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Introduction

The word for 2016 was "post-truth", marking the fact that in the era of Social Media and citizen-created
or reported news, the border between facts and speculation, verifiable reality and opinions has become
blurred. The phenomenon of fake news has created an avalanche of public and private action, from big
companies to universities and individual researchers, with the goal to find mechanisms through which
this type of news can be identified (automatically).

In this context, too (or even more), detecting and analyzing opinions, arguments, stance as well as
detecting the emotional effect that facts (whether truthful or not) can have on the public has become of
paramount importance.

WASSA 2017 was organized in conjunction to the Conference on Empirical Methods in Natural
Language Processing on September 8th, 2017, in Copenhagen, Denmark.

For this year’s edition of WASSA, we received a total of 41 submissions for the main workshop, from
universities and research centers all over the world, out of which 10 were accepted as long and another
5 as short papers. The main topics of the accepted papers are related to stance detection, argument
mining and beyond sentiment analysic challenges, such as irony detection or linking emotions to needs
and values - e.g. psychometrics.

Apart from that, for the first time, we presented a shared task on automatically detecting intensity of
emotion felt by the speaker of a tweet: WASSA-2017 Shared Task on Emotion Intensity. Twenty-
two teams participated in the shared task, with results that showcase the latest developments in the
theoretical and applied areas of Sentiment Analysis and Opinion Mining.

We would like to thank the EMNLP 2017 Organizers and Workshop Chairs for the help and support, to
the Program Committee members and the external reviewers for the time and effort spent assessing the
papers. We would like to extend our thanks to our invited speakers – Dr. Iryna Gurevych, Aditya Joshi
and Dr. Viktor Pekar - for accepting to deliver the keynote talks, opening new horizons for research and
applications of Sentiment Analysis.

Alexandra Balahur, Saif M. Mohammad and Erik van der Goot

WASSA 2017 Chairs
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Detecting Sarcasm Using Different Forms Of Incongruity

Aditya Joshi1,2,3

1Indian Institute of Technology Bombay, India, 2Monash University, Australia
3IITB-Monash Research Academy, India

adityaj@cse.iitb.ac.in

Sarcasm is a form of verbal irony that is intended to
express contempt or ridicule. Often quoted as a chal-
lenge to sentiment analysis, sarcasm involves use of
words of positive or no polarity to convey negative sen-
timent. Incongruity has been observed to be at the heart
of sarcasm understanding in humans. Our work in sar-
casm detection identifies different forms of incongruity
and employs different machine learning techniques to
capture them. This talk will describe the approach,
datasets and challenges in sarcasm detection using dif-
ferent forms of incongruity.

We identify two forms of incongruity: incongruity
which can be understood based on the target text
and common background knowledge, and incongruity
which can be understood based on the target text and
additional, specific context. The former involves use of
sentiment-based features, word embeddings, and topic
models. The latter involves creation of author’s histor-
ical context based on their historical data, and creation
of conversational context for sarcasm detection of dia-
logue.
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Abstract

There has been a good amount of progress
in sentiment analysis over the past 10 years,
including the proposal of new methods and
the creation of benchmark datasets. In
some papers, however, there is a tendency
to compare models only on one or two
datasets, either because of time restraints
or because the model is tailored to a spe-
cific task. Accordingly, it is hard to un-
derstand how well a certain model gener-
alizes across different tasks and datasets.
In this paper, we contribute to this situa-
tion by comparing several models on six
different benchmarks, which belong to dif-
ferent domains and additionally have dif-
ferent levels of granularity (binary, 3-class,
4-class and 5-class). We show that Bi-
LSTMs perform well across datasets and
that both LSTMs and Bi-LSTMs are partic-
ularly good at fine-grained sentiment tasks
(i. e., with more than two classes). Incorpo-
rating sentiment information into word em-
beddings during training gives good results
for datasets that are lexically similar to the
training data. With our experiments, we
contribute to a better understanding of the
performance of different model architec-
tures on different data sets. Consequently,
we detect novel state-of-the-art results on
the SenTube datasets.

1 Introduction

The task of analyzing private states expressed by
an author in text, such as sentiment, emotion or
affect, can give us access to a wealth of hidden
information to analyze product reviews (Liu et al.,
2005), political views (Speriosu et al., 2011), or
to identify potentially dangerous activity on the

Internet (Forsyth and Martell, 2007). The first ap-
proaches in this field of research depended on the
use of words at a symbolic level (unigrams, bi-
grams, bag-of-words features), where generalizing
to new words was difficult (Pang et al., 2002; Riloff
and Wiebe, 2003).

Current state-of-the-art methods rely on fea-
tures extracted in an unsupervised manner, mainly
through one of the existing pre-trained word embed-
ding approaches (Collobert et al., 2011; Mikolov
et al., 2013; Pennington et al., 2014). These ap-
proaches represent words as some function of their
contexts, enabling machine learning algorithms to
generalize over tokens that have similar represen-
tations, arguably giving them an advantage over
previous symbolic approaches.

In order to evaluate state-of-the-art models (both
symbolic and embedding-based), different datasets
are used. However, it is not clear that a model that
performs well on one certain dataset will transfer
well to other datasets with different properties. The
work we describe in this paper aims at discovering
if there are certain models that generally perform
better or if there are certain models that are better
adapted to certain kinds of datasets. Ultimately,
the goal of this paper is to contribute to the current
situation by supporting the choice of a method for
novel domains and datasets, based on properties of
the task at hand.

Our main contributions are, therefore, compar-
ing seven approaches to sentiment analysis on six
benchmark datasets1. We show that
• bidirectional LSTMs perform well across

datasets,
• both LSTMs and bidirectional LSTMs are par-

ticularly good at fine-grained sentiment tasks,
• and embeddings trained jointly for semantics

1The code and embeddings for the best models are
available at http://www.ims.uni-stuttgart.de/
data/sota_sentiment
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and sentiment perform well on datasets that
are similar to the training data.

2 Related Work

This section discusses three approaches to senti-
ment analysis and then describes in detail bench-
mark datasets which will be used in the experi-
ments.

2.1 Approaches

To analyze the performance of state-of-the-art
methods across datasets, we experiment with three
approaches to sentiment analysis: (1) updating pre-
trained word embeddings using a neural classifier
and labeled data, (2) updating pre-trained word
embeddings using a semantic lexicon, and (3) train-
ing word embeddings to jointly maximize a lan-
guage model score and a sentiment score. Sec-
tions 2.1.1 to 2.1.3 discuss these three approaches.
We focus on sentiment-related methods, however,
where appropriate, we discuss general approaches
which can be adapted to this use case in a straight-
forward manner as well.

2.1.1 Retrofitting to Semantic Lexicons
There have been several proposals to improve the
quality of word embeddings using semantic lex-
icons. Yu and Dredze (2014) propose several
methods which combine the CBOW architecture
(Mikolov et al., 2013) and a second objective func-
tion which attempts to maximize the relations
found within some semantic lexicon. They use
both the Paraphrase Database (Ganitkevitch et al.,
2013) and WordNet (Fellbaum, 1999) and test their
models on language modeling and semantic simi-
larity tasks. They report that their method leads to
an improvement on both tasks.

Kiela et al. (2015) aim to improve embeddings
by augmenting the context of a given word while
training a skip-gram model (Mikolov et al., 2013).
They sample extra context words, taken either from
a thesaurus or association data, and incorporate
this into the context of the word for each update.
The evaluation is both intrinsical, on word similar-
ity and relatedness tasks, as well as extrinsical on
TOEFL synonym and document classification tasks.
The augmentation strategy improves the word vec-
tors on all tasks.

Faruqui et al. (2015) propose a method to refine
word vectors by using relational information from
semantic lexicons (we will refer to this method

in this paper as RETROFIT). They require a vo-
cabulary V = {w1, . . . , wn}, its word embed-
dings matrix Q̂ = {q̂1, . . . , q̂n}, where each q̂i
is one vector for one word wi and an ontology
Ω, which they represent as an undirected graph
(V,E) with one vertex for each word type and
edges (wi, wj) ∈ E ⊆ V × V . They attempt
to learn the matrix Q = {q1, . . . , qn}, such that
qi is similar to both q̂i and qj∀j for (i, j) ∈ E.
Therefore, the objective function to minimize is

Ψ(Q) =
n∑

i=1

[
αi||qi−q̂i||2+

∑
(i,j)∈E

βi,j ||qi−qj ||2
]
,

where α and β control the relative strengths of
associations.

They use the XL version of the Paraphrase
Database (PPDB-XL) dataset (Ganitkevitch et al.,
2013), which is a dataset of paraphrases as the
semantic lexicon, to improve the original vectors.
This dataset includes 8 million lexical paraphrases
collected from bilingual corpora, where words in
language A are considered paraphrases if they are
consistently translated to the same word in lan-
guage B. They then test on the Stanford Sentiment
Treebank (Socher et al., 2013). They train an L2-
regularized logistic regression classifier on the av-
erage of the word embeddings for a text and find
improvements after retrofitting.

All above approaches show improvements over
previous word embedding approaches (Mnih and
Teh, 2012; Yu and Dredze, 2014; Xu et al., 2014)
on this data set.

2.1.2 Joint Training
Maas et al. (2011) were the first to jointly train
semantic and sentiment word vectors. In order to
capture semantic similarities, they propose a prob-
abilistic model using a continuous mixture model
over words, similar to Latent Dirichlet Allocation
(LDA, Blei et al., 2003). To capture sentiment infor-
mation, they include a sentiment term which uses
logistic regression to predict the sentiment of a doc-
ument. The full objective function is a combination
of the semantic and sentiment objectives. They test
their model on several sentiment and subjectivity
benchmarks. Their results indicate that including
the sentiment information during training actually
leads to decreased performance.

Tang et al. (2014) take the joint training ap-
proach and simultaneously incorporate syntactic2

2We use the authors’ terminology here, but make no as-
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and sentiment information into their word embed-
dings (we refer to this method as JOINT). They
extend the word embedding approach of Collobert
et al. (2011), who use a neural network to predict
whether an n-gram is a true n-gram or a “corrupted”
version. They use the hinge-loss

losscw(t, tr) =
max(0, 1− f cw(t) + f cw(tr))

(1)

and backpropagate the error to the corresponding
word embeddings. Here, t is the original n-gram,
tr is the corrupted n-gram and f cw is the language
model score. Tang et al. (2014) add a sentiment
hinge loss to the Collobert and Weston model, as

losss(t, tr) =
max(0, 1− δs(t)fs

1 (t) + δs(t)fs
1 (tr)) ,

(2)

where fs
1 is the predicted negative score and δs(t)

is an indicator function that reflects the sentiment
of a sentence. δs(t) is 1 if the true sentiment is
positive and −1 if it is negative. They then use a
weighted sum of both scores to create their senti-
ment embeddings:

losscombined(t, tr) =
α · losscw(t, tr) + (1− α) · losss(t, tr) .

(3)

This requires sentiment-annotated data for training
both the syntactic and sentiment losses, which they
acquire by collecting tweets associated with certain
emoticons. In this way, they are able to simultane-
ously incorporate sentiment and semantic informa-
tion relevant to their task. They test their approach
on the SemEval 2013 twitter dataset (Nakov et al.,
2013), changing the task from three-class to binary
classification, and find that they outperform other
approaches.

Overall, the joint approach shows promise for
tasks with a large amount of distantly-labeled data.

2.1.3 Supervised training
The most common approach to sentiment analysis
is to use pre-trained word embeddings in combina-
tion with a supervised classifier. In this framework,
the word embedding algorithm acts as a feature
extractor for classification.

Recurrent neural networks (RNNs), such as the
LONG SHORT-TERM MEMORY network (LSTM)
(Hochreiter and Schmidhuber, 1997) or the GATED

sumptions that the distributional representation encodes infor-
mation directly pertaining to syntax.

RECURRENT UNITS (GRUs) (Chung et al., 2014),
are a variant of a feed-forward network which in-
cludes a memory state capable of learning long
distance dependencies. In various forms, they have
proven useful for text classification tasks (Tai et al.,
2015; Tang et al., 2016). Socher et al. (2013) and
Tai et al. (2015) use Glove vectors (Pennington
et al., 2014) in combination with a recurrent neu-
ral networks and train on the Stanford Sentiment
Treebank (Socher et al., 2013). Since this dataset
is annotated for sentiment at each node of a parse
tree, they train and test on these annotated phrases.

Both Socher et al. (2013) and Tai et al. (2015)
also propose various RNNs which are able to
take better advantage of the labeled nodes and
which achieve better results than standard RNNs.
However, these models require annotated parse
trees, which are not necessarily available for other
datasets.

CONVOLUTIONAL NEURAL NETWORKS

(CNN) have proven effective for text classification
(dos Santos and Gatti, 2014; Kim, 2014; Flekova
and Gurevych, 2016). Kim (2014) use skipgram
vectors (Mikolov et al., 2013) as input to a
variety of Convolutional Neural Networks and
test on seven datasets, including the Stanford
Sentiment Treebank (Socher et al., 2013). The best
performing setup across datasets is a single layer
CNN which updates the original skipgram vectors
during training.

Overall, these approaches currently achieve state-
of-the-art results on many datasets, but they have
not been compared to retrofitting or joint training
approaches.

2.2 Datasets

We choose to evaluate the approaches presented
in Section 2.1 on a number of different datasets
from different domains, which also have differing
levels of granularity of class labels. The Stanford
Sentiment Treebank and SemEval 2013 shared-task
dataset have already been used as benchmarks for
some of the approaches mentioned in Section 2.1.
Table 1 shows which approaches have been tested
on which datasets and Table 2 gives an overview
of the statistics for each dataset.

2.2.1 Stanford Sentiment
The Stanford Sentiment Treebank (SST-fine)
(Socher et al., 2013) is a dataset of movie reviews
which was annotated for 5 levels of sentiment:
strong negative, negative, neutral, positive, and
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Train Dev. Test Number of Labels Avg. Sentence Length Vocabulary Size

SST-fine 8,544 1,101 2,210 5 19.53 19,500
SST-binary 6,920 872 1,821 2 19.67 17,539
OpeNER 2,780 186 743 4 4.28 2,447
SenTube-A 3,381 225 903 2 28.54 18,569
SenTube-T 4,997 333 1,334 2 28.73 20,276
SemEval 6,021 890 2,376 3 22.40 21,163

Table 2: Statistics of datasets. Train, Dev., and Test refer to the number of examples for each subsection
of a dataset. The number of labels corresponds to the annotation scheme, where: two is positive and
negative; three is positive, neutral, negative; four is strong positive, positive, negative, strong negative;
five is strong positive, positive, neutral, negative, strong negative.
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SST-fine − − − − + + +
SST-binary − + + − + + +
OpeNER + − − − − − −
SenTube-A + − − − − − −
SenTube-T + − − − − − −
SemEval − − − + − − −

Table 1: Mapping of previous state-of-the-art meth-
ods to previous evaluations on state-of-the-art data
sets. An + indicates that we are aware of a publi-
cation which reports on this combination and a −
indicates our assumption that no reported results
are available.

strong positive. It is annotated both at the clause
level, where each node in a binary tree is given
a sentiment score, as well as at sentence level.
We use the standard split of 8544/1102/2210 for
training, validation and testing. In order to com-
pare with Faruqui et al. (2015), we also adapt the
dataset to the task of binary sentiment analysis,
where strong negative and negative are mapped
to one label, and strong positive and positive are
mapped to another label, and the neutral examples
are dropped. This leads to a slightly different split
of 6920/872/1821 (we refer to this dataset as SST-
binary).

2.2.2 OpeNER
The OpeNER dataset (Agerri et al., 2013) is a
dataset of hotel reviews in which each review is
annotated for opinions. An opinion includes senti-
ment holders, targets, and phrases, of which only

the sentiment phrase is obligatory. Additionally,
sentiment phrases are annotated for four levels of
sentiment: strong negative, negative, positive and
strong positive. We use a split of 2780/186/734
examples.

2.2.3 Sentube Datasets

The SenTube datasets (Uryupina et al., 2014) are
texts that are taken from YouTube comments re-
garding automobiles and tablets. These comments
are normally directed towards a commercial or a
video that contains information about the product.
We take only those comments that have some po-
larity towards the target product in the video. For
the automobile dataset (SenTube-A), this gives a
3381/225/903 training, validation, and test split.
For the tablets dataset (SenTube-T) the splits are
4997/333/1334. These are annotated for positive,
negative, and neutral sentiment.

2.2.4 Semeval 2013

The SemEval 2013 Twitter dataset (SemEval)
(Nakov et al., 2013) is a dataset that contains tweets
collected for the 2013 SemEval shared task B. Each
tweet was annotated for three levels of sentiment:
positive, negative, or neutral. There were origi-
nally 9684/1654/3813 tweets annotated, but when
we downloaded the dataset, we were only able to
download 6021/890/2376 due to many of the tweets
no longer being available.

3 Experimental Setup

We compare seven approaches, five of which fall
into the categories mentioned in Section 2, as well
as two baselines. The models and parameters are
described in Section 3.1. We test these models on
the benchmark datasets mentioned in Section 2.2.
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3.1 Models

3.1.1 Baselines

We compare our models against two baselines.
First, we train an L2-regularized logistic regres-
sion on a bag-of-words representation (BOW) of
the training examples, where each example is rep-
resented as a vector of size n, with n = |V | and V
the vocabulary. This is a standard baseline for text
classification.

Our second baseline is an L2-regularized logistic
regression classifier trained on the average of the
word vectors in the training example (AVE). We
train word embeddings using the skip-gram with
negative sampling algorithm (Mikolov et al., 2013)
on a 2016 Wikipedia dump, using 50-, 100-, 200-,
and 600-dimensional vectors, a window size of 10,
5 negative samples, and we set the subsampling pa-
rameter to 10−4. Additionally, we use the publicly
available 300-dimensional GoogleNews vectors3

in order to compare to previous work.

3.1.2 Retrofitting

We apply the approach by Faruqui et al. (2015) and
make use of the code4 released in combination with
the PPDB-XL lexicon, as this gave the best results
for sentiment analysis in their experiments. We
train for 10 iterations. Following the authors’ setup,
for testing we train an L2-regularized logistic re-
gression classifier on the average word embeddings
for a phrase (RETROFIT).

3.1.3 Joint Training

For the joint method, we use the 50-dimensional
sentiment embeddings provided by Tang et al.
(2014). Additionally, we create 100-, 200-, and
300-dimensional embeddings using the code that
is publicly available5. We use the same hyperpa-
rameters as Tang et al. (2014): five million positive
and negative tweets crawled using hashtags as prox-
ies for sentiment, a 20-dimensional hidden layer,
and a window size of three. Following the authors’
setup, we concatenate the maximum, minimum
and average vectors of the word embeddings for
each phrase. We then train a linear SVM on these
representations (JOINT).

3https://code.google.com/archive/p/
word2vec/

4https://github.com/mfaruqui/
retrofitting

5http://ir.hit.edu.cn/˜dytang

3.1.4 Supervised Training
We implement a standard LSTM which has an em-
bedding layer that maps the input to a 50-, 100-,
200-, 300-, or 600-dimensional vector, depend-
ing on the embeddings used to initialize the layer.
These vectors then pass to an LSTM layer. We feed
the final hidden state to a standard fully-connected
50-dimensional dense layer and then to a softmax
layer, which gives us a probability distribution over
our classes. As a regularizer, we use a dropout
(Srivastava et al., 2014) of 0.5 before the LSTM
layer.

The BIDIRECTIONAL LSTM (BILSTM) has the
same architecture as the normal LSTM, but in-
cludes an additional layer which runs from the
end of the text to the front. This approach has led
to state-of-the-art results for POS-tagging (Plank
et al., 2016), dependency parsing (Kiperwasser and
Goldberg, 2016) and text classification (Zhou et al.,
2016), among others. We use the same parame-
ters as the LSTM, but concatenate the two hidden
layers before passing them to the dense layer6.

We also train a simple one-layer CNN with one
convolutional layer on top of pre-trained word em-
beddings. The first layer is an embeddings layer
that maps the input of length n (padded when
needed) to an n × R dimensional matrix, where
R is the dimensionality of the word embeddings.
The embedding matrix is then convoluted with fil-
ter sizes of 2, 3, and 4, followed by a pooling layer
of length 2. This is then fed to a fully connected
dense layer with ReLU activations (Nair and Hin-
ton, 2010) and finally to the softmax layer. We
again use dropout (0.5), this time before and after
the convolutional layers.

For all neural models, we initialize our word
representations with the skip-gram algorithm with
negative sampling (Mikolov et al., 2013). For the
300-dimensional vectors, we use the publicly avail-
able GoogleNews vectors. For the other dimen-
sions (50, 100, 200, 600), we create skip-gram vec-
tors with a window size of 10, 5 negative samples
and run 5 iterations. For out-of-vocabulary words,
we use vectors initialized randomly between -0.25
and 0.25 to approximate the variance of the pre-
trained vectors. We train our models using ADAM
(Kingma and Ba, 2014) and a minibatch size of 32

6For the neural models on the SST-fine and SST-binary
datasets, we do not achieve results as high as Tai et al. (2015)
and Kim (2014), because we train our models only on sentence
representations, not on the labeled phrase representations. We
do this to be able to compare across datasets.
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and tune the hidden layer dimension and number
of training epochs on the validation set.

4 Results

Table 3 shows the results for the seven models
across all datasets, as well as the macro-averaged
results. We visualize them in Figure 3. We per-
formed random approximation tests (Yeh, 2000)
using the sigf package (Padó, 2006) with 10,000
iterations to determine the statistical significance
of differences between models. Since the reported
accuracies for the neural models are the means
over five runs, we cannot use this technique in a
straightforward manner. Therefore, we perform
the random approximation tests between the runs7

and consider the models statistically different if a
majority (at least 3) of the runs are statistically dif-
ferent (p < 0.01, which corresponds to p < 0.05
with Bonferroni correction for 5 hypotheses). The
results of statistical testing are summarized in Ta-
ble 2.

Obviously, BOW continues to be a strong base-
line: Though it never provides the best result on a
dataset, it gives better results than AVE on OpeNER,
SenTube-T, and SemEval. Surprisingly, it also per-
forms better than JOINT on the same sets except for
SenTube-T. Similarly, it outperforms RETROFIT on
SenTube-T and SemEval.

RETROFIT performs better than CNN on SST-fine
and JOINT on SST-fine, SST-binary, and OpeNER.
It also improves the results of AVE across all
datasets but SenTube-A and SemEval datasets.

Although JOINT does not perform well across
datasets and, in fact, does not surpass the baselines
on some datasets, it does lead to good results on
SemEval and to state-of-the-art results on SenTube-
A and SenTube-T.

Similarly to RETROFIT, CNN does not outper-
form any of the other methods on any dataset. As
said, this method does not beat the baseline on
SST-fine, SenTube-A, and SenTube-T. However, it
outperforms the AVE baseline on SST-binary and
OpeNER.

The best models are LSTM and BILSTM. The
best overall model is BILSTM, which outperforms
the other models on half of the tasks (SST-fine,

7We compare the results from the first run of model A
with the first run of model B, then the second from A with the
second from B, an so forth. An alternative would have been to
use a t-test, which is common in such setting. However, we
opted against this as the independence assumptations for such
test do not hold.

Opener, and SemEval) and consistently beats the
baseline. This is in line with other research (Plank
et al., 2016; Kiperwasser and Goldberg, 2016; Zhou
et al., 2016), which suggests that this model is very
robust across tasks as well as datasets. The differ-
ences in performance between LSTM and BILSTM,
however, are only significant (p < 0.01) on the
SemEval dataset.

We also see that the difference in performance
between the two LSTM models and the others is
larger on datasets with fine-grained labels (BILSTM

45.6 and LSTM 45.3 vs. an average of 40 for all
others on the SST-fine and BILSTM 83 and LSTM

83.1 vs. an average of 76.5 on OpeNER). These
differences between the LSTM models and other
models are statistically significant, except for the
difference between BILSTM and CNN at 50 dimen-
sions on the OpeNER dataset.

Our analysis of different dimensionalities as in-
put for the classification models reveals that, typi-
cally, the higher dimensional vectors (300 or 600)
outperform lower dimensions. The only differ-
ences are in JOINT for SenTube-T and SemEval
and LSTM for SenTube-A and AVE on all datasets
except OpeNER.

5 Discussion

While approaches that average the word embed-
dings for a sentence are comparable to state-of-the-
art results (Iyyer et al., 2015), AVE and RETROFIT

do not perform particularly well. This is likely due
to the fact that logistic regression lacks the non-
linearities which Iyyer et al. (2015) found helped,
especially at deeper layers. Averaging all of the
embeddings for longer phrases also seems to lead
to representations that do not contain enough infor-
mation for the classifier.

We also experimented with using large sentiment
lexicons as the semantic lexicon for retrofitting,
but found that this hurt the representation more
than it helped. We believe this is because there
are not enough kinds of relationships to exploit the
graph structure and by trying to collapse all words
towards either a positive or negative center, too
much information is lost.

We expected that JOINT would perform well on
SemEval, given that it was designed for this task,
but it was surprising that it performed so well on the
SenTube datasets. It might be due to the fact that
comments for these three datasets are comparably
informal and make use of emoticons and Internet
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AVE

50 38.9 74.1 59.5 62.0 61.7 58.1 59.0
100 39.7 76.7 67.2 61.5 61.8 58.8 60.9
200 40.7 78.2 69.3 60.6 62.8 61.1 62.1
300 41.6 80.3 3 76.3 61.5 64.3 63.6 64.6
600 40.6 79.1 77.0 56.4 62.9 61.8 63.0

R
E

T
R

O
FI

T 50 39.2 75.3 63.9 60.6 62.3 58.1 59.9
100 39.7 76.7 70.0 61.4 62.8 59.5 61.7
200 41.8 78.3 73.5 60.0 63.2 61.2 63.0
300 42.2 81.2 3 75.9 61.7 63.6 61.8 64.4
600 42.9 81.1 78.3 60.0 65.5 62.4 65.0

JO
IN

T 50 35.8 70.6 72.9 65.1 68.1 66.8 6 63.2
100 34.3 70.8 67.0 64.3 66.4 60.1 60.5
200 33.7 72.3 68.6 66.2 66.6 58.4 61.0
300 36.0 71.6 70.1 64.7 67.6 60.8 61.8
600 36.9 74.0 75.8 63.7 64.2 60.9 62.6

L
S

T
M

50 43.3 (1.0) 80.5 (0.4) 81.1 (0.4) 58.9 (0.8) 63.4 (3.1) 63.9 (1.7) 65.2 (1.2)

100 44.1 (0.8) 79.5 (0.6) 82.4 (0.5) 58.9 (1.1) 63.1 (0.4) 67.3 (1.1) 65.9 (0.7)

200 44.1 (1.6) 80.9 (0.6) 82.0 (0.6) 58.6 (0.6) 65.2 (1.6) 66.8 (1.3) 66.3 (1.1)

300 45.3 1
(1.9) 81.7 1

(0.7) 82.3 (0.6) 57.4 (1.3) 63.6 (0.7) 67.6 (0.6) 66.3 (1.0)

600 44.5 (1.4) 83.1 (0.9) 81.2 (0.8) 57.4 (1.1) 65.7 (1.2) 67.5 (0.7) 66.5 (1)

B
IL

S
T

M 50 43.6 (1.2) 82.9 (0.7) 79.2 (0.8) 59.5 (1.1) 65.6 (1.2) 64.3 (1.2) 65.9 (1.0)

100 43.8 (1.1) 79.8 (1.0) 82.4 (0.6) 58.6 (0.8) 66.4 (1.4) 65.2 (0.6) 66.0 (0.9)

200 44.0 (0.9) 80.1 (0.6) 81.7 (0.5) 58.9 (0.3) 63.3 (1.0) 66.4 (0.3) 65.7 (0.6)

300 45.6 1
(1.6) 82.6 1

(0.7) 82.5 (0.6) 59.3 (1.0) 66.2 (1.5) 65.1 (0.9) 66.9 (1.1)

600 43.2 (1.1) 83 (0.4) 81.5 (0.5) 59.2 (1.6) 66.4 (1.1) 68.5 (0.7) 66.9 (0.9)

C
N

N

50 39.9 (0.7) 81.7 (0.3) 80.0 (0.9) 55.2 (0.7) 57.4 (3.1) 65.7 (1.0) 63.3 (1.1)

100 40.1 (1.0) 81.6 (0.5) 79.5 (0.9) 56.0 (2.2) 61.5 (1.1) 64.2 (0.8) 63.8 (1.1)

200 39.1 (1.1) 80.7 (0.4) 79.8 (0.7) 56.3 (1.8) 64.1 (1.1) 65.3 (0.8) 64.2 (1.0)

300 39.8 2
(0.7) 81.3 2

(1.1) 80.3 (0.9) 57.3 (0.5) 62.1 (1.0) 63.5 (1.3) 64.0 (0.9)

600 40.7 (2.6) 82.7 (1.2) 79.2 (1.4) 56.6 (0.6) 61.3 (2) 65.9 (1.8) 64.4 (1.5)

Table 3: Accuracy on the test sets. For all neural models we perform 5 runs and show the mean and
standard deviation. The best results for each dataset is given in bold and results that have been previously
reported are highlighted. All results derive from our reimplementation of the methods. We describe
significance values in the text and appendix. Footnotes refer to the work where a method was previously
tested on a specific dataset, although not necessarily with the same results: [1] Tai et al. (2015) [2] Kim
(2014) [3] Faruqui et al. (2015) [4] Lambert (2015) [5] Uryupina et al. (2014) [6] Tang et al. (2014).

jargon. We performed a short analysis of datasets
(shown in Table 4), where we take frequency of
emoticons usage as an indirect indicator of informal
speech and found that, indeed, the frequency of
emoticons in the SemEval and SenTube datasets
diverges significantly from the other datasets. The
fact that JOINT is distantly trained on similar data
gives it an advantage over other models on these
datasets. This leads us to believe that this approach
would transfer well to novel sentiment analysis
tasks with similar properties.

