Scoring

For the purpose of scoring, a test minimal pair
is considered to have “broken” a system if one
item of the pair gets a correct prediction and the
other item gets an incorrect prediction. As out-
lined above, this is to reward breakers for zeroing
in on system boundaries.

For scoring the breakers, we decided to use the
average across systems of the product of the sys-
tem dev set accuracy and system breaking percent-
age. Specifically, if a breaker j provides a set of

examples D; to break systems ¢ = 1... N, then
the breaker score is:
score(j Zaoc break(z 7) (D)
N ' |Dj|

acc;(dev) = accuracy of system i ondev  (2)
break(i, j) = #x € D that break system ¢ (3)

The motivation here is to weight breaker successes
against a given system by the general strength of
that system.

For scoring the builders, we used two metrics:

1. Average F score across all sentences (origi-
nals and modified) for all breaker teams

2. Percentage of sentence pairs that break sys-
tem.

7 Results and Discussion

Since our participation in the QA-SRL task was
minimal, we focus in this section on the results for
the sentiment analysis task.

7.1 Aggregate Results

Aggregate results for builders are shown in Ta-
ble 1. Computing by F1 score, Strawman comes
out on top among builder systems with an average
F1 of 0.528, followed by the phrase-based CNN
and bag-of-ngrams. When scored by percentage
of pairs that break the system, the phrase-based
CNN comes out on top, broken by 24.39% of
test pairs. The bag-of-ngrams model and DCNN
follow closely behind, while the sentence-based
CNN falls last by a fair margin.

Aggregate results for breakers are shown in Ta-
ble 2. By our chosen scoring metric, the team from

average % broken
System F1 test cases
Strawman 0.528 25.43
Phrase-based CNN 0.518 24.39
Bag-of-ngrams 0.510 24.74
Sentence-based CNN  0.490 28.57
DCNN 0.483 25.09
RNTN 0.457 25.96

Table 1: Builder team scores: Average F1 across
all breaker test cases, and percent of breaker test
cases that broke the system

Breaker score
Utrecht 31.17
OoSuU 28.66
Melbourne 19.28
Team 4 7.48

Table 2: Breaker team scores

Utrecht falls in first place among breaker teams,
followed closely by the breaker team from OSU.

7.2 Detailed Results

Aggregate scores obscure the important details
that we aim to probe for with this shared task,
namely the particular weaknesses of a given sys-
tem targeted by a given minimal pair or set of min-
imal pairs. Figure 2 brings us closer to the desired
granularity with individual breaking percentages,
allowing us a clearer sense of the interaction be-
tween breaker team and builder system.

Some patterns emerge. The Utrecht and OSU
breaker team are roughly on par across systems,
with Utrecht pulling ahead by the largest margin
on Strawman. These teams seem to have used
a comparable variety of linguistically diverse and
targeted attacks, which may explain the fact that
they perform similarly.

The Melbourne test set stood out from the
others in that it was automatically generated.
As might be expected, this test set lags behind
in breaking percentage against most systems—
however, against the sentence-based CNN it per-
forms on par with the other two teams.

The Team 4 test set has the lowest overall break-
ing percentages by a substantial margin. One in-
teresting note is that this team’s test set receives
one of its lowest breaking percentages against the
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Figure 2: Detailed

sentence-based CNN, which was the source of
some of the highest breaking percentages for the
other breaker teams.

7.3 Item-based Results

It is of course at the level of individual minimal
pairs that our analysis of this shared task can have
the most power. Tables 3 and 4 show a sample of
breaker minimal pairs and builder system predic-
tions on those pairs, allowing us to observe sys-
tem performance at the item level for this sam-
ple. These examples were chosen with the goal of
finding interesting strategies that break some sys-
tems but not others, in order to explore differences.
However, we found that for a majority of success-
ful test pairs, systems tended to break together.

On Utrecht pair 1a/b, we see that the addition
of the word pain breaks Strawman and bag-of-
ngrams, as we might expect from ngram-based
systems. Apart from RNTN, which makes incor-
rect predictions on both items, the remaining sys-
tems are able to handle this change.