The fact that CNN performs much better on
OpeNER may be due to the smaller size of the
phrases (an average of 4.28 vs. 20+ for other
datasets), however, further analyses to prove this

are needed.
The good results that both LSTM models

achieved on the more fine-grained sentiment
datasets (SST-fine and OpeNER) seem to indicate
that LSTMs are able to learn dependencies that help
to differentiate strong and weak versions of senti-
ment better than other models. This is supported
by the confusion matrices shown in Figure 1. This
makes them natural candidates for fine-grained sen-
timent analysis tasks.

LSTM perfoms better than BILSTM on two
datasets but these differences are not statistically
significant.

The effect of the dimensionality of the input
for the classification models suggests that larger
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Figure 1: Confusion matrices of CNN, LSTM, and BILSTM on SST-fine dataset. We can see that both
LSTM and BILSTM perform much better than CNN on strong negative, neutral, and strong positive classes.

χ2 with SemEval χ2 p-value

SST-fine 19.408 0.002
SST-binary 19.408 0.002
OpeNER 19.408 0.002
SenTube-A 9.305 0.097
SenTube-T 7.377 0.194

Table 4: χ2 statistics comparing the frequency of
the following emoticons over the different datasets,
:), :(, :-), :-(, :D, =). The difference in frequency
of emoticons between the SemEval and SenTube
datasets is not significant (p> 0.05), while for SST
and OpeNER it is (p < 0.05).

dimensionalities tend to perform better. This seems
particularly true for RETROFIT, which continues
gaining performance even at 600 dimensions. Most
other approaches perform slightly better at 600
dimensions, but AVE consistently performs worse
at 600 than at 300.

6 Conclusions

The goal of this paper has been to discover which
models perform better across different datasets. We
compared state-of-the-art models (both symbolic
and embedding-based) on six benchmark datasets
with different characteristics and showed that Bi-
LSTMs perform well across datasets and that both
LSTMS and Bi-LSTMs are particularly good at
fine-grained sentiment tasks. Additionally, incorpo-
rating sentiment information into word embeddings

during training gives good results for datasets that
are lexically similar to the training data. Finally,
we reported a new state of the art on the SenTube
datasets.
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Abstract

There is a rich variety of data sets for sen-
timent analysis (viz., polarity and subjec-
tivity classification). For the more chal-
lenging task of detecting discrete emotions
following the definitions of Ekman and
Plutchik, however, there are much fewer
data sets, and notably no resources for
the social media domain. This paper con-
tributes to closing this gap by extending the
SemEval 2016 stance and sentiment dataset
with emotion annotation. We (a) analyse
annotation reliability and annotation merg-
ing; (b) investigate the relation between
emotion annotation and the other annota-
tion layers (stance, sentiment); (c) report
modelling results as a baseline for future
work.

1 Introduction

Emotion recognition is a research area in natural
language processing concerned with associating
words, phrases or documents with predefined emo-
tions from psychological models. Discrete emotion
recognition assigns categorial emotions (Ekman,
1999; Plutchik, 2001), namely Anger, Anticipation,
Disgust, Fear, Joy, Sadness, Surprise und Trust.
Compared to the very active area of sentiment anal-
ysis, whose goal is to recognize the polarity of text
(e. g., positive, negative, neutral, mixed), few re-
sources are available for discrete emotion analysis.

Emotion analysis has been applied to several do-
mains, including tales (Alm et al., 2005), blogs
(Aman and Szpakowicz, 2007) and microblogs
(Dodds et al., 2011). The latter in particular pro-
vides a major data source in the form of user mes-
sages from platforms such as Twitter (Costa et al.,

∗We thank Marcus Hepting, Chris Krauter, Jonas Vogel-
sang, Gisela Kollotzek for annotation and discussion.

2014) which contain semi-structured information
(hashtags, emoticons, emojis) that can be used as
weak supervision for training classifiers (Suttles
and Ide, 2013). The classifier then learns the asso-
ciation of all other words in the message with the
“self-labeled” emotion (Wang et al., 2012).

While this approach provides a practically feasi-
ble approximation of emotions, there is no publicly
available, manually vetted data set for Twitter emo-
tions that would support accurate and comparable
evaluations. In addition, it has been shown that dis-
tant annotation is conceptually different from man-
ual annotation for sentiment and emotion (Purver
and Battersby, 2012).

With this paper, we contribute manual emotion
annotation for a publicly available Twitter data set.
We annotate the SemEval 2016 Stance Data set
(Mohammad et al., 2016) which provides senti-
ment and stance information and is popular in the
research community (Augenstein et al., 2016; Wei
et al., 2016; Dias and Becker, 2016; Ebrahimi et al.,
2016). It therefore enables further research on the
relations between sentiment, emotions, and stances.
For instance, if the distribution of subclasses of pos-
itive or negative emotions is different for against
and in-favor, emotion-based features could con-
tribute to stance detection.

An additional feature of our resource is that we
do not only provide a “majority annotation” as is
usual. We do define a well-performing aggregated
annotation, but additionally provide the individual
labels of each of our six annotators. This enables
further research on differences in the perception of
emotions.

2 Background and Related Work

For a review of the fundaments of emotion and sen-
timent and the differences between these concepts,
we refer the reader to Munezero et al. (2014).
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Name Granularity Annotation Size Topic Source

STS-test tweet 1 498 General Go et al. (2009)
SemEval 2013 tweet 2 15,196 General Nakov et al. (2013)
Healthcare Reform tweet 2 2,516 Politics Speriosu et al. (2011)
Obama-McCain Debate tweet 3 3,238 Politics Shamma et al. (2009)
Dialogue Earth-WA tweet 4 4,490 Weather Cavender-Bares (2011)
Dialogue Earth-WB tweet 4 8,850 Weather Busch (2011)
Dialogue Earth-GASP tweet 4 12,770 Gas prices Busch (2012)
STS-GOLD entity/tweet 5 2,205 General Hassan Saif and Alani (2013)
SemEval 2016 topics/tweets 6 4,870 5 topics Mohammad et al. (2016)
Sentiment Strength tweet 7 4,242 General Thelwall et al. (2012)

ISEAR descriptions 8 7,666 Emotional Events Scherer and Wallbott (1997)
Tales sentences 9 1,580 Grim’s Fairytales Alm et al. (2005)
Blogs blogs 10 173 General Aman and Szpakowicz (2007)
SemEval 2017 headlines 11 1,250 General Strapparava and Mihalcea (2007)
WASSA EmoInt 2017 tweets 12 7,102 General Mohammad and Bravo-Marquez (2017)
Electoral Tweets tweets 13 965 Elections Mohammad et al. (2015)

Table 1: A selection of resources for sentiment analysis (on Twitter, 1–7) and emotion analysis (in
general, 8–12). Annotation refers to the following annotation schemes: [1] positive-negative, [2] positive-
negative-neutral, [3] positive-negative-mixed-other, [4] positive-negative-netural-unrelated-can’t tell, [5]
positive-negative-neutral-mixed-other, [6] for-against, [7] positive and negative strength (range), [8] joy,
fear, anger, sadness, disgust, shame, guilt, [9] angry, disgusted, fearful, happy, sad, positively surprised,
negatively surprised, [10] happiness, sadness, anger, disgust, surprise, fear, mixed, [11] anger, disgust,
fear, joy, sadness, surprise, [12] anger, fear, joy, sadness, [13] positive, negative, mixed, intensity, trust,
fear, surprise, disgust, anger, anticipation, joy, roles, style, purpose (number denotes subset in corpus with
emotion annotations)

For sentiment analysis, a large number of anno-
tated data sets exists. These include review texts
from different domains, for instance from Amazon
and other shopping sites (Hu and Liu, 2004; Ding
et al., 2008; Toprak et al., 2010; Lakkaraju et al.,
2011), restaurants (Ganu et al., 2009), news articles
(Wiebe et al., 2005), blogs (Kessler et al., 2010),
as well as microposts on Twitter. For the latter,
shown in the upper half of Table 1, there are gen-
eral corpora (Nakov et al., 2013; Spina et al., 2012;
Thelwall et al., 2012) as well as ones focused on
very specific subdomains, for instance on Obama-
McCain Debates (Shamma et al., 2009), Health
Care Reforms (Speriosu et al., 2011). A popular
example for a manually annotated corpus for senti-
ment, which includes stance annotation for a set of
topics is the SemEval 2016 data set (Mohammad
et al., 2016).

For emotion analysis, the set of annotated re-
sources is smaller (compare the lower half of Ta-
ble 1). A very early resource is the ISEAR data
set (Scherer and Wallbott, 1997) which contains
descriptions of emotional events. While motivated
by psychological research, it was later repurposed
for computational research. The first data set devel-
oped specifically for computational research was
the tales corpus by Alm et al. (2005). Aman and Sz-

pakowicz (2007) published a corpus of blog posts.
In the context of SemEval, Strapparava and Mihal-
cea (2007) annotated news headlines.

A notable gap is the unavailability of a publicly
available set of microposts (e. g., tweets) with emo-
tion labels. To the best of our knowledge, there are
only three previous approaches to labeling tweets
with discrete emotion labels. One is the recent data
set on for emotion intensity estimation, a shared
task aiming at the development of a regression
model. The goal is not to predict the emotion class,
but a distribution over their intensities, and the set
of emotions is limited to fear, sadness, anger, and
joy (Mohammad and Bravo-Marquez, 2017).

Most similar to our work is a study by Roberts
et al. (2012) which annotated 7,000 tweets manu-
ally for 7 emotions (anger, disgust, fear, joy, love,
sadness and surprise). They chose 14 topics which
they believe should elicit emotional tweets and col-
lect hashtags to help identify tweets that are on
these topics. After several iterations, the annota-
tors reached κ = 0.67 inter-annotator agreement
on 500 tweets. Unfortunately, the data appear not
to be available any more. An additional limitation
of that dataset was that 5,000 of the 7,000 tweets
were annotated by one annotator only. In contrast,
we provide several annotations for each tweet.
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Label count for threshold t

Emotion 0.0 0.33 0.5 0.66 0.99

Anger 2,902 2,238 1,388 1,315 578
Anticipation 2,700 1,656 739 677 199
Disgust 2,183 1,199 440 404 106
Fear 1,840 895 274 246 68
Joy 2,067 1,384 815 764 402
Sadness 2,644 1,389 414 343 78
Surprise 1,108 489 177 156 33
Trust 1,713 984 520 487 213

Table 2: Corpus Statistics. The threshold t mea-
sures that a fraction of more than t annotators la-
beled the respective emotion (e. g., t=0.0: at least
one annotator t=0.99: all annotators). Overall num-
ber of tweets: 4,868.

Mohammad et al. (2015) annotated electoral
tweets for sentiment, intensity, semantic roles,
style, purpose and emotions. This is the only avail-
able corpus similar to our work we are aware of.
However, the focus of this work was not emotion
annotation in contrast to ours. In addition, we pub-
lish the data of all annotators.

3 Corpus Annotation and Analysis

3.1 Annotation Procedure

As motivated above, we re-annotate the extended
SemEval 2016 Stance Data set (Mohammad et al.,
2016) which consists of 4,870 tweets (a subset of
which was used in the SemEval competition). For
a discussion of the differences of these data sets,
we refer to Mohammad et al. (2017). We omit two
tweets with special characters, which leads to an
overall set of 4,868 tweets used in our corpus.1

We frame annotation as a multi-label classifi-
cation task at the tweet level. The tweets were
annotated by a group of six independent annotators,
with a minimum number of three annotations for
each tweet (696 tweets were labeled by 6 annota-
tors, 703 by 5 annotators, 2,776 by 4 annotators and
693 by 3 annotators). All annotators were under-
graduate students of media computer science and
between the age of 20 and 30. Only one annotator
is female. All students are German native speak-

1Our annotations and original tweets are available
at http://www.ims.uni-stuttgart.de/data/
ssec and http://alt.qcri.org/semeval2016/
task6/data/uploads/stancedataset.zip, see
also http://alt.qcri.org/semeval2016/task6.

Cohen’s κ

Emotion Min Max

Anger 0.28 0.49
Anticipation 0.11 0.39
Disgust 0.06 0.30
Fear 0.08 0.25
Joy 0.30 0.52
Sadness 0.04 0.30
Surprise 0.09 0.33
Trust 0.29 0.57

Table 3: Kappa Statistics for all pairs of annotators.

ers and have college-level proficiency in English.
To train the annotators on the task, we performed
two training iterations based on 50 randomly se-
lected tweets from the SemEval 2016 Task 4 cor-
pus (Nakov et al., 2016). After each iteration, we
discussed annotation differences (informally) in
face-to-face meetings.

For the final annotation, tweets were presented
to the annotators in a web interface which paired
a tweet with a set of binary check boxes, one for
each emotion. Taggers could annotate any set of
emotions. Each annotator was assigned with 5/7 of
the corpus with equally-sized overlap of instances
based on an offset shift. Not all annotators finished
their task.2

3.2 Emotion Annotation Reliability and
Aggregated Annotation

Our annotation represents a middle ground be-
tween traditional linguistic “expert” annotation and
crowdsourcing: We assume that intuitions about
emotions diverge more than for linguistic structures.
At the same time, we feel that there is information
in the individual annotations beyond the simple
“majority vote” computed by most crowdsourcing
studies. In this section, we analyse the annotations
intrinsically; a modelling-based evaluation follows
in Section 5.

Our first analysis, shown in Table 2, compares
annotation strata with different agreement. For ex-
ample, the column labeled 0.0 lists the frequencies
of emotion labels assigned by at least one annotator,
a high recall annotation. In contrast, the column la-
beled 0.99 lists frequencies for emotion labels that
all annotators agreed on. This represents a high

2Initially, we recruited seven annotators. One annotator
dropped out; we do not publish their data.
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Anger 2902 1437 1983 1339 774 2065 711 640 275 2534 93 630 1628 644
Anticipation 0.55 2700 1016 1029 1330 1369 482 1234 1094 1445 161 772 1291 637
Disgust 19.05 0.52 2183 1024 512 1628 526 404 126 2008 49 429 1291 463
Fear 2.51 1.03 2.02 1840 466 1445 407 497 306 1445 89 448 982 410
Joy 0.19 1.88 0.22 0.30 2067 682 438 1101 1206 750 111 596 952 519
Sadness 5.91 0.72 4.82 5.58 0.21 2644 664 613 345 2171 128 604 1429 611
Surprise 1.28 0.54 1.15 0.94 0.86 1.34 1108 222 219 801 88 257 521 330
Trust 0.24 2.97 0.24 0.55 4.08 0.31 0.38 1713 1082 558 73 500 860 353

Se
nt

. Positive 0.06 2.75 0.06 0.30 10.94 0.13 0.46 10.53 1524 0 0 485 673 366
Negative 20.3 0.42 18.61 3.32 0.13 7.27 1.79 0.13 0.0 3032 0 622 1665 745
Neutral 0.26 0.85 0.21 0.64 0.73 0.56 1.36 0.54 0.0 0.0 312 97 71 144

St
an

ce In Favor 0.67 1.61 0.60 0.97 1.46 0.80 0.90 1.44 1.70 0.56 1.41 1204 0 0
Against 1.94 0.86 2.03 1.28 0.79 1.49 0.88 1.05 0.73 1.79 0.28 0.0 2409 0
None 0.63 0.77 0.64 0.74 0.94 0.74 1.30 0.65 0.87 0.85 2.66 0.0 0.0 1255

Table 4: Tweet Counts (above diagonal) and odds ratio (below diagonal) for cooccurring annotations for
all classes in the corpus (emotions based on aggregated annotation, t=0.0).

precision annotation. The other levels represent
intermediate precision-recall trade-offs.

These numbers confirm that emotion labeling is
a somewhat subjective task: only a small subset
of the emotions labeled by at least one annotator
(t=0.0) is labeled by most (t=0.66) or all of them
(t=0.99). Interestingly, the exact percentage varies
substantially by emotion, between 2 % for sadness
and 20 % for anger.

Many of these disagreements stem from tweets
that are genuinely difficult to categorize emotion-
ally, like

That moment when Canadians realised
global warming doesn’t equal a tropical
vacation

for which one annotator chose anger and sadness,
while one annotator chose surprise. Arguably, both
annotations capture aspects of the meaning. Simi-
larly, the tweet

2 pretty sisters are dancing with cancered kid

(a reference to an online video) is marked as fear
and sadness by one annotator and with joy and
sadness by another. Naturally, not all differences
arise from justified annotations. For instance the
tweet

#BIBLE = Big Irrelevant Book of Lies
and Exaggerations

has been labeled by two annotators with the emo-
tion trust, presumably because of the word bible.
This appears to be a classical oversight error, where
the tweet is labeled on the basis of the first spotted
keyword, without substantially studying its content.

To quantify these observations, we follow gen-
eral practice and compute a chance-corrected mea-
sure of inter-annotator agreement. Table 3 shows
the minimum and maximum Cohen’s κ values for
pairs of annotators, computed on the intersection
of instances annotated by either annotator within
each pair. We obtain relatively high κ values of
anger, joy, and trust, but lower values for the other
emotions.

These small κ values could be interpreted as in-
dicators of problems with reliability. However, κ is
notoriously difficult to interpret, and a number of
studies have pointed out the influence of marginal
frequencies (Cicchetti and Feinstein, 1990): In the
presence of skewed marginals (and most of our
emotion labels are quite rare, cf. Table 2), the ex-
pected agreement (referred to as P (E) in contrast
to P (A) for the empirical agreement) is quite high.
This makes it hard to obtain high κ values; thus,
low κ values do not necessarily indicate unreliable
annotation.

To avoid these methodological problems, we as-
sess the usefulness of our annotation extrinsically
by comparing the performance of computational
models for different values of t. In a nutshell, these
experiments will show best results t=0.0, i. e., the
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Anger 1388 53 334 87 37 195 63 12 28 1353 7 272 840 276
Anticipation 0.16 739 16 42 218 14 2 182 445 253 41 258 333 148
Disgust 10.09 0.19 440 39 11 72 26 2 1 439 0 67 289 84
Fear 1.18 1.01 1.74 274 4 58 9 13 26 241 7 83 116 75
Joy 0.10 2.48 0.12 0.07 815 7 9 196 658 142 15 263 304 248
Sadness 2.43 0.18 2.34 3.20 0.08 414 14 3 28 377 9 102 216 96
Surprise 1.40 0.06 1.78 0.89 0.26 0.92 177 0 16 145 16 46 76 55
Trust 0.05 3.66 0.03 0.40 3.64 0.06 0.0 520 462 43 15 142 337 41

Se
nt

. Positive 0.03 4.28 0.0 0.22 15.42 0.14 0.21 24.65 1524 0 0 485 673 366
Negative 41.47 0.25 310.67 4.72 0.08 6.90 2.83 0.04 0.0 3032 0 622 1665 745
Neutral 0.05 0.84 0.0 0.37 0.24 0.30 1.48 0.41 0.0 0.0 312 97 71 144

St
an

ce In Favor 0.67 1.80 0.52 1.35 1.58 0.99 1.07 1.16 1.70 0.56 1.41 1204 0 0
Against 1.87 0.81 2.08 0.74 0.55 1.12 0.76 2.02 0.73 1.79 0.28 0.0 2409 0
None 0.63 0.68 0.66 1.09 1.32 0.86 1.31 0.22 0.87 0.85 2.66 0.0 0.0 1255

Table 5: Tweet Counts (above diagonal) and odds ratio (below diagonal) for cooccurring annotations for
all classes in the corpus (emotions based on majority annotation, t=0.5).

high-recall annotation (see Section 5 for details).
We therefore define t=0.0 as our aggregated an-
notation. For comparison, we also consider t=0.5,
which corresponds to the majority annotation as
generally adopted in crowdsourcing studies.

3.3 Distribution of Emotions

As shown in Table 2, nearly 60 % of the overall
tweet set are annotated with anger by at least one
annotator. This is the predominant emotion class,
followed by anticipation and sadness. This distribu-
tion is comparably uncommon and originates from
the selection of tweets in SemEval as a stance data
set. However, while anger clearly dominates in
the aggregated annotation, its predominance weak-
ens for the more precision-oriented data sets. For
t=0.99, joy becomes the second most frequent emo-
tion. In uniform samples from Twitter, joy typically
dominates the distribution of emotions (Klinger,
2017). It remains a question for future work how
to reconciliate these observations.

3.4 Emotion vs. other Annotation Layers

Table 4 shows the number of cooccurring label
pairs (above the diagonal) and the odds ratios (be-
low the diagonal) for emotion, stance, and sen-
timent annotations on the whole corpus for our
aggregated annotation (t=0.0). Odds ratio is

R(A:B) =
P (A)(1− P (B))
P (B)(1− P (A))

,

where P (A) is the probability that both labels (at
row and column in the table) hold for a tweet and
P (B) is the probability that only one holds. A
ratio of x means that the joint labeling is x times
more likely than the independent labeling. Table 5
shows the same numbers for the majority annota-
tion, t=0.5.

We first analyze the relationship between emo-
tions and sentiment polarity in Table 4. For many
emotions, the polarity is as expected: Joy and trust
occur predominantly with positive sentiment, and
anger, disgust, fear and sadness with negative sen-
timent. The emotions anticipation and surprise are,
in comparison, most balanced between polarities,
however with a majority for positive sentiment in
anticipation and a negative sentiment for surprise.
For most emotions there is also a non-negligible
number of tweets with the sentiment opposite to a
common expectation. For example, anger occurs
28 times with positive sentiment, mainly tweets
which call for (positive) change regarding a contro-
versial topic, for instance

Lets take back our country! Whos with
me? No more Democrats!2016

Why criticise religions? If a path is not
your own. Don’t be pretentious. And get
down from your throne.

Conversely, more than 15 % of the joy tweets carry
negative sentiment. These are often cases in which
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either the emotion annotator or the sentiment an-
notator assumed some non-literal meaning to be
associated with the text (mainly irony), for instance

Global Warming! Global Warming!
Global Warming! Oh wait, it’s summer.

I love the smell of Hillary in the
morning. It smells like Republican
Victory.

Disgust occurs almost exclusively with negative
sentiment.

For the majority annotation (Table 5), the num-
ber of annotations is smaller. However, the average
size of the odds ratios increase (from 1.96 for t=0.0
to 5.39 for t=0.5).

A drastic example is disgust in combination with
negative sentiment, the predominant combination.
Disgust is only labeled once with positive sentiment
in the t=0.5 annotation:

#WeNeedFeminism because
#NoMeansNo it doesnt mean yes, it
doesnt mean try harder!

Similarly, the odds ratio for the combination anger
and negative sentiment nearly doubles from 20.3
for t=0.0 to 41.47 for t=0.5. These numbers are an
effect of the majority annotation having a higher
precision in contrast to more “noisy” aggregation
of all annotations (t=0.0).

Regarding the relationship between emotions
and stance, most odds ratios are relatively close to
1, indicating the absence of very strong correlations.
Nevertheless, the ”Against” stance is associated
with a number of negative emotions (anger, disgust,
sadness, the ”In Favor” stance with joy, trust, and
anticipation, and ”None” with an absence of all
emotions except surprise.

4 Models

We apply six standard models to provide base-
line results for our corpus: Maximum Entropy
(MAXENT), Support Vector Machines (SVM), a
Long-Short Term Memory Network (LSTM), a
Bidirectional LSTM (BI-LSTM), and a Convolu-
tional Neural Network (CNN).

MaxEnt and SVM classify each tweet sepa-
rately based on a bag-of-words. For the first, the lin-
ear separator is estimated based on log-likelihood
optimization with an L2 prior. For the second, the
optimization follows a max-margin strategy.

LSTM (Hochreiter and Schmidhuber, 1997) is
a recurrent neural network architecture which in-
cludes a memory state capable of learning long
distance dependencies. In various forms, they have
proven useful for text classification tasks (Tai et al.,
2015; Tang et al., 2016). We implement a standard
LSTM which has an embedding layer that maps the
input (padded when needed) to a 300 dimensional
vector. These vectors then pass to a 175 dimen-
sional LSTM layer. We feed the final hidden state
to a fully-connected 50-dimensional dense layer
and use sigmoid to gate our 8 output neurons. As
a regularizer, we use a dropout (Srivastava et al.,
2014) of 0.5 before the LSTM layer.

Bi-LSTM has the same architecture as the nor-
mal LSTM, but includes an additional layer with a
reverse direction. This approach has produced state-
of-the-art results for POS-tagging (Plank et al.,
2016), dependency parsing (Kiperwasser and Gold-
berg, 2016) and text classification (Zhou et al.,
2016), among others. We use the same parame-
ters as the LSTM, but concatenate the two hidden
layers before passing them to the dense layer.

CNN has proven remarkably effective for text
classification (Kim, 2014; dos Santos and Gatti,
2014; Flekova and Gurevych, 2016) . We train
a simple one-layer CNN with one convolutional
layer on top of pre-trained word embeddings, fol-
lowing Kim (2014). The first layer is an embed-
dings layer that maps the input of length n (padded
when needed) to an n x 300 dimensional matrix.
The embedding matrix is then convoluted with fil-
ter sizes of 2, 3, and 4, followed by a pooling layer
of length 2. This is then fed to a fully connected
dense layer with ReLu activations and finally to the
8 output neurons, which are gated with the sigmoid
function. We again use dropout (0.5), this time
before and after the convolutional layers.

For all neural models, we initialize our word rep-
resentations with the skip-gram algorithm with neg-
ative sampling (Mikolov et al., 2013), trained on
nearly 8 million tokens taken from tweets collected
using various hashtags. We create 300-dimensional
vectors with window size 5, 15 negative samples
and run 5 iterations. For OOV words, we use a vec-
tor initialized randomly between -0.25 and 0.25 to
approximate the variance of the pretrained vectors.
We train our models using ADAM (Kingma and Ba,
2015) and a minibatch size of 32. We set 10 % of
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Results for Threshold t = 0.0 for standard models

Linear Neural

MAXENT SVM LSTM Bi-LSTM CNN

Emotion P R F1 P R F1 P R F1 P R F1 P R F1

Anger 76 72 74 76 69 72 76
(1.7)

77
(5.3)

76
(1.9)

77
(0.8)

77
(2.7)

77
(1.3)

77
(0.8)

77
(2.7)

77
(1.3)

Anticipation 72 61 66 70 60 64 68
(1.8)

68
(8.9)

67
(3.5)

70
(1.2)

66
(3.6)

68
(1.6)

68
(1.2)

60
(0.8)

64
(0.5)

Disgust 62 47 54 59 53 56 64
(3.2)

68
(8.7)

65
(2.5)

61
(1.4)

64
(4.6)

63
(1.7)

62
(0.6)

61
(3.9)

62
(1.9)

Fear 57 31 40 55 40 46 51
(3.5)

48
(8.5)

49
(4.6)

58
(1.6)

43
(6.3)

49
(3.8)

53
(1.7)

46
(6.2)

49
(3.9)

Joy 55 50 52 52 52 52 56
(5.9)

41
(8.3)

46
(4.8)

54
(2.9)

59
(10.5)

56
(4.8)

54
(1.7)

56
(5.6)

55
(2.3)

Sadness 65 65 65 64 60 62 60
(2.5)

77
(11.1)

67
(3.9)

62
(0.6)

72
(7.5)

67
(3.2)

63
(0.9)

72
(0.3)

67
(0.5)

Surprise 62 15 24 46 22 30 40
(4.4)

17
(10.4)

21
(8.7)

42
(2.9)

20
(3.2)

27
(2.5)

36
(3.7)

24
(6.3)

28
(5.0)

Trust 62 38 47 57 45 50 57
(6.1)

49
(12.3)

51
(5.9)

59
(2.5)

44
(4.1)

50
(2.5)

53
(0.6)

49
(6.6)

50
(3.3)

Micro-Avg. 66 52 58 63 53 58 62
(0.9)

60
(1.9)

61
(0.7)

64
(0.3)

60
(2.4)

62
(1.2)

62
(0.6)

59
(2.0)

60
(1.0)

Table 6: Results of linear and neural models for labels from the aggregated annotation (t=0.0). For the
neural models, we report the average of five runs and standard deviation in brackets. Best F1 for each
emotion shown in boldface.

the training data aside to tune the hyperparameters
for each model (hidden dimension size, dropout
rate, and number of training epochs).

5 Results

Table 6 shows the results for our canonical annota-
tion aggregation with t=0.0 (aggregated annotation)
for our models. The two linear classifiers (trained
as MAXENT and SVM) show comparable results,
with an overall micro-average F1 of 58 %. All neu-
ral network approaches show a higher performance
of at least 2 percentage points (3 pp for LSTM, 4 pp
for BI-LSTM, 2 pp for CNN). BI-LSTM also ob-
tains the best F-Score for 5 of the 8 emotions (4 out
of 8 for LSTM and CNN). We conclude that the
BI-LSTM shows the best results of all our models.
Our discussion focuses on this model.

The performance clearly differs between emo-
tion classes. Recall from Section 3.2 that anger, joy
and trust showed much higher agreement numbers
than the other annotations. There is however just
a mild correlation between reliability and model-
ing performance. Anger is indeed modelled very
well: it shows the best prediction performance with
a similar precision and recall on all models. We
ascribe this to it being the most frequent emotion
class. In contrast, joy and trust show only middling
performance, while we see relatively good results
for anticipation and sadness even though there was
considerable disagreement between annotators. We

find the overall worst results for surprise. This is
not surprising, surprise being a scarce label with
also very low agreement. This might point towards
underlying problems in the definition of surprise
as an emotion. Some authors have split this class
into positive and negative surprise in an attempt to
avoid this (Alm et al., 2005).

We finally come to our justification for choos-
ing t=0.0 as our aggregated annotation. Table 7
shows results for the best model (BI-LSTM) on
the datasets for different thresholds. We see a clear
downward monotone trend: The higher the thresh-
old, the lower the F1 measures. We obtain the
best results, both for individual emotions and at
the average level, for t=0.0. This is at least par-
tially counterintuitive – we would have expected a
dataset with “more consensual” annotation to yield
better models – or at least models with higher pre-
cision. This is not the case. Our interpretation is
that frequency effects outweigh any other consid-
erations: As Table 2 shows, the amount of labeled
data points drops sharply with higher thresholds:
even between t=0.0 and t=0.33, on average half
of the labels are lost. This interpretation is sup-
ported by the behavior of the individual emotions:
for emotions where the data sets shrink gradually
(anger, joy), performance drops gradually, while
it dips sharply for emotions where the data sets
shrink fast (disgust, fear). Somewhat surprisingly,
therefore, we conclude that t=0.0 appears to be the
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Results of BiLSTM for different voting thresholds t
0.0 0.33 0.5 0.66 0.99

Emotion P R F1 P R F1 P R F1 P R F1 P R F1

Anger 77
(1.3)

76
(4.8)

77
(1.9)

64
(1.7)

71
(3.8)

68
(1.5)

52
(0.6)

45
(7.8)

48
(4.8)

47
(1.5)

51
(6.7)

49
(2.6)

34
(5.2)

14
(2.6)

20
(2.4)

Anticipation 70
(1.2)

66
(3.6)

68
(1.6)

60
(2.3)

43
(5.6)

50
(3.4)

42
(5.9)

23
(4.4)

29
(2.8)

37
(4.1)

20
(7.6)

25
(6.0)

11
(3.3)

12
(2.9)

11
(1.9)

Disgust 61
(1.4)

64
(4.6)

63
(1.7)

48
(1.5)

38
(4.4)

42
(2.6)

34
(4.9)

13
(2.7)

18
(3.5)

24
(6.2)

8
(2.7)

11
(3.7)

11
(10.7)

2
(2.0)

3
(3.4)

Fear 58
(1.6)

43
(6.3)

49
(3.8)

34
(3.2)

22
(5.9)

26
(4.6)

18
(8.1)

15
(10.5)

13
(5.3)

11
(5.0)

14
(10.5)

11
(7.9)

1
(1.3)

6
(11.7)

1
(2.3)

Joy 54
(2.9)

59
(10.5)

56
(4.8)

56
(2.8)

41
(6.3)

47
(3.6)

53
(4.3)

37
(3.6)

43
(1.6)

54
(7.1)

34
(4.2)

41
(2.1)

64
(14.9)

27
(9.6)

35
(6.8)

Sadness 62
(0.6)

72
(7.5)

67
(3.2)

42
(1.4)

47
(6.2)

44
(2.1)

16
(2.1)

24
(6.0)

19
(2.0)

15
(2.3)

19
(7.6)

16
(3.0)

3
(2.0)

6
(2.9)

4
(1.9)

Surprise 42
(2.9)

20
(3.2)

27
(2.5)

31
(6.8)

20
(7.5)

23
(3.2)

12
(2.3)

20
(8.9)

13
(2.1)

12
(1.3)

12
(2.6)

12
(1.7)

0
(0.0)

0
(0.0)

0
(0.0)

Trust 59
(2.5)

44
(4.1)

50
(2.5)

66
(3.4)

31
(2.7)

42
(2.3)

60
(4.6)

24
(7.1)

34
(7.1)

59
(3.5)

23
(6.8)

33
(6.8)

35
(7.4)

14
(11.2)

18
(9.7)

Micro-Avg. 64
(0.3)

60
(2.4)

62
(1.2)

53
(1.8)

44
(1.8)

48
(0.6)

38
(2.2)

30
(3.3)

33
(2.4)

38
(1.8)

29
(4.1)

33
(2.9)

21
(4.2)

14
(3.1)

17
(3.2)

Table 7: Results of the BiLSTM for different voting thresholds. We report average results for each emotion
over 5 runs (standard deviations are included in parenthesis).

most useful datasets from a computational model-
ing perspective.

In terms of how to deal with diverging annota-
tions, we believe that this result bolsters our general
approach to pay attention to individual annotators’
labels rather than just majority votes: if the individ-
ual labels were predominantly noisy, we would not
expect to see relatively high F1 scores.

6 Conclusion and Future Work

With this paper, we publish the first manual emo-
tion annotation for a publicly available micropost
corpus. The resource we chose to annotate already
provides stance and sentiment information. We an-
alyzed the relationships among emotion classes and
between emotions and the other annotation layers.

In addition to the data set, we implemented well-
known standard models which are established for
sentiment and polarity prediction for emotion clas-
sification. The BI-LSTM model outperforms all
other approaches by up to 4 points F1 on average
compared to linear classifiers.

Inter-annotator analysis showed a limited agree-
ment between the annotators – the task is, at least
to some degree, driven by subjective opinions. We
found, however, that this is not necessarily a prob-
lem: Our models perform best on a high-recall
aggregate annotation which includes all labels as-
signed by at least one annotator. Thus, we believe
that the individual labels have value and are not,
like generally assumed in crowdsourcing, noisy
inputs suitable only as input for majority voting.

In this vein, we publish all individual annotations.
This enables further research on other methods of
defining consensus annotations which may be more
appropriate for specific downstream tasks. More
generally, we will make all annotations, resources
and model implementations publicly available.

References
Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat.

2005. Emotions from text: Machine learning
for text-based emotion prediction. In Proceedings
of Human Language Technology Conference and
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 579–586, Vancouver, BC,
Canada.

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. In Text, Speech and
Dialogue: 10th International Conference, TSD 2007,
Pilsen, Czech Republic, September 3-7, 2007. Pro-
ceedings, pages 196–205. Springer.

Isabelle Augenstein, Andreas Vlachos, and Kalina
Bontcheva. 2016. USFD at semeval-2016 task 6:
Any-target stance detection on twitter with autoen-
coders. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 389–393, San Diego, California.

Sarah Busch. 2011. Capturing mood
about daily weather from twitter posts.
http://www.dialogueearth.org/2011/09/29/capturing-
mood-about-daily-weather-from-twitter-posts.

Sarah Busch. 2012. Tracking the mood
about gas prices on twitter: A case study.
http://www.dialogueearth.org/2012/01/25/tracking-
the-mood-about-gas-prices-on-twitter-a-case-study.

20



Kent Cavender-Bares. 2011. Preparing
to extract weather mood from tweets.
http://www.dialogueearth.org/2011/03/03/preparing-
to-extract-weather-mood-from-tweets.

Domenic V. Cicchetti and Alvan R. Feinstein. 1990.
High agreement but low kappa: II. resolving
the paradoxes. Journal of clinical epidemiology,
43:551–558.

Joana Costa, Catarina Silva, Mario Antunes, and
Bernardete Ribeiro. 2014. Concept drift awareness
in twitter streams. In 13th International Conference
on Machine Learning and Applications, pages 294–
299.

Marcelo Dias and Karin Becker. 2016. INF-UFRGS-
OPINION-MINING at SemEval-2016 task 6: Au-
tomatic generation of a training corpus for unsuper-
vised identification of stance in tweets. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation (SemEval-2016), pages 378–383, San
Diego, California.

Xiaowen Ding, Bing Liu, and Philip S. Yu. 2008. A
holistic lexicon-based approach to opinion mining.
In WSDM ’08 Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages
213–239, Palo Alto, California, USA.

Peter S. Dodds, Kameron D. Harris, Isabel M.
Kloumann, Catherine A. Bliss, and Christopher M.
Danforth. 2011. Temporal patterns of happiness and
information in a global social network: Hedonomet-
rics and twitter. PloS one, 6(12).

Javid Ebrahimi, Dejing Dou, and Daniel Lowd. 2016.
Weakly supervised tweet stance classification by re-
lational bootstrapping. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1012–1017, Austin, Texas.

Paul Ekman. 1999. Basic emotions. In M Dalgleish,
T; Power, editor, Handbook of Cognition and Emo-
tion. John Wiley & Sons, Sussex, UK.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2029–2041, Berlin, Germany.

Gayatree Ganu, Noemie Elhadad, and Amélie Marian.
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Abstract

Social media are used by an increasing
number of political actors. A small subset
of these is interested in pursuing extrem-
ist motives such as mobilization, recruit-
ing or radicalization activities. In order to
counteract these trends, online providers
and state institutions reinforce their mon-
itoring efforts, mostly relying on manual
workflows. We propose a machine learn-
ing approach to support manual attempts
towards identifying right-wing extremist
content in German Twitter profiles. Based
on a fine-grained conceptualization of right-
wing extremism, we frame the task as rank-
ing each individual profile on a continuum
spanning different degrees of right-wing
extremism, based on a nearest neighbour
approach. A quantitative evaluation reveals
that our ranking model yields robust per-
formance (up to 0.81 F1 score) when being
used for predicting discrete class labels. At
the same time, the model provides plausi-
ble continuous ranking scores for a small
sample of borderline cases at the division
of right-wing extremism and New Right
political movements.

1 Introduction

Recent years have seen a dramatic rise in im-
portance of social media as communication chan-
nels for political discourse (Parmelee and Bichars,
2013). Political actors use social platforms to en-
gage directly with potential voters and supporter
networks in order to shape public discussions, in-

duce viral social trends, or spread political ideas
and programmes for which they seek support.

With regard to extremist political actors and par-
ties, a major current focus is on recruiting and radi-
calizing potential activists in social media. For in-
stance, the American white nationalist movements
have been able to attract a 600 % increase of follow-
ers on Twitter since 2012 (Berger, 2016). Twitter
is comparably under-moderated in comparison to
other platforms and therefore constitutes a predes-
tinated channel for such activities (Blanquart and
Cook, 2013).

State institutions, platform providers or compa-
nies spend growing efforts into monitoring extrem-
ist activities in social media. Extremism moni-
toring aims at detecting who is active (possibly
separating opinion leaders from adopters, and dis-
covering dynamics of network evolution), what
they say (identifying prominent topics and possibly
hate speech or fake news), and which purpose they
pursue (revealing strategic objectives such as mo-
bilization or recruiting). Currently, these goals are
mostly pursued in time-consuming manual work.
For instance, the Amadeu Antonio foundation, a
non-governmental organization countering right-
wing extremism in Germany, conducts an annual re-
port that relies on a “qualitative method” (Amadeu-
Antonio-Stiftung, 2016). Furthermore, the Anti
Defamation League issued a report on anti-semitic
harassment on Twitter, based on manually reviewed
2.6 million Tweets (ADL, 2016).

In this paper, we propose an approach to sup-
port the first of the above-mentioned aspects, i. e.,
the identification of extremist users in Twitter. In
particular, we aim at detecting potential right-wing
extremist content in German Twitter profiles, based
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on lexical information and patterns of emotion un-
derlying language use (cf. Ghazi et al., 2010; Sut-
tles and Ide, 2013; Wang et al., 2012). Contrary
to previous work (Hartung et al., 2017), we phrase
the problem as ranking between manually selected
groups of Twitter profiles which constitute seeds of
right-wing extremists and non-extremist users. We
show that our ranking model achieves robust per-
formance in discrete binary categorizations, while
also being capable of predicting plausible continu-
ous ranking scores for a sample of borderline cases
which specifically address the notoriously hard de-
limitation of right-wing extremism from New Right
political movements in Germany and Europe. This
lazy machine learning approach outperforms the
eager method proposed in previous work on the
same data set (Hartung et al., 2017).

2 Background and Related Work

Background. Right-wing extremism is an ideol-
ogy of asymmetric quality of social groups, defined
by race, ethnicity or nationality, and a related au-
thoritarian concept of society. It encompasses ag-
gressive behavior and the underlying attitudes of
xenophobia, racism, anti-Semitism, social Darwin-
ism, as well as national chauvinism, glorification
of the historical national socialism and support for
dictatorship (Stöss, 2010).

When transforming this concept into patterns
used in Twitter communication, certain domain-
specific contextual opportunities and restrictions
have to be considered. First, Tweets are motivated
by latent attitudes, but they are manifest commu-
nicative behavior. The transformation of attitudes
into behavior is, however, conditional. While atti-
tudes are usually revealed in the secrecy of anony-
mous interviews, Twitter requires to display atti-
tudes in public. This may lead to strategies of
camouflage and the use of codes. Second, these
attitudes are revealed by commenting on particular
topics requiring that their changing saliency over
time must be considered. Third, expressing some
of these attitudes publicly in a particular manner
can become relevant to criminal law. Thus, espe-
cially the glorification of national socialism is not
suited to serve as a distinctive criterion, since its
public expression in a non-subtle manner is avoided
by Twitter users. Finally, research has repeatedly
demonstrated that some of the attitudes mentioned
above (e. g., xenophobia) are widespread among the
German population (Best et al., 2016; Zick et al.,

2016), whereas right-wing extremism is defined by
adopting all or at least a majority of these attitudes.

Related Work. There is only limited work with a
focus on right-wing extremism detection. However,
other forms of extremism have been the subject of
research. As an early example, Ting et al. (2013)
aim at identification of hate groups on Facebook.
They build automatic classifiers based on social
network structure properties and keywords. While
this work focuses on detection of groups, Scan-
lon and Gerber (2014) deal with specific events of
interaction, namely the recruitment of individuals
on specific extremist’s websites. Their domain are
Western Jihadists. In contrast, Ashcroft et al. (2015)
identify specific messages from Twitter. Similarly,
Wei et al. (2016) identify Jihadist-related conversa-
tions.

Recently, the identification of Twitter users dis-
playing different traits or attitudes of extremism
has gained growing attention. For instance, Ferrara
et al. (2016) identify ISIS members among Twitter
users, while Kaati et al. (2015) focus on multipliers
of Jihadism on Twitter. In very recent work, Wei
and Singh (2017) present an approach to detecting
Jihadism on Twitter both at the level of user pro-
files and individual Tweets, using a graph-based
approach. The only approach towards automated
detection of right-wing extremist users on Twit-
ter we are aware of is our previous work (Hartung
et al., 2017).

As a common assumption, all of the latter mod-
els rely on discrete output spaces; more specifically,
they frame the profile identification task as a binary
classification problem. In this paper, we argue that
this assumption is overly simplistic as (i) it ob-
scures the complexity of the spectrum of political
attitudes, and (ii) it is unable to capture different
degrees of radicalization. Therefore, we propose
a ranking approach which is capable of projecting
user profiles to a continuous range spanning dif-
ferent degrees of similarity to known (groups of)
right-wing extremist or non-extremist users.

Extremism detection can also be seen as special
case of profiling users of social network platforms
in a more general way, e. g., classification of per-
sonality traits (Golbeck et al., 2011; Quercia et al.,
2011). Such approaches can be seen as extensions
to sentiment analysis in general (Liu, 2015). More
recently, there is a growing interest in particular
aspects such as hate speech (Schmidt and Wiegand,
2017; Waseem and Hovy, 2016), racism (Waseem,
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2016), violence or threat detection (C. Basave et al.,
2013; Wester et al., 2016).

3 Profile Ranking

Right-wing extremism is defined by adopting all
or at least a majority of the attitudes mentioned in
Section 2. It is, accordingly, appropriate to inves-
tigate entire Twitter profiles rather than individual
Tweets. We frame the task of detecting right-wing
extremism in Twitter as ranking of user profiles
according to their relative proximity to (groups of)
other users in high-dimensional vector space.

3.1 Conceptualizing the Dimensions of
Right-Wing Extremism

Our approach is based on the general assumption
that linguistic variables serve as informative predic-
tors of user’s underlying attitudes. We mainly focus
on the vocabulary and certain semantic patterns the
use of which may be considered as communica-
tive behavior that is motivated by the ideology of
right-wing extremism. In the following, we justify
this choice by a more thorough description of the
conceptual dimensions of right-wing extremism (as
introduced in Section 2) and highlight presumable
links to linguistic behavior.

National-chauvinism. Migration is currently the
most salient topic of German right-wing extremism,
touching upon the attitudes of national-chauvinism
combined with xenophobia. In the view of right-
wing extremists, migration is perceived as a threat
to the homogeneity of the superior German na-
tion (in-group) by migrants from inferior nations
(out-group). National-chauvinism expresses the
presumed superiority and demanded homogeneity
of the in-group, while xenophobia encompasses
the imagined inferiority of the out-group and its
potential threat to the in-group. Relevant words
and hashtags may be “Rapefugees” or “Invasoren”
(“invaders”), for instance.

Racism. Although related to national-
chauvinism and xenophobia, racism is distinct,
since it defines the in- and out-group in terms of
race rather than nationality. Racism becomes es-
pecially obvious with references to the physical
appearance of out- and in-group members, as ex-
pressed by, e. g., “Neger” (“nigger”), #whitepower
or #whiteresistance.

Social Darwinism builds upon racism, but claims
that fight either between or within races is an un-
avoidable means to leverage the survival of the

strongest race. Violence is legitimated as a basic
law of society and any deviation from violence,
e. g., by peaceful agreement, is considered to un-
dermine the chances for survival and is thus ille-
gitimate. The imagined homogeneity and purity of
the own race needs to be defended; hence, politi-
cal opponents and other people who are perceived
as not fitting are considered as enemies who can
be fought without any reservation. Indicative are
thus words and semantic structures which aggres-
sively offend the opponents as enemies refusing
any agreement with them, e. g., “Abschaumpresse”
(“scum press”), “Volksverräter” (“betrayer of the
nation”). Expressions conveying negative emotions
such as anger or disgust when referring to oppo-
nents may be indicative as well.

Democracy vs. dictatorship. In turn, democ-
racy is considered as weakening the in-group by
substituting violent struggle by peaceful competi-
tion, negotiation and acceptance of universal rights.
Instead, dictatorship is favored, since given the
homogeneity of the nation or the race, political
parties and their competition is considered need-
less. In the current debate on migration, the re-
jection of democracy has been fused with con-
spiracy theories. Indicative for the rejection of
democracy and accompanying conspiracy theories
are vocabulary like “Lügenpresse” (“lying press”),
“Gehirnwäsche” (“brainwash”), or #stopislam.

National socialism. The glorification of the his-
torical national socialism by explicitly referring
to its symbols or the denial of the Holocaust is
relevant to German criminal law. However, using
legal references to national socialism or symbolic
codes can circumvent this restriction. Indicative
are words and number codes like “Heil”, 18 or
88 (one and eight representing the letters A and
H, respectively, thus abbreviating “Heil Hitler” or
“Adolf Hitler”).

Additionally, indications of behavior clearly as-
sociated to right-wing extremist organizations or
parties can be used to classify the profiles. Indica-
tive are therefore expressions of approval, affinity
of even membership in such organizations, for in-
stance by following them, or posting hashtags in
an affirmative manner such as #NPD, #DritteWeg,
#Die Rechte (all referring to German right-wing
extremist parties).
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3.2 Features

In this section, we describe how the previously
discussed dimensions of right-wing extremism are
incorporated as features into our ranking model.

Lexical Features. We create a bag-of-words fre-
quency profile of all tokens (unigrams and bigrams)
used by an author in the entirety of all messages
in their profile after stopword filtering. This fre-
quency profile is able to capture lexical expressions
described in the previous section. Twitter-specific
vocabulary such as “RT” (indicating re-tweets) or
short links (URLs referring to websites external to
Twitter) are filtered; however, hashtags and refer-
ences to other Twitter users (e. g., @NPD) are kept
in the lexical profile.

Emotion Features. Similarly to previous re-
search on emotion detection on Twitter (Ghazi
et al., 2010; Suttles and Ide, 2013; Wang et al.,
2012), we estimate a single-label classification
model for various emotion categories, viz., anger,
disgust, fear, joy, love, sadness, shame, surprise,
trust (motivated by fundamental emotions (Ek-
man, 1970; Plutchik, 2001)) on a subsample of
approx. 1.2 Million English and German Tweets
from March 2016 until November 2016. All En-
glish Tweets are machine translated to German via
Google translate1 to receive a more comprehensive
training set. We use a weak supervision approach
by utilizing the emotion hashtags (which are disre-
garded during training). As features in our down-
stream ranking model, we use confidence scores
derived from the single-label classification model
(capturing the most prominent emotions and the
proportion of emotionally charged Tweets per user
profile).

Pro/Con Features. We use lexico-syntactic pat-
terns encoding shallow argumentation patterns to
capture the main political goals or motives to be
conveyed by an author in their messages:

gegen ... <NOUN>
against ... <NOUN>

<NOUN> ... statt ... <NOUN>
<NOUN> ... instead of ... <NOUN>

As a fundament to apply these rules, noun detection
is performed with regular expressions for capital-
ization, which works well in German, instead of

1http://translate.google.com

incorporating a full-fledged (and slower) part-of-
speech tagger. An arbitrary number of intermediate
tokens is accepted between the prepositional cue
and the closest subsequent noun denoting the ob-
jective of support or disaffirmation.

The following examples2 illustrate these patterns
(pro and con objectives in boldface):

(1) a. #Muslimefürfrieden bringen Antwort
auf die Broschüre der AfD in die
Öffentlichkeit: Aufklärung statt
Hetze...

b. #Muslimefürfrieden publicly reply to
AfD brochure: awareness rather than
agitation

(2) a. Demo gegen Abschiebung: In Erfurt
demonstrierten am 25. Januar etwa
200 Menschen gegen die Abschiebun-
gen der R...

b. Demonstration against deportation:
On January 25, 200 people demon-
strated in Erfurt against the deporta-
tions of...

Social Identity Features. Based on the assump-
tion that collective identities are constructed by
means of discursive appropriation of particular en-
tities of the real world, we apply another shallow
lexico-syntactic pattern in order to detect such enti-
ties that are recurrently used in appropriation con-
texts:

unser ... <NOUN>
our ... <NOUN>

In this pattern, all morphological variants of the lex-
ical cue are considered (e. g., unsere, unseren), as
indicated by the symbol. The following example
illustrates this pattern:

(3) a. RT @... Das war klar, es sind Mus-
lime, sie wollen nur Teilhabe an un-
serem Wohlstand haben, ansonsten ve-
rachten sie uns...

b. RT @... Obviously, they are muslims,
they only want to participate in our
wealth, apart from that they scorn us...

Both pro/con features and social identity fea-
tures are primarily intended to capture aspects of

2In all examples throughout this paper, original German
Tweets are presented in (a.), with our translation to English
given in (b.), respectively.
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national-chauvinism and social darwinism (cf. Sec-
tion 3.1).

Transformation of Feature Values. After ex-
tracting the previously described features, the re-
sulting feature vector describing each profile is
transformed by following the tf·idf scheme (Man-
ning et al., 2008). This is a standard approach in
information retrieval to increase the relative impact
of features that are (i) prominent in the respective
profile and (ii) bear high discriminative power in
the sense that they occur in a relatively small pro-
portion of all profiles in the data.

3.3 Ranking Model
Our approach in this work can be seen as a gen-
eralization of nearest neighbour classification in
a vector space framework (Manning et al., 2008):
Twitter profiles are represented as points in a high-
dimensional vector space using the features de-
scribed in Section 3.2. Assuming a set of seed
profiles that are labeled with one of the categories
right-wing extremist (R) or non-extremist (N), the
task is to rank an unseen profile ~x on a continuous
scale spanning the range from right-wing extremist
to non-extremist (N) content. Profiles are ranked
according to their similarity to groups of nearest
neighbours in the seed profiles.