On Utrecht pair 2a/b, we see that bag-of-
ngrams, DCNN, SCNN and RNTN all break,
though in different directions, with SCNN and
RNTN getting the altered sentence wrong, and
bag-of-ngrams and DCNN getting the original
sentence wrong. This suggests a lack of sensi-
tivity to the subtly different sentiments conveyed
in context by the substituted words unnerving and
hilarious. Strawman and PCNN, however, predict

breaking percentages

both items correctly.

The substitution of the comparative phrase in
OSU pair la/b impressively breaks every sys-
tem, suggesting that the sentiment conveyed by
the phrase just willing enough in context is be-
yond the capacity of any of the systems. The sar-
casm addition in OSU 2a/b breaks Strawman, bag-
of-ngrams and DCNN, but not SCNN or RNTN
(while PCNN breaks in the opposite direction).

Strawman breaks on Melbourne 1a/b, which is
interesting as we might expect the substituted item
thrill to be flagged as carrying positive sentiment.
Bag-of-ngrams fails on both items of the pair, and
RNTN gives a neutral label for the second item.

Melbourne 2a/b employs a word re-ordering
technique and breaks every system in various
directions—except for bag-of-ngrams and RNTN,
which fail on both items—suggesting that both the
original and altered sentences of this pair give sys-
tems trouble.

Team 4 la/b fools bag-of-ngrams with the al-
tered sentence, while DCNN and RNTN make in-
correct predictions on the original.

As we can see in these examples, by testing sys-
tems on minimal pair test items such as these we
have the potential to zero in on the linguistic phe-
nomena that any given system can and cannot han-
dle. Itis also clear that it is specifically when a sys-
tem “breaks” (makes a correct prediction on one
but not the other item), and when the change in the
pair is targeted enough, that we are able to draw



straightforward conclusions. For instance, OSU
pair 1a/b allows us to conclude that inferring the
positive effect of the phrase just [...] enough on
a previously negative context is beyond the sys-
tems’ capacities. On the other hand, the more dif-
fuse changes in Melbourne pair 2a/b make it more
difficult to determine the precise cause of a system
breaking in one direction or the other.

Of course, to be more confident about our con-
clusions, we would want to analyze system pre-
dictions on multiple different pairs that target the
same linguistic phenomenon. This can be a goal
for future iterations and analyses.

8 Lessons for the Future

A variety of lessons came out of the shared task,
which can be helpful for future iterations or future
shared tasks of this type. We describe some of
these lessons here.

The choice of NLP task is an important one.
While QA-SRL is a promising task in terms of re-
quiring linguistic robustness, it yielded lower par-
ticipation than sentiment analysis. Strategies for
encouraging buy-in from both builders and break-
ers will be important. One strategy would be to
team up with existing shared tasks, to which we
could add a breaking phase.

While going through the labels assigned to the
minimal pairs by breaker teams, we find some la-
bel choices to be questionable. Since unreliable
labels will skew the assessment of builder perfor-
mance, in future iterations there should be an ad-
ditional phase in which we validate breaker labels
with an external source (e.g., crowd-sourcing).
To minimize cost and time, this could be done
only for examples that are “contested” by either
builders or other breakers.

The notion of a “minimal pair” is critical to this
task, so it is important that we define the notion
clearly, and that we ensure that submitted pairs
conform to this definition. Reviewing breaker sub-
missions, we find that in some cases breakers have
significantly changed the sentence, in ways that
may not conform to our original expectations. In
future iterations, it will be important to have clear
and concrete definitions of minimal pair, and it
would also be useful to have some external review
of the pairs to confirm that they are permissible.

For this year’s shared task we chose to limit
breakers by requiring them to draw from existing
data for creating their pairs. A potential variation

to consider would be allowing breaker teams to
create their own sentence pairs from scratch, in ad-
dition to drawing from existing sentences (with the
restriction that sentences should fall in the speci-
fied domain). This greater freedom for breakers
may increase the range of linguistic phenomena
able to be targeted, and the precision with which
breakers can target them.

Finally, it is important to consider general
strategies for encouraging participation. We iden-
tify two potential areas for improvement. First, the
timeline of this year’s shared task was shorter than
would be optimal, which placed an undue bur-
den in particular on builders, who needed to run
systems and submit predictions in two different
phases. A longer timeline could make participa-
tion more feasible. Second, participants may be
reluctant to submit work to be broken—to address
this, we might consider anonymous system sub-
missions in the future.