We define centroids of non-extremist and right-
wing nearest neighbours of ~x, namely CN (~x) and
CR(~x), respectively, as

CN (~x) =
1

|Nk(~x)|
∑

~x′∈Nk(~x)

~x′ (1)

CR(~x) =
1

|R`(~x)|
∑

~x′∈R`(~x)

~x′ , (2)

where Nk(~x) and R`(~x) denote the sets of the k
and ` nearest neighbours of ~x in the respective class
in the training data. Then, the ranking score of the
model is determined as the relative similarity of ~x
to each centroid:

score(~x) = sim(~x, CN (~x))− sim(~x, CR(~x)) (3)

With sim being instantiated as cosine similarity,
this score ranges from −1 (~x maximally similar to
right-wing groups) to +1 (~x maximally similar to
non-extremist groups); borderline cases between
both categories are expected to center around 0
(indicating equidistance of ~x to both groups). Set-
ting k=1 and `=1 renders the model an instance of
nearest neighbour ranking.

4 Evaluation

4.1 Data Set

In our experiments, we use the data set previously
discussed in Hartung et al. (2017). Annotations
are provided by domain experts at the level of in-
dividual user profiles. These annotations comprise
a set of 37 seed profiles of political actors from
the German federal state Thuringia. They are split
into 20 profiles labeled as right-wing and 17 non-
extremist ones. Right-wing seed profiles contain
organizations as well as leading individuals within
the formal and informal extremist scene as docu-
mented by Quent et al. (2016). Non-extremist seed
profiles contain political actors of the governing
parties and single-issue associations (e. g., nature
conservation, social equality) (Quent et al., 2016).

In five other user profiles, the annotators were
unable to reach a consensus on whether to classify
the user as R or N. The latter profiles were kept in
the data set as unlabeled differential profiles.

The test set comprises 100 randomly sampled
profiles from followers of the seed users which
have been annotated as being members of the R or
N category.

4.2 Experiments and Results

4.2.1 Discrete Decoding
Given that ground truth annotations in the testing
data are only available in terms of discrete labels
(rather than continuous scores; cf. Section 4.1), the
ranking model is evaluated in a discrete setting,
using the following indicator function as a decision
rule that is applied to the model score as given in
Equation (3):

class(~x) =


R, score(~x) < 0
N, score(~x) > 0
None, otherwise

(4)

Note that discrete decoding can be applied in a
balanced and unbalanced manner by setting the k
and ` parameters in Equations (1) and (2) to the
same or different numbers (thus considering nearest
neighbour centroids of equal or different sizes).

Baseline Classifier. As a baseline classification
model for comparison, we train a support vector
machine (Cortes and Vapnik, 1995) with a linear
kernel on the seed profiles (comprising 45,747
Tweets in total, among them 15,911 of category
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Entire sub-sample Profiles >100 Tweets

P R F1 P R F1

discrete decoding 0.56 0.79 0.65 0.79 0.85 0.81unbalanced (k=4, `=5)

discrete decoding 0.55 0.65 0.59 0.80 0.62 0.70balanced (k=10, `=10)

discrete decoding 0.44 0.63 0.52 0.69 0.69 0.69balanced (k=1, `=1)

Classification 0.25 0.95 0.40 0.32 0.92 0.47(Hartung et al., 2017)

Baseline 0.19 1.00 0.32 0.21 1.00 0.35

Table 1: Performance of the ranking model on the test set when being applied in a discrete decoding
scenario, compared to a binary SVM classifier and a one-class baseline. Parameters k and ` in discrete
decoding indicate the number of nearest neighbours in the centroids (cf. Equations 1 and 2).

R and 29,836 of category N) with all features de-
scribed in Section 3.2. This implementation cor-
responds to our previous approach (Hartung et al.,
2017).

Results. The results of this experiment can be
seen in Table 1. We compare three variants of our
ranking model in the previously described discrete
decoding setting, the classification model and a
baseline assigning all profiles to category R.

All models perform well above the baseline.
While the classification model has a strong ten-
dency towards recall, the ranking model generally
offers a more harmonic precision-recall trade-off.
Comparing the balanced and unbalanced model
variants, we observe that our ranking approach gen-
erally benefits from larger centroids (thus prefer-
ring group similarities over individual ones), while
the best performance can be obtained by choos-
ing the k and ` parameters independently of one
another (k=4, `=5).

As can be seen from the right-most column of
Table 1, reducing the test set to a subsample of
profiles with at least 100 Tweets each (62 profiles
remaining) leads to an additional performance in-
crease up to an F1 score of 0.81 in unbalanced
discrete decoding.

All differences of the ranking models as reported
in Table 1 are statistically significant over the base-
line and the classifier according to an approximate
randomization test (Yeh, 2000) at significance lev-
els of p < 0.05 or smaller.

Discussion. In Figure 1 we explore the parameter
space for different values of k and ` in unbalanced
discrete decoding. While analyzing the variation in

one parameter, the other one is fixed to its global
optimum (k=4 and `=5, respectively). For compar-
ison, the dashed line indicates the performance of
the nearest neighbour approach (i. e., setting k=1
and `=1) in terms of F1 score.

As a general pattern, increasing the number of
non-extremist neighbours in unbalanced discrete
decoding fosters recall, while increasing the num-
ber of right-wing extremist neighbours fosters pre-
cision. Having said that, we also observe that the
nearest neighbour approach generally yields robust
performance which can be outperformed only in
very few configurations throughout the parame-
ter space. Apparently, in these configurations the
model based on centroids of nearest neighbours is
more effective in abstracting from outliers or bor-
derline cases that might otherwise blur the decision
boundary.

Figure 1 also illustrates that k and ` cannot be set
to arbitrary large values without taking a consider-
able loss in performance. This indicates that, apart
from abstracting from outliers, it is also crucial that
the centroids are, to some degree, specific for the
particular instance to be categorized, rather than a
mere class prototype.

4.2.2 Continuous Ranking
In order to evaluate the plausibility of the ranking
model scores in the absence of ground truth rank-
ing annotations, we analyze the model predictions
on the differential profiles for which no consen-
sus regarding their category membership could be
reached among the expert annotators (cf. Section
4.1). Being related to some New Right German
political movements, which are notoriously hard
to be delimited from right-wing extremist political
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(a) Increasing k (number of non-extremist neighbours) for
a fixed optimal value of `=5

(b) Increasing ` (number of right-wing extremist neigh-
bours) for a fixed optimal value of k=4

Figure 1: Exploration of the parameter space of k and ` on restricted test set (only profiles >100 Tweets).
The dashed line indicates the performance of the nearest neighbour approach (i. e., setting k=1 and `=1)

actors, these cases are of particular interest from
a social science perspective (cf. Zick et al., 2016).
Due to their borderline character, we expect the
ranking model to produce scores close to 0 for all
these profiles.

Results. Figure 2 plots the profiles analyzed here
on a continuous scale according to their predicted
model score. We rely on the parameter settings
which yielded best performance in the previous ex-
periment (i. e., k=4 and `=5)3. As expected, all pro-
files are located closely around 0, which indicates
that their predicted relative distance to extremist
and non-extremist groups is almost equal. Despite
the small sample size underlying this analysis, we
consider this result as preliminary evidence of the
plausibility of the ranking model on a selection of
inherently difficult cases.

Discussion. Each data point in Figure 2 carries
two types of information, viz. their position on the
R–N spectrum according to the ranking model, and
its category label as assigned by the baseline classi-
fier. The latter is indicated in terms of crosses (de-
noting category N) and circles (category R). Com-
paring the predictions of both models, we find that
they are in agreement in most of the cases. An inter-
esting divergence concerns the case of a prominent
member of a New Right German policitical party
(explicitly marked by the arrow in Figure 2), who is
categorized as R by the classifier, while being pro-

3However, the results reported in Figure 2 are largely stable
with regard to the relative positions of the profiles to each other,
despite some variation in the absolute values of the predicted
model scores.

jected to the N range of the spectrum by the ranking
model. We argue that this finding sheds light on
the different methodological underpinnings of the
models compared here: Apparently, this profile is
sharing many properties with other non-extremist
profiles, while the classifier still identifies a critical
number of individual features which are taken as
evidence in favour of an extremist profile. From
our perspective, this finding reflects quite well the
observed communicative strategies of the respec-
tive political party. Future work should be invested
to corroborate this hypothesis.

4.3 Feature Analysis

Table 2 shows the impact of the individual feature
groups as described in Section 3.2 in the ranking
model when being used in isolation. In this analy-
sis, Pro/Con features and Social Identity features
are combined into one group (Pattern features).

We observe that all feature groups are effective
to some degree: Emotion features tend to foster
recall; pattern features may provide high precision,
but suffer from low coverage due to their inher-
ent sparsity. However, there is low complemen-
tarity between these feature groups, as the overall
performance of the model (cf. Table 1) is clearly
dominated by the lexical features.4

A preliminary analysis of the individual
contributions of the emotion and pattern features
according to their relative tf·idf weights per class
shows that they are conceptually meaningful
despite being superseded by other lexical features:

4A similar result has been found by Wester et al. (2016)
for threat detection in social media.
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0
-0.10 +0.10

NR

classifier: N

classifier: R

-0.013-0.048 0.014
0.025

member of New Right political party from Germany

0.029

Figure 2: Continuous ranking of differential profiles (cf. Section 4.1). Position on the scale indicates the
ranking score as given in Equation (3), based on optimal parameters k=4 and `=5. The marked data point
is assigned different categories by ranking and classification models (cf. discussion in Section 4.2.2).

Lexical Emotion Pattern
Features Features Features

P R F1 P R F1 P R F1

discrete decoding 0.79 0.85 0.81 0.38 0.62 0.47 1.00 0.08 0.14unbalanced (k=4, `=5)

discrete decoding 0.80 0.62 0.70 0.20 0.38 0.26 0.00 0.00 0.00balanced (k=10, `=10)

discrete decoding 0.69 0.69 0.69 0.48 0.85 0.61 0.63 0.38 0.48balanced (k=1, `=1)

Table 2: Results of analyzing the impact of individual feature groups in the ranking model when being
used in isolation (on test set)

First, higher degrees of emotion in language use
are clearly associated with category R profiles.
Individual emotions most strongly associated
with one of the categories are surprise, trust and
disgust (for right-wing extremists), and love and
sadness (for non-extremist users). Second, the
most highly weighted pattern features for category
R are GEGEN Masseneinwanderung (’mass
immigration’), UNSER Politiker (’politicians’),
UNSER Fahne (’banner’), GEGEN Syrien
(’Syria’) and GEGEN Merkel, whereas
UNSER Land (’country’), GEGEN Rechts
(’Right-wing’), GEGEN Gebietsreform (’territo-
rial reform’), PRO Aufklärung (’information’)
and UNSER Jugendkandidat*innen (’youth
contestants’) are the most indicative patterns of
category N.

5 Conclusions and Outlook

In this paper, we have presented a ranking model
to identify Twitter profiles which display traits or
attitudes of right-wing extremism. Our work is
motivated by the goal of supporting human experts
in their monitoring activities which are currently
carried out purely manually.

Similarly to standard nearest-neighbour classifi-
cation approaches, the model is based on estimat-

ing the relative proximity of an unseen profile to
a limited number of manually annotated groups
of seed profiles in high-dimensional vector space.
We apply this model in the two settings of dis-
crete decoding and continuous ranking. Our evalu-
ation shows a significant advantage of the ranking
model over a binary classification approach (Har-
tung et al., 2017). At the same time, the ranking
model is found to deliver plausible predictions for
a sample of borderline cases which specifically ad-
dress actors from New Right political movements
in Germany, whose categorization as right-wing ex-
tremists is currently debated in the social sciences
(cf. Zick et al., 2016).

The latter finding clearly deserves a more thor-
ough investigation based on a larger sample of
cases, which we would like to address in future
work. Additionally, we aim at developing this
method further into a learning-to-rank approach
in order to enable the comparison of profiles based
on weighted properties. Finally, we propose the
development of features that are based on deeper
methods of natural language analysis in order to
be able to address more fine-grained aspects in the
conceptualization of right-wing extremism.
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Abstract

We present the first shared task on de-
tecting the intensity of emotion felt by
the speaker of a tweet. We create
the first datasets of tweets annotated for
anger, fear, joy, and sadness intensities
using a technique called best–worst scal-
ing (BWS). We show that the annota-
tions lead to reliable fine-grained intensity
scores (rankings of tweets by intensity).
The data was partitioned into training, de-
velopment, and test sets for the compe-
tition. Twenty-two teams participated in
the shared task, with the best system ob-
taining a Pearson correlation of 0.747 with
the gold intensity scores. We summarize
the machine learning setups, resources,
and tools used by the participating teams,
with a focus on the techniques and re-
sources that are particularly useful for the
task. The emotion intensity dataset and the
shared task are helping improve our under-
standing of how we convey more or less
intense emotions through language.

1 Introduction

We use language to communicate not only the
emotion we are feeling but also the intensity of
the emotion. For example, our utterances can con-
vey that we are very angry, slightly sad, absolutely
elated, etc. Here, intensity refers to the degree or
amount of an emotion such as anger or sadness.1

Automatically determining the intensity of emo-
tion felt by the speaker has applications in com-
merce, public health, intelligence gathering, and
social welfare.

1Intensity should not be confused with arousal, which
refers to activation–deactivation dimension—the extent to
which an emotion is calming or exciting.

Twitter has a large and diverse user base
which entails rich textual content, including non-
standard language such as emoticons, emojis, cre-
atively spelled words (happee), and hashtagged
words (#luvumom). Tweets are often used to con-
vey one’s emotion, opinion, and stance (Moham-
mad et al., 2017). Thus, automatically detecting
emotion intensities in tweets is especially bene-
ficial in applications such as tracking brand and
product perception, tracking support for issues and
policies, tracking public health and well-being,
and disaster/crisis management. Here, for the first
time, we present a shared task on automatically
detecting intensity of emotion felt by the speaker
of a tweet: WASSA-2017 Shared Task on Emotion
Intensity.2

Specifically, given a tweet and an emotion X,
the goal is to determine the intensity or degree of
emotion X felt by the speaker—a real-valued score
between 0 and 1.3 A score of 1 means that the
speaker feels the highest amount of emotion X. A
score of 0 means that the speaker feels the low-
est amount of emotion X. We first ask human an-
notators to infer this intensity of emotion from a
tweet. Later, automatic algorithms are tested to
determine the extent to which they can replicate
human annotations. Note that often a tweet does
not explicitly state that the speaker is experienc-
ing a particular emotion, but the intensity of emo-
tion felt by the speaker can be inferred nonethe-
less. Sometimes a tweet is sarcastic or it conveys
the emotions of a different entity, yet the annota-
tors (and automatic algorithms) are to infer, based
on the tweet, the extent to which the speaker is
likely feeling a particular emotion.

2http://saifmohammad.com/WebPages/EmotionIntensity-
SharedTask.html

3Identifying intensity of emotion evoked in the reader, or
intensity of emotion felt by an entity mentioned in the tweet,
are also useful tasks, and left for future work.
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In order to provide labeled training, develop-
ment, and test sets for this shared task, we needed
to annotate instances for degree of affect. This is
a substantially more difficult undertaking than an-
notating only for the broad affect class: respon-
dents are presented with greater cognitive load
and it is particularly hard to ensure consistency
(both across responses by different annotators and
within the responses produced by an individual an-
notator). Thus, we used a technique called Best–
Worst Scaling (BWS), also sometimes referred to
as Maximum Difference Scaling (MaxDiff). It is
an annotation scheme that addresses the limita-
tions of traditional rating scales (Louviere, 1991;
Louviere et al., 2015; Kiritchenko and Moham-
mad, 2016, 2017). We used BWS to create the
Tweet Emotion Intensity Dataset, which currently
includes four sets of tweets annotated for inten-
sity of anger, fear, joy, and sadness, respectively
(Mohammad and Bravo-Marquez, 2017). These
are the first datasets of their kind.

The competition is organized on a CodaLab
website, where participants can upload their sub-
missions, and the leaderboard reports the results.4

Twenty-two teams participated in the 2017 it-
eration of the competition. The best perform-
ing system, Prayas, obtained a Pearson correla-
tion of 0.747 with the gold annotations. Seven
teams obtained scores higher than the score ob-
tained by a competitive SVM-based benchmark
system (0.66), which we had released at the start
of the competition.5 Low-dimensional (dense)
distributed representations of words (word em-
beddings) and sentences (sentence vectors), along
with presence of affect–associated words (derived
from affect lexicons) were the most commonly
used features. Neural network were the most com-
monly used machine learning architecture. They
were used for learning tweet representations as
well as for fitting regression functions. Support
vector machines (SVMs) were the second most
popular regression algorithm. Keras and Tensor-
Flow were some of the most widely used libraries.

The top performing systems used ensembles of
models trained on dense distributed representa-
tions of the tweets as well as features drawn from
affect lexicons. They also made use of a substan-
tially larger number of affect lexicons than sys-
tems that did not perform as well.

4https://competitions.codalab.org/competitions/16380
5https://github.com/felipebravom/AffectiveTweets

The emotion intensity dataset and the corre-
sponding shared task are helping improve our un-
derstanding of how we convey more or less in-
tense emotions through language. The task also
adds a dimensional nature to model of basic emo-
tions, which has traditionally been viewed as cat-
egorical (joy or no joy, fear or no fear, etc.). On
going work with annotations on the same data
for valence , arousal, and dominance aims to bet-
ter understand the relationships between the cir-
cumplex model of emotions (Russell, 2003) and
the categorical model of emotions (Ekman, 1992;
Plutchik, 1980). Even though the 2017 WASSA
shared task has concluded, the CodaLab competi-
tion website is kept open. Thus new and improved
systems can continually be tested. The best results
obtained by any system on the 2017 test set can be
found on the CodaLab leaderboard.

The rest of the paper is organized as follows.
We begin with related work and a brief back-
ground on best–worst scaling (Section 2). In Sec-
tion 3, we describe how we collected and anno-
tated the tweets for emotion intensity. We also
present experiments to determine the quality of
the annotations. Section 4 presents details of the
shared task setup. In Section 5, we present a com-
petitive SVM-based baseline that uses a number of
common text classification features. We describe
ablation experiments to determine the impact of
different feature types on regression performance.
In Section 6, we present the results obtained by
the participating systems and summarize their ma-
chine learning setups. Finally, we present conclu-
sions and future directions. All of the data, annota-
tion questionnaires, evaluation scripts, regression
code, and interactive visualizations of the data are
made freely available on the shared task website.2

2 Related Work

2.1 Emotion Annotation

Psychologists have argued that some emotions are
more basic than others (Ekman, 1992; Plutchik,
1980; Parrot, 2001; Frijda, 1988). However, they
disagree on which emotions (and how many)
should be classified as basic emotions—some pro-
pose 6, some 8, some 20, and so on. Thus, most ef-
forts in automatic emotion detection have focused
on a handful of emotions, especially since manu-
ally annotating text for a large number of emotions
is arduous. Apart from these categorical models of
emotions, certain dimensional models of emotion
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have also been proposed. The most popular among
them, Russell’s circumplex model, asserts that all
emotions are made up of two core dimensions:
valence and arousal (Russell, 2003). We created
datasets for four emotions that are the most com-
mon amongst the many proposals for basic emo-
tions: anger, fear, joy, and sadness. However, we
have also begun work on other affect categories,
as well as on valence and arousal.

The vast majority of emotion annotation work
provides discrete binary labels to the text instances
(joy–nojoy, fear–nofear, and so on) (Alm et al.,
2005; Aman and Szpakowicz, 2007; Brooks et al.,
2013; Neviarouskaya et al., 2009; Bollen et al.,
2009). The only annotation effort that provided
scores for degree of emotion is by Strapparava and
Mihalcea (2007) as part of one of the SemEval-
2007 shared task. Annotators were given newspa-
per headlines and asked to provide scores between
0 and 100 via slide bars in a web interface. It is dif-
ficult for humans to provide direct scores at such
fine granularity. A common problem is inconsis-
tency in annotations. One annotator might assign a
score of 79 to a piece of text, whereas another an-
notator may assign a score of 62 to the same text.
It is also common that the same annotator assigns
different scores to the same text instance at differ-
ent points in time. Further, annotators often have
a bias towards different parts of the scale, known
as scale region bias.

2.2 Best–Worst Scaling

Best–Worst Scaling (BWS) was developed by Lou-
viere (1991), building on some ground-breaking
research in the 1960s in mathematical psychology
and psychophysics by Anthony A. J. Marley and
Duncan Luce. Annotators are given n items (an n-
tuple, where n > 1 and commonly n = 4). They
are asked which item is the best (highest in terms
of the property of interest) and which is the worst
(lowest in terms of the property of interest). When
working on 4-tuples, best–worst annotations are
particularly efficient because each best and worst
annotation will reveal the order of five of the six
item pairs. For example, for a 4-tuple with items
A, B, C, and D, if A is the best, and D is the worst,
then A > B, A > C, A > D, B > D, and C > D.

BWS annotations for a set of 4-tuples can be
easily converted into real-valued scores of associ-
ation between the items and the property of inter-
est (Orme, 2009; Flynn and Marley, 2014). It has

Emotion Thes. Category Head Word
anger 900 resentment
fear 860 fear
joy 836 cheerfulness
sadness 837 dejection

Table 1: Categories from the Roget’s Thesaurus
whose words were taken to be the query terms.

been empirically shown that annotations for 2N
4-tuples is sufficient for obtaining reliable scores
(where N is the number of items) (Louviere, 1991;
Kiritchenko and Mohammad, 2016).6

Kiritchenko and Mohammad (2017) show
through empirical experiments that BWS produces
more reliable fine-grained scores than scores ob-
tained using rating scales. Within the NLP com-
munity, Best–Worst Scaling (BWS) has thus far
been used only to annotate words: for exam-
ple, for creating datasets for relational similar-
ity (Jurgens et al., 2012), word-sense disambigua-
tion (Jurgens, 2013), word–sentiment intensity
(Kiritchenko et al., 2014), and phrase sentiment
composition (Kiritchenko and Mohammad, 2016).
However, we use BWS to annotate whole tweets
for intensity of emotion.

3 Data

Mohammad and Bravo-Marquez (2017) describe
how the Tweet Emotion Intensity Dataset was cre-
ated. We summarize below the approach used
and the key properties of the dataset. Not in-
cluded in this summary are: (a) experiments show-
ing marked similarities between emotion pairs in
terms of how they manifest in language, (b) how
training data for one emotion can be used to im-
prove prediction performance for a different emo-
tion, and (c) an analysis of the impact of hashtag
words on emotion intensities.

For each emotion X, we select 50 to 100 terms
that are associated with that emotion at differ-
ent intensity levels. For example, for the anger
dataset, we use the terms: angry, mad, frustrated,
annoyed, peeved, irritated, miffed, fury, antago-
nism, and so on. For the sadness dataset, we use
the terms: sad, devastated, sullen, down, crying,
dejected, heartbroken, grief, weeping, and so on.
We will refer to these terms as the query terms.

We identified the query words for an emotion

6At its limit, when n = 2, BWS becomes a paired com-
parison (Thurstone, 1927; David, 1963), but then a much
larger set of tuples need to be annotated (closer to N2).
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by first searching the Roget’s Thesaurus to find
categories that had the focus emotion word (or a
close synonym) as the head word.7 The categories
chosen for each head word are shown in Table
1. We chose all single-word entries listed within
these categories to be the query terms for the cor-
responding focus emotion.8 Starting November
22, 2016, and continuing for three weeks, we
polled the Twitter API for tweets that included the
query terms. We discarded retweets (tweets that
start with RT) and tweets with urls. We created a
subset of the remaining tweets by:

• selecting at most 50 tweets per query term.

• selecting at most 1 tweet for every tweeter–
query term combination.

Thus, the master set of tweets is not heavily
skewed towards some tweeters or query terms.

To study the impact of emotion word hashtags
on the intensity of the whole tweet, we identified
tweets that had a query term in hashtag form
towards the end of the tweet—specifically, within
the trailing portion of the tweet made up solely
of hashtagged words. We created copies of these
tweets and then removed the hashtag query terms
from the copies. The updated tweets were then
added to the master set. Finally, our master set of
7,097 tweets includes:

1. Hashtag Query Term Tweets (HQT Tweets):
1030 tweets with a query term in the form
of a hashtag (#<query term>) in the trailing
portion of the tweet;

2. No Query Term Tweets (NQT Tweets):
1030 tweets that are copies of ‘1’, but with the
hashtagged query term removed;

3. Query Term Tweets (QT Tweets):
5037 tweets that include:
a. tweets that contain a query term in the form
of a word (no #<query term>)
b. tweets with a query term in hashtag form
followed by at least one non-hashtag word.

The master set of tweets was then manually an-
notated for intensity of emotion. Table 3 shows a
breakdown by emotion.

7The Roget’s Thesaurus groups words into about 1000
categories, each containing on average about 100 closely re-
lated words. The head word is the word that best represents
the meaning of the words within that category.

8The full list of query terms is available on request.

3.1 Annotating with Best–Worst Scaling

We followed the procedure described in Kir-
itchenko and Mohammad (2016) to obtain BWS
annotations. For each emotion, the annotators
were presented with four tweets at a time (4-
tuples) and asked to select the speakers of the
tweets with the highest and lowest emotion inten-
sity. 2 × N (where N is the number of tweets
in the emotion set) distinct 4-tuples were ran-
domly generated in such a manner that each item
is seen in eight different 4-tuples, and no pair of
items occurs in more than one 4-tuple. We re-
fer to this as random maximum-diversity selection
(RMDS). RMDS maximizes the number of unique
items that each item co-occurs with in the 4-tuples.
After BWS annotations, this in turn leads to di-
rect comparative ranking information for the max-
imum number of pairs of items.9

It is desirable for an item to occur in sets of 4-
tuples such that the the maximum intensities in
those 4-tuples are spread across the range from
low intensity to high intensity, as then the propor-
tion of times an item is chosen as the best is indica-
tive of its intensity score. Similarly, it is desirable
for an item to occur in sets of 4-tuples such that the
minimum intensities are spread from low to high
intensity. However, since the intensities of items
are not known before the annotations, RMDS is
used.

Every 4-tuple was annotated by three indepen-
dent annotators.10 The questionnaires used were
developed through internal discussions and pilot
annotations. (See the Appendix (8.1) for a sample
questionnaire. All questionnaires are also avail-
able on the task website.)

The 4-tuples of tweets were uploaded on the
crowdsourcing platform, CrowdFlower. About
5% of the data was annotated internally before-
hand (by the authors). These questions are referred
to as gold questions. The gold questions are inter-
spersed with other questions. If one gets a gold

9In combinatorial mathematics, balanced incomplete
block design refers to creating blocks (or tuples) of a handful
items from a set of N items such that each item occurs in the
same number of blocks (say x) and each pair of distinct items
occurs in the same number of blocks (say y), where x and y
are integers ge 1 (Yates, 1936). The set of tuples we create
have similar properties, except that since we create only 2N
tuples, pairs of distinct items either never occur together in a
4-tuple or they occur in exactly one 4-tuple.

10Kiritchenko and Mohammad (2016) showed that using
just three annotations per 4-tuple produces highly reliable re-
sults. Note that since each tweet is seen in eight different
4-tuples, we obtain 8× 3 = 24 judgments over each tweet.
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question wrong, they are immediately notified of
it. If one’s accuracy on the gold questions falls be-
low 70%, they are refused further annotation, and
all of their annotations are discarded. This serves
as a mechanism to avoid malicious annotations.11

The BWS responses were translated into scores
by a simple calculation (Orme, 2009; Flynn and
Marley, 2014): For each item t, the score is the
percentage of times the t was chosen as having the
most intensity minus the percentage of times t was
chosen as having the least intensity.12

intensity(t) = %most(t)−%least(t) (1)

Since intensity of emotion is a unipolar scale, we
linearly transformed the the−100 to 100 scores to
scores in the range 0 to 1.