9 Conclusion

The First Workshop on Building Linguistically
Generalizable NLP systems, and the associated
first iteration of the Build It Break It, The Lan-
guage Edition shared task, allowed us to begin ex-
ploring the limits of current NLP systems with re-
spect to specific linguistic phenomena, and to ex-
tract lessons to build on in future iterations or fu-
ture shared tasks of this type. We have described
the details and results of the shared task, and dis-
cussed lessons to be applied in the future. We are
confident that tasks such as this, that emphasize
testing the effectiveness of NLP systems in han-
dling of linguistic phenomena beyond the training
data distributions, can make significant contribu-
tions to improving the robustness and quality of
NLP systems as a whole.
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ID Minimal Pairs Label | Rationale
Utrecht 1a Through elliptical and s§em1ngly . oblique methods, he +1 Emotional
forges moments of staggering emotional power i can be
Through elliptical and seemingly oblique methods, he P ..
Utrecht 1b . . . +1 positive
forges moments of staggering emotional pain
Utrecht 2a [Bett.ls] has a smoldering, humorless intensity that’s un- 1 Funny can be
nerving. positive &
Utrecht 2b .[Bettls] has a smoldering, humorless intensity that’s hilar- +1 negative
ious.
A bizarre (and sometimes repulsive) exercise that’s a little
OSU 1a o1 . . -1
too willing to swoon in its own weird embrace. .
. . . . y s Comparative
A bizarre (and sometimes repulsive) exercise that’s just
OSU 1b 1 . . +1
willing enough to swoon in its own weird embrace.
0SU 2a Proves that fresh new work can be done in the horror genre .
if the director follows his or her own shadowy muse. Sarcasm
Proves that dull new work can be done in the horror genre (single cue)
OSU 2b . . . -1
if the director follows his or her own shadowy muse.
Melbourne 1a Exagtly the k}nd of unexpected delight one hopes for ev- +l
ery time the lights go down. (Not provided)
Exactly the kind of thrill one hopes for every time the p
Melbourne 1b | . +1
lights go down.
Melbourne 2a American .drama doesn’t get any more meaty and muscu- +1
lar than this. .
. , (Not provided)
This doesn’t get any more meaty and muscular than
Melbourne 2b . -1
American drama.
Teamd 12 II){;EEZ; :ave good intentions been wrapped in such a sticky 1
i . : : (Not provided)
Teamd 1b Rarely have good intentions been wrapped in such a ad- +
venturous package.

Table 3: Sample minimal pairs: Examples of minimal pairs created by different breaker teams with the
minimal changes highlighted. ‘Label’ is the label provided to the pairs by the breaker teams.

ID True Label | Strawman | PCNN | Bag-of-ngrams | SCNN | DCNN | RNTN
Utrecht 1a +1 +1 +1 +1 +1 +1 -1
Utrecht 1b +1 -1 +1 -1 +1 +1 -1
Utrecht 2a -1 -1 -1 +1 -1 +1 -1
Utrecht 2b +1 +1 +1 +1 -1 +1 -1

OSU 1la -1 -1 -1 -1 -1 -1 -1
OSU 1b +1 -1 -1 -1 -1 -1 -1
OSU 2a +1 +1 -1 +1 +1 +1 +1
OSU 2b -1 +1 -1 +1 -1 +1 -1
Melbourne 1a +1 +1 +1 -1 +1 +1 +1
Melbourne 1b +1 -1 +1 -1 +1 +1 0
Melbourne 2a +1 -1 +1 -1 -1 -1 -1
Melbourne 2b -1 -1 +1 +1 -1 -1 0
Team4 1a -1 -1 -1 -1 -1 +1 +1
Team4 1b +1 +1 +1 -1 +1 +1 +1

Table 4: Sample minimal pair predictions: Builder system predictions on the example minimal pairs
from Table 3. ‘True Label’ is the label provided to the pairs by the breaker teams.



Ettinger under Grant No. DGE 1322106. Any
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