3.2 Reliability of Annotations

A useful measure of quality is reproducibility of
the end result—if repeated independent manual
annotations from multiple respondents result in
similar intensity rankings (and scores), then one
can be confident that the scores capture the true
emotion intensities. To assess this reproducibility,
we calculate average split-half reliability (SHR),
a commonly used approach to determine consis-
tency (Kuder and Richardson, 1937; Cronbach,
1946). The intuition behind SHR is as follows.
All annotations for an item (in our case, tuples)
are randomly split into two halves. Two sets of
scores are produced independently from the two
halves. Then the correlation between the two sets
of scores is calculated. If the annotations are of
good quality, then the correlation between the two
halves will be high.

Since each tuple in this dataset was annotated by
three annotators (odd number), we calculate SHR
by randomly placing one or two annotations per
tuple in one bin and the remaining (two or one)
annotations for the tuple in another bin. Then two
sets of intensity scores (and rankings) are calcu-
lated from the annotations in each of the two bins.

11In case more than one item can be reasonably chosen as
the best (or worst) item, then more than one acceptable gold
answers are provided. The goal with the gold annotations
is to identify clearly poor or malicious annotators. In case
where two items are close in intensity, we want the crowd
of annotators to indicate, through their BWS annotations, the
relative ranking of the items.

12Kiritchenko and Mohammad (2016) provide code
for generating tuples from items using RMDS, as well
as code for generating scores from BWS annotations:
http://saifmohammad.com/WebPages/BestWorst.html

Emotion Spearman Pearson
anger 0.779 0.797
fear 0.845 0.850
joy 0.881 0.882
sadness 0.847 0.847

Table 2: Split-half reliabilities (as measured by
Pearson correlation and Spearman rank correla-
tion) for the anger, fear, joy, and sadness tweets
in the Tweet Emotion Intensity Dataset.

The process is repeated 100 times and the correla-
tions across the two sets of rankings and intensity
scores are averaged. Table 2 shows the split-half
reliabilities for the anger, fear, joy, and sadness
tweets in the Tweet Emotion Intensity Dataset.13

Observe that for fear, joy, and sadness datasets,
both the Pearson correlations and the Spearman
rank correlations lie between 0.84 and 0.88, indi-
cating a high degree of reproducibility. However,
the correlations are slightly lower for anger indi-
cating that it is relative more difficult to ascertain
the degrees of anger of speakers from their tweets.
Note that SHR indicates the quality of annotations
obtained when using only half the number of an-
notations. The correlations obtained when repeat-
ing the experiment with three annotations for each
4-tuple is expected to be even higher. Thus the
numbers shown in Table 2 are a lower bound on
the quality of annotations obtained with three an-
notations per 4-tuple.

4 Task Setup

4.1 The Task

Given a tweet and an emotion X, automatic sys-
tems have to determine the intensity or degree of
emotion X felt by the speaker—a real-valued score
between 0 and 1. A score of 1 means that the
speaker feels the highest amount of emotion X. A
score of 0 means that the speaker feels the low-
est amount of emotion X. The competition is or-
ganized on a CodaLab website, where participants
can upload their submissions, and the leaderboard
reports the results.14

13Past work has found the SHR for sentiment intensity an-
notations for words, with 8 annotations per tuple, to be 0.98
(Kiritchenko et al., 2014). In contrast, here SHR is calculated
from 3 annotations, for emotions, and from whole sentences.
SHR determined from a smaller number of annotations and
on more complex annotation tasks are expected to be lower.

14https://competitions.codalab.org/competitions/16380
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Emotion Train Dev. Test All
anger 857 84 760 1701
fear 1147 110 995 2252
joy 823 74 714 1611
sadness 786 74 673 1533
All 3613 342 3142 7097

Table 3: The number of instances in the Tweet
Emotion Intensity dataset.

4.2 Training, development, and test sets

The Tweet Emotion Intensity Dataset is partitioned
into training, development, and test sets for ma-
chine learning experiments (see Table 3). For each
emotion, we chose to include about 50% of the
tweets in the training set, about 5% in the develop-
ment set, and about 45% in the test set. Further, we
ensured that an No-Query-Term (NQT) tweet is
in the same partition as the Hashtag-Query-Term
(HQT) tweet it was created from.

The training and development sets were made
available more than two months before the two-
week official evaluation period. Participants were
told that the development set could be used to tune
ones system and also to test making a submission
on CodaLab. Gold intensity scores for the devel-
opment set were released two weeks before the
evaluation period, and participants were free to
train their systems on the combined training and
development sets, and apply this model to the test
set. The test set was released at the start of the
evaluation period.

4.3 Resources

Participants were free to use lists of manu-
ally created and/or automatically generated word–
emotion and word–sentiment association lexi-
cons.15 Participants were free to build a system
from scratch or use any available software pack-
ages and resources, as long as they are not against
the spirit of fair competition. In order to assist
testing of ideas, we also provided a baseline Weka
system for determining emotion intensity, that par-
ticipants can build on directly or use to determine
the usefulness of different features.16 We describe
the baseline system in the next section.

15A large number of sentiment and emo-
tion lexicons created at NRC are available here:
http://saifmohammad.com/WebPages/lexicons.html

16https://github.com/felipebravom/AffectiveTweets

4.4 Official Submission to the Shared Task

System submissions were required to have the
same format as used in the training and test sets.
Each line in the file should include:
id[tab]tweet[tab]emotion[tab]score

Each team was allowed to make as many as ten
submissions during the evaluation period. How-
ever, they were told in advance that only the fi-
nal submission would be considered as the official
submission to the competition.

Once the evaluation period concluded, we re-
leased the gold labels and participants were able to
determine results on various system variants that
they may have developed. We encouraged par-
ticipants to report results on all of their systems
(or system variants) in the system-description pa-
per that they write. However, they were asked to
clearly indicate the result of their official submis-
sion.

During the evaluation period, the CodaLab
leaderboard was hidden from participants—so
they were unable see the results of their submis-
sions on the test set until the leaderboard was sub-
sequently made public. Participants were, how-
ever, able to immediately see any warnings or er-
rors that their submission may have triggered.

4.5 Evaluation

For each emotion, systems were evaluated by cal-
culating the Pearson Correlation Coefficient of the
system predictions with the gold ratings. Pearson
coefficient, which measures linear correlations be-
tween two variables, produces scores from -1 (per-
fectly inversely correlated) to 1 (perfectly corre-
lated). A score of 0 indicates no correlation. The
correlation scores across all four emotions was av-
eraged to determine the bottom-line competition
metric by which the submissions were ranked.

In addition to the bottom-line competition met-
ric described above, the following additional met-
rics were also provided:

• Spearman Rank Coefficient of the submission
with the gold scores of the test data.
Motivation: Spearman Rank Coefficient consid-
ers only how similar the two sets of ranking
are. The differences in scores between adja-
cently ranked instance pairs is ignored. On the
one hand this has been argued to alleviate some
biases in Pearson, but on the other hand it can
ignore relevant information.
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• Correlation scores (Pearson and Spearman) over
a subset of the testset formed by taking in-
stances with gold intensity scores ≥ 0.5.
Motivation: In some applications, only those
instances that are moderately or strongly emo-
tional are relevant. Here it may be much more
important for a system to correctly determine
emotion intensities of instances in the higher
range of the scale as compared to correctly de-
termine emotion intensities in the lower range
of the scale.

Results with Spearman rank coefficient were
largely inline with those obtained using Pearson
coefficient, and so in the rest of the paper we report
only the latter. However, the CodaLab leaderboard
and the official results posted on the task website
show both metrics. The official evaluation script
(which calculates correlations using both metrics
and also acts as a format checker) was made avail-
able along with the training and development data
well in advance. Participants were able to use
it to monitor progress of their system by cross-
validation on the training set or testing on the de-
velopment set. The script was also uploaded on
the CodaLab competition website so that the sys-
tem evaluates submissions automatically and up-
dates the leaderboard.

5 Baseline System for Automatically
Determining Tweet Emotion Intensity

5.1 System

We implemented a package called Affec-
tiveTweets (Mohammad and Bravo-Marquez,
2017) for the Weka machine learning workbench
(Hall et al., 2009). It provides a collection of
filters for extracting features from tweets for
sentiment classification and other related tasks.
These include features used in Kiritchenko et al.
(2014) and Mohammad et al. (2017).17 We use
the AffectiveTweets package for calculating fea-
ture vectors from our emotion-intensity-labeled
tweets and train Weka regression models on this
transformed data. The regression model used is
an L2-regularized L2-loss SVM regression model
with the regularization parameter C set to 1,

17Kiritchenko et al. (2014) describes the NRC-Canada
system which ranked first in three sentiment shared tasks:
SemEval-2013 Task 2, SemEval-2014 Task 9, and SemEval-
2014 Task 4. Mohammad et al. (2017) describes a stance-
detection system that outperformed submissions from all 19
teams that participated in SemEval-2016 Task 6.

implemented in LIBLINEAR18. The system uses
the following features:19

a. Word N-grams (WN): presence or absence of
word n-grams from n = 1 to n = 4.
b. Character N-grams (CN): presence or absence
of character n-grams from n = 3 to n = 5.
c. Word Embeddings (WE): an average of the
word embeddings of all the words in a tweet. We
calculate individual word embeddings using the
negative sampling skip-gram model implemented
in Word2Vec (Mikolov et al., 2013). Word vectors
are trained from ten million English tweets taken
from the Edinburgh Twitter Corpus (Petrović
et al., 2010). We set Word2Vec parameters:
window size: 5; number of dimensions: 400.20

d. Affect Lexicons (L): we use the lexicons shown
in Table 4 by aggregating the information for all
the words in a tweet. If the lexicon provides nom-
inal association labels (e.g, positive, anger, etc.),
then the number of words in the tweet matching
each class are counted. If the lexicon provides nu-
merical scores, the individual scores for each class
are summed. and whether the affective associa-
tions provided are nominal or numeric.

5.2 Experiments

We developed the baseline system by learning
models from each of the Tweet Emotion Intensity
Dataset training sets and applying them to the cor-
responding development sets. Once the system
parameters were frozen, the system learned new
models from the combined training and develop-
ment corpora. This model was applied to the test
sets. Table 5 shows the results obtained on the
test sets using various features, individually and
in combination. The last column ‘avg.’ shows
the macro-average of the correlations for all of the
emotions.

Using just character or just word n-grams leads
to results around 0.48, suggesting that they are rea-
sonably good indicators of emotion intensity by
themselves. (Guessing the intensity scores at ran-
dom between 0 and 1 is expected to get correla-
tions close to 0.) Word embeddings produces sta-
tistically significant improvement over the ngrams
(avg. r = 0.55).21 Using features drawn from af-

18http://www.csie.ntu.edu.tw/∼cjlin/liblinear/
19See Appendix (A.3) for further implementation details.
20Optimized for the task of word–emotion classification on

an independent dataset (Bravo-Marquez et al., 2016).
21We used the Wilcoxon signed-rank test at 0.05 signifi-

cance level calculated from ten random partitions of the data,
for all the significance tests reported in this paper.
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Twitter Annotation Scope Label
AFINN (Nielsen, 2011) Yes Manual Sentiment Numeric
BingLiu (Hu and Liu, 2004) No Manual Sentiment Nominal
MPQA (Wilson et al., 2005) No Manual Sentiment Nominal
NRC Affect Intensity Lexicon (NRC-Aff-Int) (Mohammad, 2017) Yes Manual Emotions Numeric
NRC Word-Emotion Assn. Lexicon (NRC-EmoLex) (Mohammad and Turney, 2013) No Manual Emotions Nominal
NRC10 Expanded (NRC10E) (Bravo-Marquez et al., 2016) Yes Automatic Emotions Numeric
NRC Hashtag Emotion Association Lexicon (NRC-Hash-Emo) Yes Automatic Emotions Numeric

(Mohammad, 2012a; Mohammad and Kiritchenko, 2015)
NRC Hashtag Sentiment Lexicon (NRC-Hash-Sent) (Mohammad et al., 2013) Yes Automatic Sentiment Numeric
Sentiment140 (Mohammad et al., 2013) Yes Automatic Sentiment Numeric
SentiWordNet (Esuli and Sebastiani, 2006) No Automatic Sentiment Numeric
SentiStrength (Thelwall et al., 2012) Yes Manual Sentiment Numeric

Table 4: Affect lexicons used in our experiments.

fect lexicons produces results ranging from avg.
r = 0.19 with SentiWordNet to avg. r = 0.53
with NRC-Hash-Emo. Combining all the lexicons
leads to statistically significant improvement over
individual lexicons (avg. r = 0.63). Combining
the different kinds of features leads to even higher
scores, with the best overall result obtained us-
ing word embedding and lexicon features (avg. r
= 0.66).22 The feature space formed by all the
lexicons together is the strongest single feature
category. The results also show that some fea-
tures such as character ngrams are redundant in
the presence of certain other features.

Among the lexicons, NRC-Hash-Emo is the
most predictive single lexicon. Lexicons that in-
clude Twitter-specific entries, lexicons that in-
clude intensity scores, and lexicons that label
emotions and not just sentiment, tend to be
more predictive on this task–dataset combination.
NRC-Aff-Int has real-valued fine-grained word–
emotion association scores for all the words in
NRC-EmoLex that were marked as being associ-
ated with anger, fear, joy, and sadness.23 Improve-
ment in scores obtained using NRC-Aff-Int over
the scores obtained using NRC-EmoLex also show
that using fine intensity scores of word-emotion
association are beneficial for tweet-level emotion
intensity detection. The correlations for anger,
fear, and joy are similar (around 0.65), but the cor-
relation for sadness is markedly higher (0.71). We
can observe from Table 5 that this boost in perfor-
mance for sadness is to some extent due to word
embeddings, but is more so due to lexicon fea-
tures, especially those from SentiStrength. Sen-
tiStrength focuses solely on positive and negative
classes, but provides numeric scores for each.

To assess performance in the moderate-to-high
range of the intensity scale, we calculated correla-

22The increase from 0.63 to 0.66 is statistically significant.
23http://saifmohammad.com/WebPages/AffectIntensity.htm

Pearson correlation r
anger fear joy sad. avg.

Individual feature sets
word ngrams (WN) 0.42 0.49 0.52 0.49 0.48
char. ngrams (CN) 0.50 0.48 0.45 0.49 0.48
word embeds. (WE) 0.48 0.54 0.57 0.60 0.55
all lexicons (L) 0.62 0.60 0.60 0.68 0.63
Individual Lexicons

AFINN 0.48 0.27 0.40 0.28 0.36
BingLiu 0.33 0.31 0.37 0.23 0.31
MPQA 0.18 0.20 0.28 0.12 0.20
NRC-Aff-Int 0.24 0.28 0.37 0.32 0.30
NRC-EmoLex 0.18 0.26 0.36 0.23 0.26
NRC10E 0.35 0.34 0.43 0.37 0.37
NRC-Hash-Emo 0.55 0.55 0.46 0.54 0.53
NRC-Hash-Sent 0.33 0.24 0.41 0.39 0.34
Sentiment140 0.33 0.41 0.40 0.48 0.41
SentiWordNet 0.14 0.19 0.26 0.16 0.19
SentiStrength 0.43 0.34 0.46 0.61 0.46

Combinations
WN + CN + WE 0.50 0.48 0.45 0.49 0.48
WN + CN + L 0.61 0.61 0.61 0.63 0.61
WE + L 0.64 0.63 0.65 0.71 0.66
WN + WE + L 0.63 0.65 0.65 0.65 0.65
CN + WE + L 0.61 0.61 0.62 0.63 0.62
WN + CN + WE + L 0.61 0.61 0.61 0.63 0.62

Over the subset of test set where intensity ≥ 0.5
WN + WE + L 0.51 0.51 0.40 0.49 0.47

Table 5: Pearson correlations (r) of emotion inten-
sity predictions with gold scores. Best results for
each column are shown in bold: highest score by
a feature set, highest score using a single lexicon,
and highest score using feature set combinations.

tion scores over a subset of the test data formed by
taking only those instances with gold emotion in-
tensity scores≥ 0.5. The last row in Table 5 shows
the results. We observe that the correlation scores
are in general lower here in the 0.5 to 1 range of
intensity scores than in the experiments over the
full intensity range. This is simply because this is
a harder task as now the systems do not benefit by
making coarse distinctions over whether a tweet is
in the lower range or in the higher range.
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6 Official System Submissions to the
Shared Task

Twenty-two teams made submissions to the shared
task. In the subsections below we present the re-
sults and summarize the approaches and resources
used by the participating systems.

6.1 Results

Table 6 shows the Pearson correlations (r) and
ranks (in brackets) obtained by the systems on the
full test sets. The bottom-line competition met-
ric, ‘r avg.’, is the average of Pearson correlations
obtained for each of the four emotions. (The task
website shows Spearman rank coefficient as well.
Those scores are close in value to the Pearson cor-
relations, and most teams rank the same by either
metric.) The top ranking system, Prayas, obtained
an r avg. of 0.747. It obtains slightly better cor-
relations for joy and anger (around 0.76) than for
fear and sadness (around 0.73). IMS, which ranked
second overall, obtained slightly higher correla-
tion on anger, but lower scores than Prayas on the
other emotions. The top 12 teams all obtain their
best correlation on anger as opposed to any of the
other three emotions. They obtain lowest correla-
tions on fear and sadness. Seven teams obtained
scores higher than that obtained by the publicly
available benchmark system (r avg. = 0.66).

Table 7 shows the Pearson correlations (r) and
ranks (in brackets) obtained by the systems on
those instances in the test set with intensity scores
≥ 0.5. Prayas obtains the best results here too
with r avg. = 0.571. SeerNet, which ranked third
on the full test set, ranks second on this subset. As
found in the baseline results, system results on this
subset overall are lower than than on the full test
set. Most systems perform best on the joy data and
worst on the sadness data.

6.2 Machine Learning Setups

Systems followed a supervised learning approach
in which tweets were mapped into feature vectors
that were then used for training regression models.

Features were drawn both from the training
data as well as from external resources such as
large tweet corpora and affect lexicons. Table
8 lists the feature types (resources) used by the
teams. (To save space, team names are abbre-
viated to just their rank on the full test set (as
shown in Table 6).) Commonly used features
included word embeddings and sentence repre-

sentations learned using neural networks (sen-
tence embeddings). Some of the word embed-
dings models used were Glove (SeerNet, UWa-
terloo, YZU NLP), Word2Vec (SeerNet), and
Word Vector Emoji Vectors (SeerNet). The mod-
els used for learning sentence embeddings in-
cluded LSTM (Prayas, IITP), CNN (SGNLP),
LSTM–CNN combinations (IMS, YMU-HPCC),
bi-directional versions (YZU NLP), and aug-
mented LSTMs models with attention layers (To-
dai). High-dimensional sparse representations
such as word n-grams or character n-grams were
rarely used. Affect lexicons were also widely
used, especially by the top eight teams. Some
teams built their own affect lexicons from addi-
tional data (IMS, XRCE).

The regression algorithms applied to the fea-
ture vectors included SVM regression or SVR
(IITP, Code Wizards, NUIG, H.Niemstov), Neural
Networks (Todai, YZU NLP, SGNLP), Random
Forest (IMS, SeerNet, XRCE), Gradient Boosting
(UWaterLoo, PLN PUCRS), AdaBoost (SeerNet),
and Least Square Regression (UWaterloo). Ta-
ble 9 provides the full list.

Some teams followed a popular deep learn-
ing trend wherein the feature representation and
the prediction model are trained in conjunction.
In those systems, the regression algorithm corre-
sponds to the output layer of the neural network
(YZU NLP, SGNLP, Todai).

Many libraries and tools were used for imple-
menting the systems. The high-level neural net-
works API library Keras was the most widely used
off-the-shelf package. It is written in Python and
runs on top of either TensorFlow or Theano. Ten-
sorFlow and Sci-kit learn were also popular (also
Python libraries).24 Our AffectiveTweets Weka
baseline package was used by five participating
teams, including the teams that ranked first, sec-
ond, and third. The full list of tools and libraries
used by the teams is shown in Table 10.

In the subsections below, we briefly summa-
rize the three top-ranking systems. The Ap-
pendix (8.3) provides participant-provided sum-
maries about each system. See system description
papers for detailed descriptions.

24TensorFlow provides implementations of a number of
machine learning algorithms, including deep learning ones
such as CNNs and LSTMs.
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Team Name r avg. (rank) r fear (rank) r joy (rank) r sadness (rank) r anger (rank)
1. Prayas 0.747 (1) 0.732 (1) 0.762 (1) 0.732 (1) 0.765 (2)
2. IMS 0.722 (2) 0.705 (2) 0.726 (2) 0.690 (4) 0.767 (1)
3. SeerNet 0.708 (3) 0.676 (4) 0.698 (6) 0.715 (2) 0.745 (3)
4. UWaterloo 0.685 (4) 0.643 (8) 0.699 (5) 0.693 (3) 0.703 (7)
5. IITP 0.682 (5) 0.649 (7) 0.713 (4) 0.657 (7) 0.709 (5)
6. YZU NLP 0.677 (6) 0.666 (5) 0.677 (8) 0.658 (6) 0.709 (5)
7. YNU-HPCC 0.671 (7) 0.661 (6) 0.697 (7) 0.599 (9) 0.729 (4)
8. TextMining 0.649 (8) 0.604 (10) 0.663 (9) 0.660 (5) 0.668 (10)
9. XRCE 0.638 (9) 0.629 (9) 0.657 (10) 0.594 (10) 0.672 (9)
10. LIPN 0.619 (10) 0.58 (11) 0.639 (11) 0.583 (11) 0.676 (8)
11. DMGroup 0.571 (11) 0.55 (12) 0.576 (12) 0.556 (12) 0.603 (11)
12. Code Wizards 0.527 (12) 0.465 (16) 0.534 (15) 0.532 (14) 0.578 (13)
13. Todai 0.522 (13) 0.470 (15) 0.561 (13) 0.537 (13) 0.520 (16)
14. SGNLP 0.494 (14) 0.486 (14) 0.512 (16) 0.429 (18) 0.550 (14)
15. NUIG 0.494 (14) 0.680 (3) 0.717 (3) 0.625 (8) -0.047 (21)
16. PLN PUCRS 0.483 (16) 0.508 (13) 0.460 (19) 0.425 (19) 0.541 (15)
17. H.Niemtsov 0.468 (17) 0.412 (17) 0.511 (17) 0.437 (17) 0.513 (17)
18. Tecnolengua 0.442 (18) 0.373 (18) 0.488 (18) 0.439 (16) 0.469 (18)
19. GradAscent 0.426 (19) 0.356 (19) 0.543 (14) 0.226 (20) 0.579 (12)
20. SHEF/CNN 0.291 (20) 0.277 (20) 0.109 (20) 0.517 (15) 0.259 (19)
21. deepCybErNet 0.076 (21) 0.176 (21) 0.023 (21) -0.019 (21) 0.124 (20)
Late submission
∗ SiTAKA 0.631 0.626 0.619 0.593 0.685

Table 6: Official Competition Metric: Pearson correlations (r) and ranks (in brackets) obtained by the
systems on the full test sets. The bottom-line competition metric, ‘r avg.’, is the average of Pearson
correlations obtained for each of the four emotions.

Team Name r avg. (rank) r fear (rank) r joy (rank) r sadness (rank) r anger (rank)
1. Prayas 0.571 (1) 0.605 (1) 0.621 (1) 0.500 (2) 0.557 (2)
3. SeerNet 0.547 (2) 0.529 (5) 0.551 (7) 0.551 (1) 0.556 (3)
4. UWaterloo 0.520 (3) 0.499 (9) 0.562 (4) 0.480 (3) 0.538 (4)
6. YZU NLP 0.516 (4) 0.544 (3) 0.552 (5) 0.471 (5) 0.495 (7)
2. IMS 0.514 (5) 0.519 (7) 0.552 (5) 0.415 (7) 0.570 (1)
5. IITP 0.505 (6) 0.525 (6) 0.575 (2) 0.406 (8) 0.513 (6)
7. YNU-HPCC 0.500 (7) 0.530 (4) 0.540 (8) 0.406 (8) 0.526 (5)
8. TextMining 0.486 (8) 0.480 (10) 0.513 (9) 0.472 (4) 0.477 (9)
9. XRCE 0.450 (9) 0.506 (8) 0.507 (10) 0.357 (14) 0.430 (12)
10. LIPN 0.446 (10) 0.435 (12) 0.496 (11) 0.366 (12) 0.489 (8)
11. DMGroup 0.432 (11) 0.456 (11) 0.483 (13) 0.329 (16) 0.462 (10)
15. NUIG 0.390 (12) 0.567 (2) 0.566 (3) 0.426 (6) 0.003 (21)
13. Todai 0.387 (13) 0.350 (15) 0.484 (12) 0.362 (13) 0.351 (17)
12. Code Wizards 0.380 (14) 0.344 (16) 0.422 (16) 0.318 (17) 0.437 (11)
14. SGNLP 0.373 (15) 0.386 (13) 0.390 (17) 0.330 (15) 0.387 (16)
19. GradAscent 0.367 (16) 0.245 (19) 0.457 (14) 0.376 (11) 0.392 (15)
17. H.Niemtsov 0.347 (17) 0.275 (17) 0.441 (15) 0.242 (18) 0.428 (13)
16. PLN PUCRS 0.313 (18) 0.361 (14) 0.315 (18) 0.155 (19) 0.424 (14)
20. SHEF/CNN 0.220 (19) 0.188 (21) 0.095 (20) 0.396 (10) 0.202 (20)
18. Tecnolengua 0.209 (20) 0.247 (18) 0.224 (19) 0.061 (20) 0.305 (18)
21. deepCybErNet 0.140 (21) 0.190 (20) 0.077 (21) 0.057 (21) 0.235 (19)
Late submission
∗ SiTAKA 0.484 0.496 0.46 0.465 0.513

Table 7: Pearson correlations (r) and ranks (in brackets) obtained by the systems on a subset of the test
set where gold scores ≥ 0.5
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Team
Features 1 2 3 4 5 6 7 8 9 ∗ 10 11 12 13 14 15 16 17 18 19 20 21
N-grams X X

CN X
WN X X X

Word Embeddings X X X X X X X X X X X X X X
Glove X X X X X X X X X X
Emoji Vectors X X
Word2Vec X X X X
Other X X X

Sentence Embeddings
CNN X X X X X X X X X
LSTM X X X X X X X X X
Other X X X X

Affective Lexicons X X X X X X X X X X X X
AFINN X X X X X
ANEW X
BingLiu X X X X X X
Happy Ratings X
Lingmotif X
LIWC X
MPQA X X X X X
NRC-Aff-Int X X X X
NRC-EmoLex X X X X X X X
NRC-Emoticon-Lex X X X X X
NRC-Hash-Emo X X X X X X X
NRC-Hash-Sent X X X X X
NRC-Hashtag-Sent. X X X
NRC10E X X X X
Sentiment140 X X X X X
SentiStrength X X X
SentiWordNet X X X X X X
Vader X
Word.Affect X
In-house lexicon X X X

Linguistic Features X
Dependency Parser X

Table 8: Feature types (resources) used by the participating systems. Teams are indicated by their rank.

Team
Regression 1 2 3 4 5 6 7 8 9 ∗ 10 11 12 13 14 15 16 17 18 19 20 21
AdaBoost X
Gradient Boosting X X X
Linear Regression X
Logistic Regression X X
Neural Network X X X X X X X X X X X
Random Forest X X X
SVM or SVR X X X X X X X X
Ensemble X X X X X

Table 9: Regression methods used by the participating systems. Teams are indicated by their rank.

Team
Tools 1 2 3 4 5 6 7 8 9 ∗ 10 11 12 13 14 15 16 17 18 19 20 21
AffectiveTweets-Weka X X X X X
Gensim X X
Glove X X X X X
Keras X X X X X X X X X X X
LIBSVM X
NLTK X X
Pandas X X X
PyTorch X
Sci-kit learn X X X X X X X
TensorFlow X X X X X X
Theano X X X
TweetNLP X
TweeboParser X
Tweetokenize X
Word2Vec X X X X
XGBoost X X

Table 10: Tools and libraries used by the participating systems. Teams are indicated by their rank.
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6.3 Prayas: Rank 1

The best performing system, Prayas, used an en-
semble of three different models: The first is a
feed-forward neural network whose input vector is
formed by concatenating the average word embed-
ding vector with the lexicon features vector pro-
vided by the AffectiveTweets package (Moham-
mad and Bravo-Marquez, 2017). These embed-
dings were trained on a collection of 400 million
tweets (Godin et al., 2015). The network has four
hidden layers and uses rectified linear units as ac-
tivation functions. Dropout is used a regulariza-
tion mechanisms and the output layer consists of
a sigmoid neuron. The second model treats the
problem as a multi-task learning problem with the
labeling of the four emotion intensities as the four
sub-tasks. Authors use the same neural network
architecture as in the first model, but the weights
of the first two network layers are shared across
the four subtasks. The weights of the last two lay-
ers are independently optimized for each subtask.
In the third model, the word embeddings of the
words in a tweet are concatenated and fed into
a deep learning architecture formed by LSTM,
CNN, max pooling, fully connected layers. Sev-
eral architectures based on these layers are ex-
plored. The final predictions are made by com-
bining the first two models with three variations
of the third model into an ensemble. A weighted
average of the individual predictions is calculated
using cross-validated performances as the relative
weights. Experimental results show that the en-
semble improves the performance of each individ-
ual model by at least two percentage points.

6.4 IMS: Rank 2

IMS applies a random forest regression model to a
representation formed by concatenating three vec-
tors: 1. a feature vector drawn from existing af-
fect lexicons, 2. a feature vector drawn from ex-
panded affect lexicons, and 3. the output of a
neural network. The first vector is obtained using
the lexicons implemented in the AffectiveTweets
package. The second is based on an extended
lexicons built from feed-forward neural networks
trained on word embeddings. The gold training
words are taken from existing affective norms and
emotion lexicons: NRC Hashtag Emotion Lex-
icon (Mohammad, 2012b; Mohammad and Kir-
itchenko, 2015), affective norms from Warriner
et al. (2013), Brysbaert et al. (2014), and ratings

for happiness from Dodds et al. (2011). The third
vector is taken from the output of neural network
that combines CNN and LSTM layers.

6.5 SeerNet: Rank 3

SeerNet creates an ensemble of various regres-
sion algorithms (e.g, SVR, AdaBoost, random for-
est, gradient boosting). Each regression model
is trained on a representation formed by the af-
fect lexicon features (including those provided by
AffectiveTweets) and word embeddings. Authors
also experiment with different word embeddings
models: Glove, Word2Vec, and Emoji embed-
dings (Eisner et al., 2016).

7 Conclusions

We conducted the first shared task on detecting
the intensity of emotion felt by the speaker of a
tweet. We created the emotion intensity dataset
using best–worst scaling and crowdsourcing. We
created a benchmark regression system and con-
ducted experiments to show that affect lexicons,
especially those with fine word–emotion associa-
tion scores, are useful in determining emotion in-
tensity.

Twenty-two teams participated in the shared
task, with the best system obtaining a Pearson cor-
relation of 0.747 with the gold annotations on the
test set. As in many other machine learning com-
petitions, the top ranking systems used ensem-
bles of multiple models (Prayas-rank1, SeerNet-
rank3). IMS, which ranked second, used random
forests, which are ensembles of multiple decision
trees. The top eight systems also made use of a
substantially larger number of affect lexicons to
generate features than systems that did not per-
form as well. It is interesting to note that despite
using deep learning techniques, training data, and
large amounts of unlabeled data, the best systems
are finding it beneficial to include features drawn
from affect lexicons.

We have begun work on creating emotion inten-
sity datasets for other emotion categories beyond
anger, fear, sadness, and joy. We are also creating
a dataset annotated for valence, arousal, and domi-
nance. These annotations will be done for English,
Spanish, and Arabic tweets. The datasets will be
used in the upcoming SemEval-2018 Task #1: Af-
fect in Tweets (Mohammad et al., 2018).25

25http://alt.qcri.org/semeval2018/
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8 Appendix

8.1 Best–Worst Scaling Questionnaire used
to Obtain Emotion Intensity Scores

The BWS questionnaire used for obtaining fear
annotations is shown below.

Degree Of Fear In English Language Tweets
The scale of fear can range from not fearful at all
(zero amount of fear) to extremely fearful. One
can often infer the degree of fear felt or expressed
by a person from what they say. The goal of this
task is to determine this degree of fear. Since it is
hard to give a numerical score indicating the de-
gree of fear, we will give you four different tweets
and ask you to indicate to us:

• Which of the four speakers is likely to be the
MOST fearful, and

• Which of the four speakers is likely to be the
LEAST fearful.

Important Notes

• This task is about fear levels of the speaker (and
not about the fear of someone else mentioned
or spoken to).

• If the answer could be either one of two or
more speakers (i.e., they are likely to be equally
fearful), then select any one of them as the
answer.

• Most importantly, try not to over-think the
answer. Let your instinct guide you.

EXAMPLE

Speaker 1: Don’t post my picture on FB #grrr
Speaker 2: If the teachers are this incompetent, I
am afraid what the results will be.
Speaker 3: Results of medical test today #terrified
Speaker 4: Having to speak in front of so many
people is making me nervous.

Q1. Which of the four speakers is likely to be the
MOST fearful?
– Multiple choice options: Speaker 1, 2, 3, 4 –
Ans: Speaker 3

Q2. Which of the four speakers is likely to be the
LEAST fearful?
– Multiple choice options: Speaker 1, 2, 3, 4 –
Ans: Speaker 1

The questionnaires for other emotions are similar
in structure. In a post-annotation survey, the re-
spondents gave the task high scores for clarity of
instruction (4.2/5) despite noting that the task it-
self requires some non-trivial amount of thought
(3.5 out of 5 on ease of task).

8.2 An Interactive Visualization to Explore
the Tweet Emotion Intensity Dataset

We created an interactive visualization to allow
ease of exploration of the Tweet Emotion Intensity
Dataset. This visualization was made public after
the the official evaluation period had concluded –
so participants in the shared task did not have ac-
cess to it when building their system. It is worth
noting that if one intends to evaluate their emotion
intensity detection system on the Tweet Emotion
Intensity Dataset, then as a matter of commonly-
followed best practices, they should not use the vi-
sualization to explore the test data in the system
development phase (until all the system parame-
ters are frozen).

The visualization has three main components:

1. Tables showing the percentage of instances in
each of the emotion partitions (train, dev, test).
Hovering over a row shows the corresponding
number of instances. Clicking on an emotion
filters out data from all other emotions, in all
visualization components. Similarly, one can
click on just the train, dev, or test partitions to
view information just for that data. Clicking
again deselects the item.

2. A histogram of emotion intensity scores. A
slider that one can use to view only those
tweets within a certain score range.

3. The list of tweets, emotion label, and emotion
intensity scores.

Notably, the three components are interconnected,
such that clicking on an item in one component
will filter information in all other components to
show only the relevant details. For example, click-
ing on ‘joy’ in ‘a’ will cause ‘b’ to show the his-
togram for only the joy tweets, and ‘c’ to show
only the ‘joy’ tweets. Similarly one can click on
the test/dev/train set, a particular band of emotion
intensity scores, or a particular tweet. Clicking
again deselects the item. One can use filters in
combination. For e.g., clicking on fear, test data,
and setting the slider for the 0.5 to 1 range, shows
information for only those fear–testdata instances
with scores ≥ 0.5.
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Figure 1: Screenshot of the interactive visualization to explore the Tweet Emotion Intensity Dataset.
Available at: http://saifmohammad.com/WebPages/EmotionIntensity-SharedTask.html

8.3 AffectiveTweets Weka Package:
Implementation Details

AffectiveTweets includes five filters for convert-
ing tweets into feature vectors that can be fed
into the large collection of machine learning al-
gorithms implemented within Weka. The package
is installed using the WekaPackageManager and
can be used from the Weka GUI or the command
line interface. It uses the TweetNLP library (Gim-
pel et al., 2011) for tokenization and POS tagging.
The filters are described as follows.

• TweetToSparseFeatureVector filter: calculates
the following sparse features: word n-grams
(adding a NEG prefix to words occurring in
negated contexts), character n-grams (CN), POS
tags, and Brown word clusters.26

• TweetToLexiconFeatureVector filter: calculates
features from a fixed list of affective lexicons.
26The scope of negation was determined by a simple

heuristic: from the occurrence of a negator word up until a
punctuation mark or end of sentence. We used a list of 28
negator words such as no, not, won’t and never.

• TweetToInputLexiconFeatureVector: calculates
features from any lexicon. The input lexicon
can have multiple numeric or nominal word–
affect associations. This filter allows users to
experiment with their own lexicons.

• TweetToSentiStrengthFeatureVector filter: cal-
culates positive and negative sentiment intensi-
ties for a tweet using the SentiStrength lexicon-
based method (Thelwall et al., 2012)

• TweetToEmbeddingsFeatureVector filter: calcu-
lates a tweet-level feature representation us-
ing pre-trained word embeddings supporting
the following aggregation schemes: average of
word embeddings; addition of word embed-
dings; and concatenation of the first k word em-
beddings in the tweet. The package also pro-
vides Word2Vec’s pre-trained word.27

Once the feature vectors are created, one can use
any of the Weka regression or classification algo-
rithms. Additional filters are under development.

27https://code.google.com/archive/p/word2vec/
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Abstract

Our submission to the WASSA-2017
shared task on the prediction of emotion
intensity in tweets is a supervised learning
method with extended lexicons of affective
norms. We combine three main informa-
tion sources in a random forrest regressor,
namely (1), manually created resources,
(2) automatically extended lexicons,
and (3) the output of a neural network
(CNN-LSTM) for sentence regression. All
three feature sets perform similarly well
in isolation (≈ .67 macro average Pearson
correlation). The combination achieves
.72 on the official test set (ranked 2nd out
of 22 participants). Our analysis reveals
that performance is increased by providing
cross-emotional intensity predictions. The
automatic extension of lexicon features
benefit from domain specific embeddings.
Complementary ratings for affective norms
increase the impact of lexicon features.
Our resources (ratings for 1.6 million
twitter specific words) and our imple-
mentation is publicly available at http:
//www.ims.uni-stuttgart.de/
data/ims_emoint.

1 Introduction

In natural language processing, emotion recogni-
tion is the task of associating words, phrases or doc-
uments with predefined emotions from psycholog-
ical models. Typical discrete categories are those
proposed by Ekman (Ekman, 1999) and Plutchik
(Plutchik, 2001), namely Anger, Anticipation, Dis-
gust, Fear, Joy, Sadness, Surprise und Trust. In
contrast to sentiment analysis with its main task to
recognize the polarity of text (e. g., positive, neg-
ative, neutral, mixed), only a few resources and

domains have been subject of analysis. Examples
are, e. g., tales (Alm et al., 2005), blogs (Aman and
Szpakowicz, 2007), and as a very popular domain,
microblogs on Twitter (Dodds et al., 2011). The
latter in particular provides a large resource of data
in the form of user messages (Costa et al., 2014).
A common source of weak supervision for train-
ing classifiers are hashtags, emoticons, or emojis,
which are interpreted as a weak form of author
“self-labeling” (Suttles and Ide, 2013). The classi-
fier then learns the association of all other words in
the message with the emotion (Wang et al., 2012).
An alternative to discrete models are continuous
models that map emotions to an n-dimensional
space with valence, arousal and dominance (VAD)
being usual dimensions. Previous works that rely
on the VAD-scheme focus mainly on extending
and adapting the affective lexicons (Bestgen and
Vincze, 2012; Turney and Littman, 2003), includ-
ing to historical texts (Buechel et al., 2016), and on
the prediction and extrapolation of affective ratings
(Recchia and Louwerse, 2015a; Hollis et al., 2017).

The WASSA-2017 shared task on the predic-
tion of emotion intensity in tweets (EmoInt) aims
at combining descrete emotion classes with dif-
ferent levels of activation. Given a tweet and an
emotion (anger, fear, joy, and sadness), the task
requires to determine the intensity expressed re-
garding a particular emotion. This score can be
seen as an approximation of the emotion intensity
felt by the reader or expressed by the author. For
a detailed task descriptions and background infor-
mation on the data collection see Mohammad and
Bravo-Marquez (2017).

2 System Description

In the following, we introduce all feature sets we
experimented with. We start with an analysis and
selection of features obtained from the baseline
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Rating Top 4 words

Concreteness fish, microphone, rope, toilet
Arousal #attack, scare, attack, exciting
Dominance #safe, #everydayhappy,

courageous, #Amoved
Happiness babygiggles, love, laughter,

lovelysmile
Anger soangry, comcastsucks,

#soangry, #comcastsucks
Fear #hyperventilation, #irra-

tionalfear, aerophobia, #anxiety
Sadness #greatloss, greatloss, sadsadsad,

cryinggame
Joy #peaceandharmony, #always-

bethankful, positiveenergy,
#youchoosehowtofeel

Table 1: Top four words for eight different rating
types based on our automatically generated ratings.

system AffectiveTweets, explain how we extend
resources to the domain of Twitter. Then, we ex-
plain our sentence regressor, which is based on
deep learning and pre-trained word embeddings.
Finally, we introduce two additional, manually de-
fined features.

2.1 Baseline Features

The baseline system AffectiveTweets1 which has
been provided to participants together with the
training and development data includes a huge va-
riety of different features and configurations. The
different feature types can be classified into a),
SparseFeatures, which refer to word and character
n-grams from tweets, b), LexiconFeatures, which
are taken from several emotion and sentiment lists
(we consider the SentiStrength-based feature to be
part of this), and c), the EmbeddingsFeature, which
comprise a tweet-level feature representation that
can incorporate any pre-trained word embeddings.

2.2 Extending and Adding Norms

The baseline system builds on top of a variety of
different lexical resources (Hu and Liu, 2004; Wil-
son et al., 2005; Svetlana Kiritchenko and Moham-
mad; Mohammad and Turney, 2013; Mohammad
and Kiritchenko, 2015; Baccianella et al., 2010;
Bravo-Marquez et al., 2016; Nielsen, 2011). Such

1https://github.com/felipebravom/
AffectiveTweets

resources are naturally limited in coverage and of-
ten focus on words that are closely associated with
a certain emotion or sentiment (e. g., the word “hate”
with the emotion anger).

At the same time, social media data is typically
rich in lexical variations, and hence, tend to contain
a great deal of out-of-vocabulary words. We ad-
dress this with three separate approaches, namely
by i) applying a supervised method to extend these
lexicons to larger Twitter specific vocabulary ii),
learning a new rating score for every word and
not just highly associated terms and iii), including
novel rating categories that provide complementary
and potential useful information, such as valence,
arousal, dominance and concreteness.

Several approaches have been proposed to com-
bine distributional word representations with super-
vised machine learning methods to extend affective
norms (Turney et al., 2011; Tsvetkov et al., 2014;
Recchia and Louwerse, 2015b; Vankrunkelsven
et al., 2015; Köper and Schulte im Walde, 2016;
Sedoc et al., 2017). Köper and Schulte im Walde
(2017) compared various supervised methods and
showed that a feed forward neural network together
with low dimensional distributed word representa-
tions (embeddings) obtained the highest correlation
with human annotated ratings for concreteness.

Following these findings, we apply the same
methodology. For a given emotion or norm we
train a feed forward neural network with two hid-
den layers, each having 200 neurons. The input of
the network is a single word representation (300
dimensions) and the output is one numerical value
trained to correspond to the human annotated (gold)
rating for the given input word. We apply the model
to predict a rating score for every word representa-
tion in our distributional space (which includes the
training data).

This method strongly depends on the underlying
word representation. We therefore conduct multi-
ple experiments using different word embeddings
(shown in Section 4.2). We apply this procedure
for 13 different lexicons using the following re-
sources: NRC Hashtag Emotion Lexicon (Moham-
mad and Kiritchenko, 2015) containing ratings for
17k words with associations to anger, anticipa-
tion, disgust, fear, joy, sadness, surprise and trust.
Additionally, we use the 14k ratings for valence,
arousal, and dominance collected by Warriner et al.
(2013). For concreteness we rely on the collection
of 40k ratings from Brysbaert et al. (2014). Finally,
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we use the 10k ratings for happiness from Dodds
et al. (2011). These 13 ratings correspond to an au-
tomatic extension to 1.6 million word types with≈
21 million new word ratings. We map the ratings to
an interval of [0, 10]. Table 1 shows the top words
for eight ratings. For the emotion intensity pre-
diction in our predictive model, we represent each
rating with seven feature dimensions per tweet:

1. Average rating score across all words
2. Average rating score across all nouns
3. Average rating score across all adjectives
4. Average rating score across all verbs
5. Average rating score across all hashtags
6. Maximum rating score
7. Standard deviation of all rating scores

2.3 Tweet Regression

The tweet regression feature relies on the anno-
tated training samples. We train a neural network
based on word embeddings to predict the emotion
intensity for each tweet.

Convolutional neural networks (CNNs), trained
on top of pre-trained word vectors, have been
shown to work well for sentence-level classifica-
tion tasks (Kim, 2014). We apply a similar method
here, combining CNNs and LSTMs (Hochreiter
and Schmidhuber, 1997). The final architecture
used by IMS is shown in Figure 1. Each tweet is
represented by a matrix of size 50× 300 (padded
where necessary, embedding dimension is 300, the
maximal token sequence in a tweet is set to 50).
We apply dropout with a rate of 0.25. The matrix
is then the input for a convolutional layer with a
window size of 3, followed by a maxpooling layer
(size 2) and an LSTM to predict a numerical output
for each tweet.

This architecture captures sequential information
in a compact way. For comparison, we conduct ex-
periments using a variety of different architectures
(shown in Section 4.3) including linear regression,
multilayer perceptron (MLP), two stacked LSTMs
and the proposed CNN-LSTM architecture.

2.4 Additional Features

In addition to regression and lexical features, we
add two hand-crafted features. The first is a
Boolean feature which holds if and only if an ex-
clamation mark is present in the tweet. The sec-
ond represents the overall number of tokens in the
tweet.

Input Embedding
50×300

Convolution
strides: 3
48×300

MaxPooling
size: 2
24×300

I’m
not

really
happy

I’m
quite
sad
...

LSTM

Figure 1: CNN-LSTM Architecture used for tweet
regression.

3 Implementation Details

As a source for our in-domain embeddings, we
use a corpus from 2016 retrieved with the Twit-
ter streaming and rest APIs with emotion hash-
tags and popular general hashtags. It consists of
≈50 million tweets and ≈800 million tokens. Af-
ter removing words with less than 10 occurrences,
the resource contains 1.6 million word types. The
300 dimensional word representations are obtained
with word2vec2 (Mikolov et al., 2013). To study
the impact of the training domain, we addition-
ally conduct experiments with the public available
GoogleNews-vectors that were trained on a 100b
words corpus of news texts. Both word embed-
dings are used to extend the emotion lexicons (Sec-
tion 2.2) as well as input embeddings in our tweet
regression model (Section 2.3).

We use TweetNLP3 (Owoputi et al., 2013) as
tokenizer. In the case of observing only out-of-
vocabulary words (no rating available) we set the
score to the median value of the corresponding
category.

The regressor based on the tweet text is imple-
mented with keras (Chollet et al., 2015). We train
one model for each of the four emotions separately.
Furthermore, we provide the output of all four
emotion-specific regression models in all emotion
intensity prediction tasks.4

Finally, for the full system IMS, we combine
features in a random forest classifier using weka
(Witten et al., 1999). We use 800 trees (called
iterations in Weka). We estimate one model for
each of the four target emotions.

2Hyperparameters were set to window:5, min-count:10,
neg-samples:15, dim:300, iteration:5.

3http://www.cs.cmu.edu/˜ark/TweetNLP/
4To provide this feature for the within-emotion training

data (e. g., anger-regression output for anger training dataset),
we split the training data into 20 folds – training on 19 and
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Feature Model a f j s Avg

3 Lexicons
7 SVM .62 .62 .62 .62 .62

3 RF .67 .69 .66 .66 .67

7 Sparse
7 SVM .58 .61 .63 .52 .58

7 RF .53 .57 .61 .53 .56

7 Embd.
7 SVM .48 .50 .55 .53 .51

7 RF .53 .53 .61 .49 .54

7 Comb
7 SVM .64 .64 .66 .64 .64

7 RF .63 .64 .66 .63 .64

Table 2: Baseline features across training data us-
ing support vector machines (SVM) and random
forest (RF). Pearson correlation based on 10-fold
cross validation. The column names denote anger
(a), fear (f), joy (j), sadness (s).

4 Feature Subset Selection and Analysis

Feature selection and analysis was performed on
annotated training and development data. All ex-
periments were carried out using 10-fold cross val-
idation. We report results following the official
shared task evaluation measure to predict a value
between 0 and 1, namely Pearson correlation for
each emotion separately as well as a macro average
over all emotions. Features that were finally used
in IMS are marked with 3 and respectively 7 for
features that were disregarded.

4.1 Baseline Feature Engineering
We start with feature engineering based solely on
the baseline features (see Section 2.1). Table 2
shows our observation when exploring the differ-
ent options from AffectiveTweets using default pa-
rameters. The embeddings (Embd.) are the rec-
ommended 400 dimensional Twitter embeddings
available from the baseline system’s homepage.

As we see in this table, an average performance
of .67 is already obtained when relying only on
a random forest in combination with the lexicon
features. The other features, as well as the combina-
tion, result in inferior performance. In addition, the
lexicon-based system is comparably simple with
only 45 feature dimensions. We therefore only use
the lexicon features from the baseline system.

4.2 Lexicons and Extended Lexicons
As a next feature, we explore various settings for
the automatic extension of the lexicon features. Ta-

providing the predictions for the remaining.

Feat a f j s Avg

3 Lexicons(=BL) .67 .69 .66 .66 .67
7 ACVH-Lexicons .48 .45 .59 .35 .47
7 Ext.News .52 .52 .60 .44 .52
3 Ext.Twitter .65 .69 .65 .68 .67

7 ACVH-Lexicons+BL .66 .67 .67 .64 .66
7 Ext.News+BL .65 .66 .67 .64 .65
3 Ext.Twitter+BL .68 .71 .68 .69 .69

Table 3: Performance of lexicons and our automat-
ically extended lexicons. Results are based on the
random forest classifier. Top part compares perfor-
mance of lexicon features in isolation. Ext.News
and Ext.Twitter build on top of the baseline lex-
icons and the ACVH lexicons. The bottom part
shows performance in combination with the origi-
nal lexicons provided by the baseline (=BL).

ble 3 compares the baseline lexicon against the lex-
icons we add without extension (ACVH-Lexicons)
as well as the automatically extended resources
(Ext.*). ACVH-Lexicons contains the unmodified
ratings for arousal, concreteness, valency and hap-
piness (ACVH), which were not part of the baseline
system. For Ext.* we present results based on un-
derlying news (Ext.News) and Twitter (Ext.Twitter)
embeddings. In addition we present results for each
lexicon-feature in isolation, as well as in combina-
tion with the baseline lexicons (Lexicons(=BL)). It
can be seen that the ACVH lexicons without auto-
matic extension (ACVH-Lexicons) perform poorly
and provide no performance gain when combined
with the baseline (ACVH-Lexicons+BL). We assume
that the poor coverage on Twitter data is the main
reason. On the other hand, the automatically ex-
tended ratings perform well, and the choice of em-
beddings here has a high impact on the quality of
the resulting ratings. In more detail, the in-domain
embeddings (Ext.Twitter) create ratings that are
extrinsically evaluated superior to the out-domain
embeddings (Ext.News) with an average score .52
against .67.

The information of existing lexicons and ex-
tended norms is not redundant. The combina-
tion ( Ext.Twitter+BL) increases average correlation
across all four emotions by +.02 points, from .67
→ .69..

To get a further understanding of the automat-
ically extended norms, Figure 2 shows the evalu-
ation performance of the thirteen extended norm
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concreteness (39.9k)

happiness (10.2k)
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0.2 0.3 0.4 0.5 0.6

Pearson's

Figure 2: Pearson’s correlation of single rating cat-
egories (Y-Axis) on each target emotion (X-Axis).
Numbers in brackets refer to training size used to
extend the norms. Evaluation based on 10-fold
cross validation using the full training data and
random forest.

Feature a f j s Avg

7 Linear Reg. (BoW) .48 .49 .44 .36 .44
7 MLP (BoW) .59 .64 .60 .56 .60
7 Stacked LSTMs .58 .66 .61 .61 .61
3 CNN-LSTM .66 .68 .66 .65 .67

Table 4: Comparing the performance of Tweet Re-
gression Architectures.

categories separately. Especially the extended rat-
ings from the new lexicons perform well: happi-
ness, dominance and valency. However, we also
see that the number of training samples might have
a big impact, e. g., the automatical ratings of joy
are only trained on 3.4k samples while the size of
the happiness training data is larger.

4.3 Tweet Regression Architectures

In addition to the CNN-LSTM architecture used in
the final system (see Section 2.3), we experimented
with different models for tweet regression. Table 4
shows results using various machine learning algo-
rithms to directly predict the emotion intensity.

We use the in-domain Twitter embeddings as in-
put. We observe that our architecture, introduced
in Section 2.3, performs superior to other meth-
ods. Remarkable, the CNN-LSTM feature, as well

Feature Name # Features

AffectiveTweets-Lexicons 45
Aut. Ext. Lexicons (Twitter) 91
Tweet Regression (CNN-LSTM) 4
Manual Features 2

Total 142

Table 5: Overview IMS full system, features, fea-
ture counts.

Full IMS-Train
a f j s Avg

.71 .74 .71 .71 .72

Table 6: Final official system on training data (10
fold cross validation).

as our Ext.Twitter lexicons and the baseline Lex-
icons(=BL) obtain a score of ≈ .66 when used in
isolation.

4.4 Full System Combination

A combination of all features leads to the best per-
formance, they provide complementary informa-
tion. An overview is given in Table 5 and Table 6.

Another interesting observation is found with re-
spect to the usage of cross-emotional intensity pre-
dictions: IMS trains a classifier for each emotion
in isolation. Similarly, the tweet regression feature
is trained emotion-wise but for each instance we
also provide the intensity prediction from all other
emotion models (therefore, 4 features). Without the
cross-emotion information, we yield only a macro
average across all emotions of .707 (vs. .719). Fig-
ure 3 shows how the emotion intensity predictions
of these models correlate. It can be seen that fear,
sadness and anger are slightly correlated while joy
is negatively correlated with all three emotions. In-
terestingly, a combined model (Comb), which is
trained on all emotions also leads to a high correla-
tion for each emotion and especially sadness. Note
that the classifier trained on all emotions (Comb) is
not used by the final system IMS.

Finally, we want to mention that the impact of
the two manual defined features is very little, we
found that they increase performance on joy by
+.01 and we therefore decided to keep them.

5 Official Results – Analysis Test Data

Table 7 shows the official results (Full IMS-Test)
and the performance using only a subset of the

54



fear anger sadness Comb

joy

fear

anger

sadness
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0.21
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0.17

0.31

0.28

0.17

0.39

0.62

Figure 3: Pairwise Pearson correlation based on
the output of our emotion-wise Tweet regression
feature.

Feat a f j s Avg

Lexicons(=BL) .65 .66 .60 .70 .65

Ext.Twitter+BL .68 .72 .66 .74 .70
CNN-LSTM+BL .69 .69 .67 .76 .70

Full IMS-Test .71 .73 .69 .77 .72
Best-Competitor .73 .76 .73 .76 .75

Table 7: Overview IMS full and partial System
performance on Test data.

entire features. For comparison, we also show
the results of the best performing system (Best-
Competitor). our baseline, using only the lexi-
con features and a random forest classifier obtains
a competitive Pearson correlation of .65, which
would have been ranked as the 8th best system.

Both of our core features, namely the extended
resources, as well as the CNN-LSTM tweet regres-
sion architecture, increase performance by +.05
points when combined with the baseline lexicons
(Lexicons(=BL)). Their performance is similar for
anger and joy, but the ratings seem more useful for
fear, and the regression more useful for sadness.
The result of Ext.Twitter+BL with .70 would have
ranked the 4th best system.

The final combination of all our features results
in an increase of ≈ +.020 correlation points. The
performance of IMS on the test set without the two
manually defined features is .719. Furthermore, we
observe that our submission on the test data is on
average very close to the estimated performance
on the training data (both .72), but when looking
at individual emotions our system is performing
better on sadness and slightly worse on fear.

5.1 Error Analysis
Based on a manual inspection of individual tweets
with a large gap between prediction and gold rating,
we found that the model’s prediction often depends
on single words and ignores larger contexts. An
example case with a high error for fear is:

“Most people never achieve their goals
because they are afraid to fail.”
(fear, G: .22, P: .55)

Here, the gold emotion intensity for fear is com-
parably low, but our model predicts a high fear
intensity. Similarly, in the tweet with high joy in-
tensity

“Just died from laughter after seeing
that.”
(joy, G: .92, P: .50)

our model predicts a low joy intensity.
Another challenge are modifications as in

“After this news Im supposed to be so
damn happy and rejoicing but Im here
like §”
(joy, G: .07, P: .53)

Here, the gold annotation is very low, but our model
predicts a medium intensity for joy.

6 Conclusion

Our system IMS, submitted to the EmoInt-2017
shared task, combines existing lexicons with auto-
matically extended norms and a CNN-LSTM neu-
ral network based on embeddings. Our findings
show that each of the three main components per-
forms equally well, but the highest performance
is achieved in combination. In addition, we found
that extending existing emotion lexicons and affec-
tive norms improves performance over the original
resources. We also showed that the impact of un-
derlying word representation is important. In par-
ticular in-domain embeddings (trained on twitter
data) perform superior to other embeddings. A par-
ticularly interesting observation is that providing
cross-emotional intensity predictions benefits the
performance.
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Abstract

The paper describes the best performing
system for EmoInt - a shared task to pre-
dict the intensity of emotions in tweets.
Intensity is a real valued score, between
0 and 1. The emotions are classified as
- anger, fear, joy and sadness. We ap-
ply three different deep neural network
based models, which approach the prob-
lem from essentially different directions.
Our final performance quantified by an av-
erage pearson correlation score of 74.7 and
an average spearman correlation score of
73.5 is obtained using an ensemble of the
three models. We outperform the base-
line model of the shared task by 9.9%
and 9.4% pearson and spearman correla-
tion scores respectively.

1 Introduction

EmoInt (Mohammad and Bravo-Marquez, 2017)
is a shared task hosted by WASSA 2017, aiming
to predict the emotion intensity in tweets. The
emotion can be one out of anger, joy, fear and
sadness. For each tweet, the emotion is known,
and the task is to predict the intensity of the
corresponding emotion, where intensity is a real
valued score ranging from 0 to 1. This is different
from most of the other tasks or systems in the
domain of emotion detection/sentiment analysis
which tend to focus on classifying the tweets or
text into different categories.
For example, given the tweet - ‘I hate my lawn
mower. If it had a soul, I’d condemn it to
the fiery pits of Hell.’ and the corresponding
emotion - ‘anger’, the system has to predict a
value for how intensely this emotion is felt by

∗ these authors have equal contributions to the paper

the author of the tweet which is as close as pos-
sible to the gold label intensity (0.833 in this case).

The systems built for this task are useful across
various NLP applications, but perhaps most ob-
viously in complementing sentiment analysis sys-
tems. For example, the degree of anger expressed
in a grievance can be used to decide its priority of
being addressed, and the intensity of joy can help
decide which reviews to project when publicizing
a product.
Our submitted system is an ensemble of three
broad sets of approaches combined using a
weighted average of the separate predictions (sec-
tion 3). All the approaches rely on representing the
input tweet as a word vector using the word2vec
approach (Mikolov et al., 2013), and using neural
network based architectures to finally give the in-
tensity score for the tweet of the given emotion X
(please note that we already know the emotion of
the tweet in this task).

The shared task organizers provided the training
and a small development dataset for building our
systems, and then a period of about 2 weeks was
given for submitting our predictions on a blind test
set.1

The rest of the paper is structured as follows. Sec-
tion 2 discusses in brief the dataset for the task.
Section 3 explains the various approaches used by
our ensemble model, the kind of experiments we
carried out along with the details of the parame-
ters which gave optimal results on cross valida-
tion, and the way we combined the predictions.
Section 4 explains how the system is evaluated
and Section 5 states the results we achieved and
discusses the various implications of those results.
We conclude our work in Section 6.

1http://saifmohammad.com/WebPages/EmotionIntensity-
SharedTask.html
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2 Data

We used the dataset provided within the shared
task for training our system. No other external
datasets were used in training. The data files in-
clude the tweet id, the tweet, the emotion of the
tweet and the emotion intensity (for training and
dev sets). Test set’s gold labels were given only
after the evaluation period.
There are around 800-1100 tweets in the training
set, 70-110 in the development set, and around
700-1000 in the test set (across all the emotions).
The complete details of the dataset can be found
in (Mohammad and Bravo-Marquez, 2017).

3 Proposed System

Our system is an ensemble of three sets of ap-
proaches. We describe the individual approaches,
followed by the ensemble process. We mention
the parameters for the optimal variants of each
approach and the architecture based decisions or
parameters that were varied to provide an in-
sight into the scope of our experiments. The pa-
rameters were chosen so that they maximize the
Pearson-correlation between the predicted and ac-
tual scores on the K-fold cross-validation. The
evaluation method used to select the optimal vari-
ants is explained in section 4.
A bird’s eye view of the various architectures is
shown in Figure 1.

3.1 Approach 1: Feed-forward neural
network

Feed forward neural networks have proven to be
highly successful in classification and real value
prediction based tasks across a variety of do-
mains, including NLP applications ((Bengio et al.,
2003), (Collobert et al., 2011)). (Deep) Neural
networks have given state-of-the-art results in sen-
timent analysis (Tang et al., 2014) which is closely
related to our task. Here we detail the architecture
of our network -

Input features: Each tweet is represented as a
443 dimensional vector by concatenating two dif-
ferent feature vectors obtained as follows -

1. Word2Vec (Mikolov et al., 2013) represen-
tation of the tweet using publicly available
embeddings (Godin et al., 2015) which were
trained on 400 million tweets for the ACL W-
NUT 2015 shared task (Baldwin et al., 2015).
We chose it over other available pre-trained

tweet based embeddings as it is trained on
a large dataset and we also prefer its high
dimensionality of 400. The vector for each
word is averaged to get a 400 dimensional
representation of the tweet.

2. TweetToLexiconFeatureVector is a filter
in the AffectiveTweets2 (Mohammad and
Bravo-Marquez, 2017) package for convert-
ing tweets into numeric 43-dimensional vec-
tors that can be used directly as features in
our machine learning system. The filter cal-
culates the features from the tweet using sev-
eral lexicons:

(a) MPQA Subjectivity Lexicon: Calcu-
lates the number of positive and negative
words from the lexicon (Wilson et al.,
2005)

(b) Bing-Lui: Calculates the number of pos-
itive and negative words from the lexi-
con (Bauman et al., 2017)

(c) AFINN: Wordlist-based approach for
calculating positive and negative senti-
ment scores from the lexicon(Nielsen,
2011)

(d) Sentiment140: Calculates positive and
negative sentiment score provided by
the lexicon in which tweets are anno-
tated by lexicons (Mohammad and Tur-
ney, 2013)

(e) NRC Hashtag Sentiment lexicon: Uses
same lexicon as Sentiment 140 but here
tweets with only emotional hashtags are
considered during training.

(f) NRC-10 Expanded: Emotional associ-
ations of words matching the Twitter
specific expansion of the lexicon(Bravo-
Marquez et al., 2016) are added to give
the vale of this feature.

(g) NRC Hashtag Emotion Association
Lexicon: Emotional associations of
words of the lexicon(Mohammad and
Kiritchenko, 2015) are added to give the
vale of this feature.

(h) SentiWordNet: Calculates positive and
negative sentiment score using Senti-
WordNet(Baccianella et al., 2010)

(i) Emoticons: Calculates sentiment scores
using word associations provided by

2https://github.com/felipebravom/AffectiveTweets
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Figure 1: The architecture of our various approaches

emoticons from the lexicon(Nielsen,
2011)

(j) Negations: This feature simply count
the number of negating words in the
tweet.

Network Architecture: The input layer passes
the 443 dimensional vector into 4 subsequent hid-
den layers (L1, L2, L3, L4) (the left half of Figure
1). We use Rectified Linear Unit (‘relu’) (Maas
et al., 2013) as an activation function for each of
the hidden layers (chosen as per the cross valida-
tion performance described in section 4). L1 is
followed by dropout (Srivastava et al., 2014) to
avoid over-fitting and co-adaption of features. The
number of hidden units in L1 − L4 and value of
dropout (p) was varied, and the optimal settings
were decided as per the cross validation perfor-
mance for each emotion separately. The chosen
values are mentioned in Table 1. L4 is followed
by a single sigmoid neuron which predicts the in-
tensity of the emotion between 0 to 1.
Training: The network parameters are learned by
directly minimizing the negative of the Pearson-
correlation (as it is a differentiable function) be-
tween actual and predicted intensities. We op-
timize the above function by back-propagating
through layers via Mini-batch Gradient Descent.

Parameter/
Emotion

L1 p L2 L3 L4

Anger 300 0.5 125 50 25
Fear 300 0.5 150 50 25
Joy 300 0.5 100 50 25
Sadness 300 0.5 125 50 25

Table 1: Network parameters for Approach 1

We use a batch size of 8, 30 training epochs and
Adam optimization algorithm (Kingma and Ba,
2014) with the parameters set as α = 0.001, β1 =
0.9, β2 = 0.999 and ε = 10−9.

3.2 Approach 2: Multitask Deep Learning

Multitask learning using deep neural network
via shared layers has become quite popular and
successful as exploited in, for example (Collobert
and Weston, 2008), and has been the focus of
many cross lingual models like (Huang et al.,
2013). (Collobert and Weston, 2008) described a
single unified architecture for performing a variety
of NLP tasks: named entity recognition, semantic
similarity, part-of-speech tagging, etc. In this
approach, we attempt to use the idea of multitask
learning to explore the notion of generalized or
shared learning across the different emotions.
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Parameter/
Emotion

L1
(shared)

p L2
(shared)

L3 L4

Anger(a) 300 0.3 150 50 20
Fear(b) 300 0.3 150 75 25
Joy(c) 300 0.3 150 50 15
Sadness(d) 300 0.3 150 50 20

Table 2: Network parameters for Approach 2

Input features: The input features are same as
Approach 1 and same for all the 4 subtasks. We
treat the 4 emotions as different subtasks to apply
deep multi-task learning.
Network Architecture: The overall architecture
can still be realized using the left side of figure
1. The network’s initial layers are shared across
multiple emotions with an objective to increase
the generalization whereas the individual top
layers can be seen as learning emotion specific
features. Specifically, the system consists of
two hidden layers (L1 & L2) shared between 4
regressors, while the last two layers (L3 & L4)
are allowed to be different across the different
subtasks (L3a, L3b, L3c, L3d and the same for
L4). The model can be thought of as an input
vector for the tweet going into the exact same
two hidden layers regardless of the subtask, but
then going into different layers (at the 3rd and
4th level) with the output from L4 going into
their respective output neurons. The parameters
(number of neurons in the shared as well as the
non shared layers along with the dropout rate
p) for each emotion are given in Table 2. Note
that these parameters are optimized using cross
validation (section 4).

Training: We use the same settings as in Ap-
proach 1 with respect to the cost function, op-
timization algorithm, update rule, learning rate,
epochs, etc.
We train the network for 4 cycles at every epoch.
During the 1st cycle, we train the model for anger,
where the input will pass through L1, L2, L3a,
L4a and finally the corresponding output neuron.
The network is similarly trained for fear, joy and
sadness during the 2nd,3rd and 4th cycles respec-
tively. Learning parameters this way ensures addi-
tional training examples for the initial layers (L1,
L2) so that they may generalize well to learn task-
independent representations while the higher lay-
ers (L3, L4) put pressure on the parameters to

learn more task-specific representations.

3.3 Approach 3: Sequence Modeling using
CNNs and LSTMs

Using Recurrent Neural Networks (RNN) has
become a very common technique for various
NLP based tasks like language modeling (Mikolov
et al., 2010). Their time step based sequentially
connected structure is intuitive to use for sequen-
tial data such as sentences. Long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
architecture is an advanced version of RNN that
uses various gates to control the vanishing gradient
problem (among other obstacles) that arise dur-
ing the training of RNNs, and has found resound-
ing success in a host of applications ((Graves and
Jaitly, 2014), (Graves and Schmidhuber, 2005)).
Convolutional Neural Network (CNN) is also a
popular neural network based architecture, and
has been successful in the NLP domain in various
tasks ((Lee and Dernoncourt, 2016), (Kim, 2014)).
Combining these architectures has also been found
to be quite successful as in (Zhou et al., 2015)
Both these architecture expect a sequence of vec-
tors as input to operate on.
We describe how we use these deep learning mod-
els, which play a dominant role in our final ensem-
ble system -

Input features: We again use the word2vec
embeddings trained on twitter tweets ((Godin
et al., 2015)) to represent the words in a tweet as
400 dimensional vectors, ignoring the words not
found. These embeddings are ideal for represent-
ing tweets as they have been trained on a very
large amount of tweets. Instead of averaging the
word vectors as in our first two approaches, we
concatenate them. Since length of different tweets
can vary, we fix the length of each concatenated
representation as 50 (since the maximum tweet
length across the training and development data is
46 according to our analysis and we do not want
to miss out on any information in the already
short tweet) by performing zero padding. For
datasets where a tweet may have length greater
than 50, the number has to be tuned accordingly.
Padding of zero vectors is done to make the
representation of every tweet as a (50,400) vector.
These representations are then fed to a host of
architectures, whose general representation is
given in the figure 1.
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Parameter/
Emotion L1 p L2 L3

Anger (1) CNN
(250,Max)

0 125 50

Anger (2) CNN
(256,Avg)

0 100 -

Anger (3) LSTM
(300)

0
CNN

(200,Avg)
100

Fear (1) LSTM
(256)

.2
CNN

(150,Avg)
100

Fear (2) CNN
(250,Max)

0 125 50

Fear (3) LSTM
(250)

.2
CNN

(120,Avg)
50

Joy (1) CNN
(256,Max)

0 100 -

Joy (2) LSTM
(300)

0
CNN

(200,Avg)
100

Joy (3) LSTM
(300)

.2
CNN

(200,Avg)
100

Sadness(1) CNN
(250,Max)

0 125 50

Sadness(2) CNN
(250,Max)

.2 125 50

Sadness(3) CNN
(256,Max)

0 100 -

Table 3: Network Parameters for the 3 best models
built according to Approach 3 (Ranked as per the
cross validation scores ; The numbers in the Layer
(L) columns represent the output dimensionality
of that layer ; Max and Avg refer to the type of
pooling)

Network Architecture: As shown in figure 1,
the concatenated vector representation of the tweet
is first fed to a LSTM or CNN and then some fully
connected (dense) hidden layers. The representa-
tion learned in the last hidden layer is fed to a sin-
gle sigmoid neuron which gives us the intensity
of the emotion (as in the previous 2 approaches).
We tried many variations of the different parame-
ters involved in constructing this model (keeping
all others fixed while one is varied) to come up
with several architectures but show the parameters
for only the three top performing ones (as per cross
validation) for each emotion in Table 3. The vari-
ations we tried include -
i) using only LSTM/CNN plus fully connected
layers, and also the combination of these architec-
tures with the initial LSTM’s output for each word

fed to a CNN, or vice versa.
ii) Using Simple RNN, Bidirectional LSTM
((Schuster and Paliwal, 1997), (Godin et al.,
2015)), Gated Recurrent Units (GRU) (Cho et al.,
2014) instead of LSTM.
iii) Using (global) max pooling versus (global) av-
erage pooling for CNNs.
iv) Using dropout (Srivastava et al., 2014). Note
that a dropout layer was added after pooling layer
for a CNN, while the same dropout rate was set for
both matrices involved in the standard definition in
case of LSTM (Zaremba et al., 2014).
v) Using different number of neurons for
CNN/LSTM/fully connected hidden layers. (usu-
ally starting from 300 or 256, and halving the
number of neurons as we went deeper)
vi) Using different number of fully connected hid-
den layers (0,1 or 2 in between the LSTM/CNN
layer and sigmoid neuron).

In every case, ‘relu’ activation function was
used in the hidden dense layers (except the last
neuron which uses sigmoid). Dropout, if applied
was always set to 0.2 (we also experimented with
0.1,0.3,0.4 and 0.5 as the dropout rate). Also, the
filter height used for CNNs was always set to 3,
and striding length for convolution was always 1.

Training: The network parameters are learned
by minimizing the Mean Absolute Error be-
tween the actual and predicted values of emotion
intensity. We optimize this loss function by
back-propagating through layers via Mini-batch
Gradient descent, with batch size of 8, 15 train-
ing epochs and Adam optimization algorithm
(Kingma and Ba, 2014) with the same parameters
as mentioned in Approach 1.

The deep learning based models in all the above
approaches were implemented in Python using
Keras library (Chollet et al., 2015).

3.4 Bringing it all together: The submitted
ensemble system

As described above, we now have 5 models to
combine - 1 each out of Approach 1 and 2, and
3 from Approach 3. We take a weighted aver-
age of the predictions from each of the system to
form our final submission. The weights are in-
formed from the results from cross validation (the
CV score as explained in section 4), and are as fol-
lows - 1 for Approach 1, 3 for Approach 2, 3 each
for the two best systems from approach 3 (which
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Approach Average Anger Fear Joy Sadness
CV Test CV Test CV Test CV Test CV Test

Feed Forward
NN

69.75 69.58 66.22 67.88 72.71 72.42 72.08 68.26 67.99 69.77

Multitask
DL

66.30 66.20 63.73 64.49 68.07 67.74 66.80 65.37 66.65 67.22

CNN+LSTM
Seq. Modeling

70.70 71.79 69.22 70.15 72.08 72.95 73.22 69.14 68.29 74.93

CNN+LSTM
Seq. Modeling

70.25 72.15 69.08 69.86 70.95 73.27 72.93 69.86 68.04 75.6

CNN+LSTM
Seq. Modeling

70.03 71.81 68.90 69.71 70.67 72.92 72.81 69.57 67.74 75.06

Ensemble
Model

75.26 74.70 72.94 73.2 76.78 76.20 74.42 73.20 76.90 76.50

Baseline 61.10 64.8 60.50 63.9 57.40 65.2 70.30 65.4 56.20 64.8

Table 4: Results

are very close in performance as can be seen in Ta-
ble 4), and 2 for the 3rd best system in approach
3. Our ensemble model improves the performance
by at least 2% over any of our individual models
(Table 4).

4 Evaluation

Cross Validation (CV): We combined the train-
ing and development sets, trained on 80% of
this set while predicting on the remaining 20%,
and repeated this seven times (for each emotion
separately). The average of these was used as
the CV score to evaluate our models. The metric
used for evaluating performance was Pearson
Correlation.

Test: The optimal setting for each model was
decided using the CV score (Table 4). Then these
chosen models (as described in Table 1,2 and 3)
were used to generate predicted intensities on the
test set, by training on the full training and devel-
opment sets combined. Again an average of seven
runs was taken. The predictions for the final en-
semble model are generated using a weighted av-
erage of the individual predictions as described in
section 3.4.

5 Results and Discussion

We compare the results achieved by our individ-
ual approaches, the submitted ensemble system
and the WEKA Baseline system which is the offi-
cial baseline model for this task (Mohammad and
Bravo-Marquez, 2017) in Table 4. For brevity, we

only show the Pearson Correlation scores on the
test set (although the Spearman correlation scores
show similar trends). We discuss the major take-
aways from these results -

1. Our submitted ensemble model achieves an
average (or overall) score of 75.26% and
74.70%, which beats the baseline model by
about 14% and 10% on cross validation
and test sets respectively. The improvement
points to the potential of deep learning based
models over the simpler lexicon based ap-
proaches. These are also the best scores
among all participating systems in the shared
task (according to the public leaderboard 3).

2. The ensemble model achieves about 3-5%
improvement over the average scores, and of-
fers significant improvement in performance
across all the emotions, which indicates that
the approaches do complement each other
quite well.

3. Approach 2 (Multitask DL) achieves the low-
est scores among the three sets of approaches.
Among Approach 1 (Feed Forward NN) and
Approach 3 (CNN+LSTM Seq. Modeling),
approach 3 has a best test score of 72.15 com-
pared to approach 1’s 69.58, which is a sig-
nificant improvement and points to sequential
models like LSTMs and CNNs being a better
choice over feed forward neural networks.

3https://competitions.codalab.org/competitions/16380#results
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4. Among the individual emotions, our ensem-
ble model gives the best performance for
‘Sadness’, followed very closely by ‘Fear’,
then ‘Joy’ and finally ‘Anger’.

6 Conclusion and Future Work

In this paper, we propose a deep learning frame-
work to predict the intensity of the emotion in
tweets exhibiting that emotion. The proposed ap-
proach is based on an ensemble of Feed-Forward
Neural Networks, Multi-Task Deep Learning and
Sequence Modeling using CNNs and LSTMs, al-
lowing us to explore the different directions a neu-
ral network based methodology can take. Each
individual approach is described in detail with a
view of making our experiments replicable. The
optimal parameters are mentioned, along with our
method of bringing the approaches together. Our
submitted system beats the baseline system by
about 10% on the test set.
Although our model achieves state-of-the-art re-
sults, there is definite room for improvement. In
the future, we would like to experiment with hand-
crafted features in addition to word-vectors and
lexicon features. We would also experiment with
other filters provided in AffectiveTweets package
(Mohammad and Bravo-Marquez, 2017) such as
TweetToSentiStrengthFeatureVector, TweetNLP-
Tokenizer etc. Another very interesting idea
would be to try better ways of ‘ensembling’ the
different models and analyze how each system or
approach complements the other.
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Mining arguments from natural language texts, 

parsing argumentative structures, and assessing ar-

gument quality are among the recent challenges 

tackled in computational argumentation. While ad-

vanced deep learning models provide state-of-the-

art performance in many of these tasks, much at-
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Abstract

Lexicon-based methods using syntactic
rules for polarity classification rely on
parsers that are dependent on the language
and on treebank guidelines. Thus, rules
are also dependent and require adaptation,
especially in multilingual scenarios. We
tackle this challenge in the context of the
Iberian Peninsula, releasing the first sym-
bolic syntax-based Iberian system with
rules shared across five official languages:
Basque, Catalan, Galician, Portuguese and
Spanish. The model is made available.1

1 Introduction

Finding the scope of linguistic phenomena in nat-
ural language processing (NLP) is a core utility of
parsing. In sentiment analysis (SA), it is used to
address structures that play a role in polarity clas-
sification, both in supervised (Socher et al., 2013)
and symbolic (Vilares et al.) models. In the latter
case, these are mostly monolingual and dependent
on the annotation of the training treebank, and so
the rules are annotation-dependent too. Advances
in NLP make it now possible to overcome such is-
sues. We present a model that analyzes five of-
ficial languages in the Iberian Peninsula: Basque
(eu), Catalan (ca), Galician (gl), Portuguese (pt)
and Spanish (es). We rely on three premises:

1. Syntactic structures can be defined in a univer-
sal way (Nivre et al., 2015).

∗ DV was funded by MECD (FPU13/01180). MG is
funded by a Juan de la Cierva grant (FJCI-2014-22853).
CGR has received funding from the ERC, under the European
Union’s Horizon 2020 research and innovation programme
(FASTPARSE, grant agreement No 714150). This research
was supported by MINECO (FFI2014-51978-C2).

1The resources used in this work have been integrated as
a part of https://github.com/aghie/uuusa

2. Training a single model for multilingual pars-
ing is feasible (Ammar et al., 2016).
3. We can define universal rules for various phe-
nomena, if 1 is assured (Vilares et al., 2017).

Based on those, we: (a) combine existing sub-
jectivity lexica, (b) train an Iberian tagger and
parser, and (c) define a set of Iberian syntax-based
rules. The main contributions of the paper are:

1. A single set of syntactic rules to handle lin-
guistic phenomena across five Iberian languages
from different families.
2. The first end-to-end multilingual syntax-based
SA system that analyzes five official languages of
the Iberian Peninsula. This is also the first evalu-
ation for SA that provides results for some of them.

2 Related work

Polarity classification has been addressed through
machine learning (Mohammad et al., 2013; Socher
et al., 2013; Vo and Zhang, 2016), and lexicon-
based models (Turney, 2002). Most of the re-
search involves English texts, although studies can
be found for other languages such as Chinese
(Chen and Chen, 2016) or Arabic (Shoukry and
Rafea, 2012).

For the official languages in the Iberian Penin-
sula, much of the literature has focused on Span-
ish. Brooke et al. (2009) proposed a lexicon-
based SA system that defines rules at the lexical
level to handle negation, intensification or advers-
ative subordinate clauses. They followed a cross-
lingual approach, adapting their English method
(Taboada et al., 2011) to obtain the semantic ori-
entation (SO) of Spanish texts. Vilares et al. cre-
ated a syntactic rule-based system, by making an
interpretation of Brooke et al.’s system, but limited
to AnCora trees (Taulé et al., 2008). Martı́nez-
Cámara et al. (2011) were one of the first to re-
port a wide set of experiments on a number of
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bag-of-words supervised classifiers. The TASS
workshop on sentiment analysis focused on Span-
ish language (Villena-Román et al., 2013) annu-
ally proposes different challenges related to po-
larity classification, and a number of approaches
have used its framework to build their Spanish sys-
tems, most of them based on supervised learning
(Saralegi and San Vicente, 2013; Gamallo et al.,
2013; Hurtado et al., 2015; Vilares et al., 2015).

Sentiment analysis for Portuguese has also at-
tracted the interest of the research community.
Silva et al. (2009) presented a system for detection
of opinions about Portuguese politicians. Souza
et al. (2011) built a lexicon for Brazilian Por-
tuguese exploring different techniques (e.g. trans-
lation and thesaurus-based approaches) and avail-
able resources. Souza and Vieira (2012) car-
ried out a study of Twitter data, exploring pre-
processing techniques, subjectivity data and neg-
ation approaches. They concluded that those have
a small impact on the polarity classification of
tweets. Balage Filho et al. (2013) evaluate the
quality of the Brazilian LIWC dictionary (Pen-
nebaker et al., 2001) for SA, comparing it with ex-
isting lexica for this language.

For Basque, Catalan and Galician, literature is
scarce. Cruz et al. (2014) introduce a method to
create multiple layered lexicons for different lan-
guages including co-official languages in Spain.
San Vicente and Saralegi (2016) explore differ-
ent ways to create lexicons, and apply them to
the Basque case. They report an evaluation on a
Basque dataset intended for polarity classification.
Bosco et al. (2016) discuss the collection of data
for the Catalan Elections and design an annotation
scheme to apply SA techniques, but the dataset is
still not available. With respect to Galician, in this
article we will present the first published results
for this language.

3 SISA: Syntactic Iberian SA

3.1 Preliminaries

Vilares et al. (2017) propose a formalism to define
compositional operations. Given a dependency
tree for a text, a compositional operation defines
how a node in the tree modifies the semantic
orientation (SO) of a branch or node, based on
elements such as the word form, part-of-speech
(PoS) tag or dependency type, without limita-
tions in terms of its location inside such tree.
They released an implementation, where an ar-

Tag es pt ca eu gl
ADJ 2,045 1,865 1,686 1,757 2,002

NOUN 1,323 1,183 1,168 1,211 1,270
ADV 594 570 533 535 599

VERB 739 688 689 563 723

Table 1: Size of the SFU (single words) lexica.

bitrary number of practical compositional oper-
ations can be defined. The system queues and
propagates them through the tree, until the mo-
ment they must be dequeued and applied to their
target. The authors showed how the same set of
operations, defined to work under the Universal
Treebank (UT) guidelines (McDonald et al., 2013),
can be shared across languages, but they do not
explore how to create a single pipeline for analyz-
ing many languages. This paper explores that path
in the context of Iberian Peninsula, presenting an
unified syntactic Iberian SA model (SISA).

We below present how to build SISA, from the
bottom (subjectivity lexica, tagging and depend-
ency parsing) to the top levels (application of com-
positional operations to compute the final SO).

3.2 Subjectivity Lexica
SISA needs multilingual polarity lexica in order to
predict the sentiment of a text. We used two sets
of monolingual lexica as our starting points:

1. Spanish SFU lexicon (Brooke et al., 2009): It
contains SO’s for subjective words that range from
1 to 5 for positive and negative terms. We trans-
lated it to ca, eu, gl and pt using apertium (For-
cada et al., 2011). We removed the unknown
words and obtained the numbers in Table 1.2

2. ML-Senticon (Cruz et al., 2014): Multi-layered
lexica (not available for pt) with SO’s where each
layer contains a larger number of terms, but less
trustable. We used the seventh layer for each lan-
guage. As eu, ca and gl files have the same PoS-
tag for adverbs and adjectives, they were automat-
ically classified using monolingual tools (Agerri
et al., 2014; Padró and Stanilovsky, 2012; Garcia
and Gamallo, 2015) (Table 2 contains the statist-
ics). SO’s (originally from 0 to 1) were linearly
transformed to the scale of the SFU lexicon.

The SFU and ML-Senticon lexica for each lan-
guage were combined to obtain larger monolin-
gual resources, and these were in turn combined

2We used the original apertium outputs, except for the pt
and gl lexica (manually reviewed by a linguist).
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Tag es ca eu gl
ADJ 2,558 1,619 22 1,530

NOUN 2,094 1,535 1,365 579
ADV 117 23 3 26

VERB 603 500 272 144

Table 2: Size of the resulting ML-Senticon lexica.

Tag es pt ca eu gl Iberian
ADJ 3,775 1,865 2,704 1,529 2,990 9,385
NOUN 3,079 1,183 2,377 2,392 1,684 8,733
ADV 665 570 545 485 612 1,891
VERB 1,177 688 1,034 728 801 2,998

Table 3: Size of the final lexica.

into a common Iberian lexicon (see Table 3).
When merging lexica, we must consider that:

1. In monolingual mergings, the same word can
have different SO’s. E.g., the Catalan adjective
‘abandonat’ (abandoned) has −1.875 and −3 in
ML-Senticon and SFU, respectively.

2. When combining lexica of different languages,
the same word form might have different mean-
ings (and SOs) in each language. Merging them in
a multilingual resource could be problematic. For
example, the adjective ‘espantoso’ has a value of
−4.1075 in the combined es lexicon (frightening),
and of −3.125 in the gl one (frightening), while
the same word in the pt data (astonishing) has a
positive value of 5. Note, however, that even if
they could be considered very similar from a lex-
ical or morphological perspective, many phonolo-
gical false friends have different spellings in each
language (such as the negative ‘vessar’ (to spill)
in ca and the positive ‘besar’ (to kiss) in es), so
these cases end up not being a frequent problem
(only 0.36% of the words have both positive and
negative polarity in the monolingual lexica).

These two problems were tackled by averaging
the polarities of words with the same form. Thus,
the first monolingual mergings produced a bal-
anced SO (e.g., ‘abandonat’ has −2.4375 in the
combined ca lexicon), while in the subsequent
multilingual fusion, contradictory false friends
have a final value close to no polarity (e.g., ‘es-
pantoso’, with a SO of−0.7 in the Iberian lexicon).
The impact of these mergings is analyzed in §4.

3.3 PoS-tagging and dependency parsing
For the compositional operations to be triggered,
we first need to do the tagging and the depend-
ency parse for a sentence. To do so, we trained an

Iberian PoS-tagger and parser, i.e. single modules
that can analyze Iberian languages without apply-
ing any language identification tool. Multilingual
taggers and parsers can be trained following ap-
proaches based on (Vilares et al., 2016; Ammar
et al., 2016). We are relying on the Universal De-
pendency (UD) guidelines (Nivre et al., 2015) to
train these tools, since they provide corpora for all
languages studied in this paper.

For the Iberian tagger we relied on Toutanova
and Manning (2000), obtaining the following ac-
curacies (%) in the monolingual UD test sets: pt
(95.96), es (94.37), ca (97.41), eu (93.88) and gl
(94.09). For the Iberian parser we used the ap-
proach by Vilares et al. (2016), whose perform-
ance (LAS/UAS)3 on the same UD test sets was: pt
(78.78/84.50), es (80.20/85.23), cat (84.01/88.08),
eu (62.01/71.64)4 and gl (75.65/82.11).

3.4 Compositional operations
For a detailed explanation of compositional oper-
ations, we encourage the reader to consult Vilares
et al. (2017), but we here include an overview as
part of SISA. Briefly, a compositional operation is
tuple o = (τ, C, δ, π, S) such that:

• τ : R → R is a transformation func-
tion to apply on the semantic ori-
entation of nodes, where τ can be
weightingβ(SO) = SO × (1 + β) or

shiftα(SO) =
{
SO − α if SO = 0
SO + α if SO < 0

,

• C : V → {true, false} is a predicate that
determines whether a node in the tree will
trigger the operation, based on word forms,
PoS-tags and dependency types,

• δ ∈ N is a number of levels that we need to
ascend in the tree to calculate the scope of o,
i.e., the nodes of T whose SO is affected by
the transformation function τ ,

• π is a priority used to break ties when several
operations coincide on a given node, and

• S is a scope function that will be used to de-
termine the nodes affected by the operation.

3LAS/UAS: The percentage of arcs where both the head
and dependency type / the head are correct.

4The parsing results for Basque (with a high proportion
of non-projective trees) were worse than expected. How-
ever, the parser trained based on the method by Vilares et al.
(2016) automatically selected a projective algorithm for train-
ing, as the average prevalence of non-projectivity across our
five Iberian languages is low. We hypothesize that this is the
main reason of the lower performance for this language.
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We adapt the UT operations used by Vilares
et al. (2017) to the UD style to handle, which are
now described:

1. Intensification: It diminishes or amplifies the
SO of a word or a phrase. It operates from
adjectives or adverbs modifying the SO of the
head structure they depend on: e.g., the SO

of ‘grande’ (big, in es) increases from 1.87
to 2.34 if a word such as ‘muy’ (very) de-
pends on it and its labeled with the depend-
ency type advmod. Formally, for ointensification,
τ = weightβ(SO), C = w ∈ intensifiers ∧
t ∈ {ADV,ADJ} ∧ d ∈ {advmod,amod,nmod}, δ = 1,
π = 3 and S = {target node, b(advmod),
b(amod)}, where b(x) indicates that the scope is
the first branch at the target level whose depend-
ency type is x. β is extracted from a lexicon with
booster values (in this work obtained from SFU,
where ‘muy’ has a booster value of 0.25).

2. Subordinate adversative clauses: This rule is
designed for dealing with structures coordinated
by adversative conjunctions (such as but), which
usually involve opposite polarities between the
two joint elements (e.g., “good but expensive”).
Here, the SO of the first element is multiplied
by 1 − 0.25, so its polarity decreases. Formally,
τ = weight−0.25(SO), C = w ∈ adversatives ∧
t ∈ {CONJ,SCONJ} ∧ d ∈ {cc,advmod,mark}, δ = 1,
π = 1 and S = {subjl}. Subjl indicates that the
scope is the first left branch with SO ! = 0 at the
target level.

3. Negation: In most cases, negative adverbs shift
the polarity of the structures they depend on (“It is
nice” versus “It is not nice”). In order to handle
these cases, the present rule shifts the polarity
of the head structures of a negative adverb by α
(where α = 4, in our experiments). In the previous
example, the polarity of “nice” would drop from
3.5 to −0.5 if affected by the rule. Formally, for
onegation, τ = shift4(SO), C = w ∈ negators ∧
d ∈ {neg,advmod}, δ = 1, π = 2 and S = {target
node, b(root), b(cop), b(nsubj), subjr, all}. Subjr
indicates that the scope is the first branch with SO
! = 0 and all indicates to apply negation at the
target level as a backoff option, if none of the pre-
vious scopes matched.

4. ‘If’ irrealis: In conditional statements, a SA

system may obtain an incorrect polarity due to the
presence of polarity words which actually do not
reflect a real situation (“This is good” vs “If this is

good”). This rule attempts to better analyze these
structures by shifting the polarity (here, multiplied
by −1) if a conditional conjunction depends on
it. Formally, for oirrealis, τ = weight−1(SO),
C = w ∈ irrealis ∧ d ∈ {mark,advmod,cc}, δ = 1,
π = 3 and S = {target node, subjr}.

4 Evaluation

This section presents the results of the experi-
ments we carried out with our system using both
the monolingual and the multilingual lexica, com-
pared to the performance of a supervised classifier
for three of the five analyzed languages.

4.1 Testing corpora

• Spanish SFU (Brooke et al., 2009): A set of
400 long reviews (200 positive, 200 negative) from
different domains such as movies, music, com-
puters or washing machines.

• Portuguese SentiCorpus-PT 0.1 (Carvalho
et al., 2011): A collection of comments from the
Portuguese newspaper Público with polarity an-
notation at the entity level. As our system assigns
the polarity at the sentence level, we selected the
SentiCorpus sentences with (a) only one SO and
(b) with > 1 SO iff all of them were the same,
generating a corpus with 2, 086 (from 2, 604) sen-
tences.

• Basque Opinion Dataset (San Vicente and
Saralegi, 2016): Two small corpora in Basque
containing news articles and reviews (music and
movie domains). We merged them to create a lar-
ger dataset, containing a total of 224 reviews.

In addition, due to the lack of available sentence-
or document-level corpora for Catalan or Galician,
we opted for synthetic corpora:

• Synthetic Catalan SFU: An automatically
translated version to ca of the Spanish SFU, with
5% of the words from the original corpus con-
sidered as unknown by the translation tool.

• Synthetic Galician SFU: An automatically
translated version to gl of the Spanish SFU (≈
6.4% of the words not translated).

4.2 Experiments

We performed different experiments on binary po-
larity classification for knowing (a) the accuracy
of the system, (b) the impact of the merged re-
sources, and (c) the impact of the universal rules
in monolingual and multilingual settings:
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Lg SL-O SL+O ML-O ML+O LKit
es 60.00 75.75 63.75 76.50 58.75
ca 54.00 57.50 58.25 73.00 —
gl 60.75 73.00 60.00 70.00 50.25
eu 62.95 69.20 65.63 72.32 —
pt 60.50 67.35 57.29 65.01 60.55

Table 4: Results of the different tests. In LKit we
only evaluated the positive and negative results (it
also classifies sentences with no polarity).

1. SL-O: Single lexica, no operations (baseline).
2. ML-O: Multilingual lexica, no operations.
3. SL+O: Single lexica with universal operations.
4. ML+O: Multilingual lexica with universal op-
erations.

The performance of our system was compared
to LinguaKit (LKit), an open-source toolkit which
performs supervised sentiment analysis in sev-
eral languages (Gamallo et al., 2013; Gamallo and
Garcia, 2017).

Table 4 shows the results of each of these mod-
els on the different corpora. The baseline (SL-
O) obtained values between 54% (ca) and 62.95%
(eu), results that are in line to those obtained by the
supervised model.5 As we are not aware of avail-
able SA tools for ca, we could not compare our res-
ults with other systems. For Basque, San Vicente
and Saralegi (2016) evaluated several lexica (both
automatically translated and extracted, as well as
with human annotation) in the same dataset used
in this paper. They used a simple average polar-
ity ratio classifier, which is similar to our baseline.
Even if the lexica are different, their results are
very similar to our SL-O system (63% vs 62, 95%),
and they also show that manually reviewing the
lexica can boost the accuracy by up to 13%.

The central columns of Table 4 show the results
of using universal rules and a merged lexicon in
the same datasets. In gl and pt the best values were
obtained using individual lexica together with syn-
tactic rules, while the Iberian system achieved the
best results in the other languages.

Table 5 summarizes the impact that the rules
have in both the monolingual and the multilingual
setting, as well as the differences in performance
due to the fusion process. Concerning the rules
(columns 2 and 3), the results show that using the
same set of universal rules improves the perform-
ance of the classifier in all the languages and set-
tings. Their impact varies between 3.5 percentage

5LinguaKit was intended for tweets (not long texts).

Lg O(SL) O(ML) ML(-O) ML(+O)
es 15.75 12.75 3.75 0.75
ca 3.50 14.75 4.25 15.5
gl 12.25 10.00 -0.75 -3.00
eu 6.25 6.69 2.68 3.12
pt 6.85 7.72 -3.21 -2.34

Table 5: Impact of the operations (O) with mono
(SL) and multilingual lexica (ML) and of the ML

with (+O) and without operations (-O).

points (ca) and more than 15 (es) and, for each lan-
guage, the rules provide a similar effect in mono-
lingual and multilingual lexica (except for ca, with
much higher values in the ML scenario).

The fusion of the different lexica had differ-
ent results (columns 4 and 5 of Table 5): in gl
and pt, it had a negative impact (between −0.75%
and −3.21%) while in the other three the ML set-
ting achieved better values (between 0.75 and 15.5
points, again with huge differences in ca). On
average, using multilingual lexica had a positive
impact of 1.3 (-O) and 2.8 points (+O). As men-
tioned, ca has a different behaviour: the gain from
rules when using monolingual lexica is about 3.50
points (lower than other languages), and the bene-
fit of the ML lexicon without syntactic rules is of
4.25 points. However, when combining both the
universal rules and the ML lexicon its perform-
ance increases ≈ 15 points, turning out that the
combination of these two factors is decisive.

In sum, the results of the experiments indicate
that syntactic rules defined by means of a harmon-
ized annotation can be used in several languages
with positive results. Furthermore, the merging of
monolingual lexica (some of them automatically
translated) can be applied to perform multilingual
SA with little impact in performance when com-
pared to language-dependent systems.

5 Conclusions and current work

We built a single symbolic syntactic system for po-
larity classification that analyzes five official lan-
guages of the Iberian peninsula. With little effort
we obtain robust results for many languages. As
current work, we are working on texts harder to
parse and low-resource languages: we developed a
Galician corpus of manually labeled tweets, where
SISA obtains between 62% and 65% accuracy for
different settings,6 and plan to incorporate Kong
et al. (2014) parser to improve its performance.

6This corpus is available at http://grupolys.org/
software/CHIOS-SISA/
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Abstract

Claims are the building blocks of argu-
ments and the reasons underpinning opin-
ions, thus analyzing claims is important
for both argumentation mining and opinion
mining. We propose a framework for rep-
resenting claims as microstructures, which
express the beliefs, judgments, and poli-
cies about the relations between domain-
specific concepts. In a proof-of-concept
study, we manually build microstructures
for over 800 claims extracted from an on-
line debate. We test the so-obtained mi-
crostructures on the task of claim stance
classification, achieving considerable im-
provements over text-based baselines.

1 Introduction

In online discussions, users express their opin-
ions using more or less well structured arguments.
The building blocks of these arguments are claims:
statements that are in dispute and that we are try-
ing to support with reason Govier (2013). Claims
can support or attack other claims, giving rise to
complex argumentative structures. Thus, the ability
to identify and analyze claims in text is a crucial
part of argumentation mining (Moens, 2014; Lippi
and Torroni, 2016). Outside the realm of well-
structured argumentation, the ability to analyze
claims is crucial for tasks such as stance classi-
fication (Anand et al., 2011; Hasan and Ng, 2013;
Mohammad et al., 2016) and fine-grained opinion
analysis (Stoyanov and Cardie, 2008; Yang and
Cardie, 2013), as well as the converging task of
argument-based opinion mining (Clos et al., 2014;
Boltužić and Šnajder, 2014), which aims to uncover
the reasons underpinning the opinions.

Previous research has tackled the claim detec-
tion task for diverse domains, including legal docu-

ments (Palau and Moens, 2009), microtexts (Peld-
szus and Stede, 2015), Wikipedia articles (Aha-
roni et al., 2014; Levy et al., 2014; Rinott et al.,
2015), student essays (Stab and Gurevych, 2017),
and user-generated web discourse (Habernal and
Gurevych, 2015). Boltužić and Šnajder (2015) ad-
dressed the task of identifying prominent claims in
online debates, while Boltužić and Šnajder (2016)
analyzed the implicit premises between two claims.
Recently, Bar-Haim et al. (2017) introduced the
claim stance classification task, where classifica-
tion is done at the claim rather than document level.

In this paper, we address the task of claim anal-
ysis from a different angle. While prior work has
dealt with claims as textual fragments, we study the
possibility of a more precise, domain-specific anal-
ysis of claims based on their internal logical struc-
ture. The work closest to ours is that of Wyner and
Van Engers (2010) and Wyner et al. (2016), who ex-
plored normalizing claims from the policy making
domain by translating them to Attempto Controlled
English (Fuchs et al., 2008), and then mapping
them to propositions. In contrast, we propose a
framework for representing claims as microstruc-
tures: structures expressing the relations between
the domain-specific concepts, reflecting the beliefs,
value judgments, or desired policies of the claim
author. We present a preliminary proof-of-concept
study, where we use the proposed framework to
manually create microstructures for over eight hun-
dred claims extracted from an online debate.

We envisage that claim microstructures could
play an important role in a variety of opinion min-
ing and argument mining tasks, including stance
classification, extraction of argumentative struc-
tures, analysis of implicit premises, fine-grained
opinion mining, identifying prominent claims, and
claim matching. To demonstrate the viability of
claim microstructures for a downstream task, we
look into supervised claim stance classification
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and show that, even with a simple encoding of
microstructures as features, we get substantial im-
provements on this task over text-based baselines.

The contribution of our work may be summed
up as follows: (1) we investigate the feasibility
of using microstructures for representing claims,
(2) we demonstrate the use of microstructures for
stance classification, and (3) to promote further
research, we make available the dataset annotated
with claim paraphrases and microstructures.1

2 Claim Microstructures

We introduce a framework for representing claims
from text using logical microstructures whose pur-
pose is to capture the gist of a claim. The initial
motivation came from the analysis of our dataset
(cf. Section 4), which revealed that a large majority
of claims can be conceived of as expressing rela-
tions between concepts using a certain modality.
Figure 1 shows a claim microstructure bringing
together these three elements.

Relations. Many claims can be represented as
expressing a relation between two concepts. For
example, on the topic of gay rights, the relations
may be ‘promotes(GayMarriage, Depopulation)’
or ‘purpose(Love, Procreation)’. There are also
comparably fewer claims that can be expressed via
higher-order relations, e.g., ‘entails(Constitution,
allow(State, GayMarriage)))‘. Each relation can be
negated, e.g., ‘¬promotes(GayMarriage, Depopu-
lation)’ expresses that gay marriage does not cause
depopulation.

Concepts. The relations are established between
concepts, expressed by noun phrases. For ease of
access, these can be arranged into a small, domain-
specific taxonomy of concepts. For instance, “gay
marriage”, “heterosexual marriage”, and “religious
marriage” all belong under the concept of “mar-
riage”. The taxonomic relations could also be use-
ful for later computational processing. Unlike rela-
tions, concepts are domain dependent and need to
be defined for each new topic.

Modalities. We furthermore observed that the
claims express different modalities, which can
roughly be categorized into beliefs, value judg-
ments, and policies. We formalize this via
unary relations ‘believes’, ‘approves’, and ‘de-
sires’, corresponding to beliefs (factual, religious,

1http://takelab.fer.hr/claim-micro

Figure 1: Claim microstructure (2nd-order).

and opinion-based), positive value judgment, and
desired policy (desired state of affairs), respec-
tively. The three modalities act as a wrapper
on the propositional content of the claim, effec-
tively modulating what is being claimed. For
instance, ‘believes(purpose(Love, Procreation))’
expresses the belief that love serves procreation,
while ‘desires(¬allow(State, GayMarriage))’ ex-
presses the wish for the state not to allow gay
marriages. Finally, we observed that in a fair
number of cases the claims are supported by a
reference to a second opinion holder (e.g., the
Bible, the state). We represent this by introduc-
ing one additional modality layer with the opin-
ion holder as an additional modifier. For instance,
‘believes(believes[State](promotes(Marriage, Ad-
vancement)))’ corresponds to the belief that the
state believes gay marriages lead to an advance-
ment. By convention, the opinion holder of the first
modality is always the author of the post.

Let R, C, and M denote the set of relations,
concepts, and modalities, respectively. Formally,
we define a claim microstructure as a quadruple
(m1,m2, o2, r), where m1 ∈ M and (option-
ally) m2 ∈ M ∪ {ε} are the modalities, o2 ∈
C ∪ {ε} is the (optional) second opinion holder,
and r = (t, c1, c2) ∈ R is the (possibly higher-
order) relation between two concepts or relations
c1, c2 ∈ C ∪ R, conveyed by the relation type t.
Table 1 defines the relation types used in this work.

It should be noted that, unlike Aharoni et al.
(2014), who consider as claims only the statements
that directly support or contest the debating topic,
we consider all statements with propositional con-
tent. For example, in the context of gay rights,
‘belief(purpose(Life, Love))’ is a valid claim in our
framework, although it does not support nor contest
the topic, i.e., the stance of that claim is neutral.
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Relation Definition

promotes(A, B) Promoting agent A promotes, fosters,
leads, increases likelihood, boosts B.

suppress(A, B) Suppressing agent A suppresses, de-
creases likelihood, puts down, van-
quishes B

allow(A, B) Principle A allows, approves, li-
censes state of affairs B

entails(A, B) State of affairs A, necessarily, per def-
inition or causally, makes B true.

contradicts(A, B) State of affairs A, necessarily, per def-
inition or causally, makes B false.

purpose(A, B) The purpose of A is B.

equal(A, B) State of affairs A is equal to state of
affairs B.

has(A, B) A has the properties affected by the
existence of B.

Table 1: Relations types in claim microstructures.

3 Data Annotation

We adopted the dataset of Hasan and Ng (2014),
which contains user posts from online two-sided
debates on a number of topics. For reasons of fea-
sibility, in this study we consider only one topic:
“Gay rights”. We sampled 100 posts (50 for and
50 against) from this topic. The manual annota-
tion was carried out in two steps. In the first step,
the annotators segmented out the individual claims
from user posts and paraphrased them into well-
articulated claims. In the second step, the anno-
tators translated each paraphrased claim into the
corresponding logical microstructure.

While in principle the claim microstructures
could have been built directly from segments, we
chose to introduce the additional step of claim para-
phrasing for three reasons. First, we assumed that
paraphrasing would help in identifying the seg-
ments corresponding to individual claims, since
paraphrasing demonstrates understanding. In that
respect, our work is similar to that of Wyner and
Van Engers (2010), who used a controlled language
for paraphrasing the claims. Second, we assumed
that paraphrases will make overt the logical struc-
ture of claims, making their translation into mi-
crostructures easier. Lastly, we assumed that para-
phrases could help in identifying the prominent
concepts for the domain-specific taxonomy.

3.1 Claim Segments and Paraphrases
The purpose of the this step was to extract claim
segments from user posts, thus separating argu-
mentative from non-argumentative content, and to

paraphrase the claims into simple, well-articulated
statements. This obviously involves two non-trivial
tasks: segmentation and paraphrasing. Arguably,
there are many ways in which a post can be seg-
mented into claims, and even more ways in which
each segment could be paraphrased. We hypothe-
size that much of this ambiguity can be reduced by
considering these two tasks jointly, and by adopt-
ing certain paraphrasing principles aimed at obtain-
ing simplifying paraphrases – paraphrases that ex-
presses the essence of the claims devoid of superflu-
ous words and phrases. To this end, we adopted the
following nine paraphrasing principles: (1) Argu-
mentativeness – Only argumentative text should
be paraphrased; (2) Atomicity – A claim should
convey a single thought; (3) Authority – Experts in
claims from expert opinion should be made explicit
in the paraphrase; (4) Brevity – Paraphrases should
keep only the relevant argumentative content; (5)
Canonicity – Canonical terms and phrases are pre-
ferred over idiomatic language; (6) Contextuality –
Claims should be paraphrased by considering their
local and topical context as well as their context;
(7) Declarativity – paraphrases should be in declar-
ative form, and (8) Dereferencing – Pronouns and
nominal references should be resolved; and (9)
Explicitness – Only explicitly stated information
should be paraphrased, and not whatever might be
implied by the claim.

The annotation was carried out by one trained
annotator and took 25 hours. The 100 user posts
yielded 920 claim segments and the same number
of paraphrases. Table 2 gives an example. Note that
generally the claim segments may overlap, though
this is not the case in this example. Overall, the seg-
ments covered 79.6% of the text, while the remain-
ing 20.4% may be considered non-argumentative.

3.2 Claim Microstructures

In the second step, we asked two annotators (A1
and A2) to translate each of the 920 paraphrases
into claim microstructures. The annotators were
provided with a domain-specific taxonomy on “Gay
rights”, compiled based on a manual analysis of
claim paraphrases. The taxonomy consists of 150
concepts arranged into a tree of a maximum depth
of four. The annotators were instructed to use the
existing concepts from the taxonomy, and introduce
new ones only if they could not find a suitable one
in the taxonomy. They were also instructed not to
use microstructures of order higher than two.
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User post Claim segment Claim paraphrase Claim microstructure

Men should fall in
love with women
that’s why they
where created and
women should get
married to men
because it makes
everything easier.

Men should fall in love
with women.

People of opposite sex
should fall in love.

desires(entails(OppositeSex, FallingInLove))

that’s why they where
created

Men and women are cre-
ated to pair.

believes(purpose(MenAndWomen, Procreation))

women should get mar-
ried to men because it
makes everything easier.

Heterosexual marriages
make everything easier.

believes(entails(HeterosexualMarriage, Normal))

Table 2: An example of a user post segmented into three claim segments, each paraphrased and translated
into the corresponding claim microstructure.

Out of 920 claim paraphrases, annotator A1 man-
aged to translate 882 claims into 707 distinct mi-
crostructures, while annotator A2 translated 842
claims into 767 distinct microstructures. The aver-
age annotation effort was 33 hours. The number
of claims for which both annotators provided a
microstructure is 819 (89%), while the number of
claims for which both provided an identical mi-
crostructure is only 58 (6.3%), The annotators in-
troduced a total of 157 new concepts, indicating
that the initial taxonomy was of too limited a scope.
The low annotator agreement and the relatively
large number of newly added concepts suggest that
a fair amount of ambiguity exists in translating
paraphrases to microstructures. Our analysis re-
vealed that, in the majority of cases, the ambiguity
is genuine and in such cases having more candidate
microstructures for a single claim can be consid-
ered advantageous.

The analysis also revealed that ‘believes’ is the
most frequent modality, used for about 79% of
claims. For A1, entails is by far the most common
relation (61%), while A2 made a more balanced
use of relations, with the top two being has (21%)
and entails (15%). The concepts most frequently
used by A1 are homosexuality, homosexual people
and marriage, while for A2 these are The Bible,
homosexual people, and government interest.

4 Stance Classification

4.1 Setup

Annotation. We consider claim stance classifi-
cation as one potential application of claim mi-
crostructures. To this end, we asked two annotators
to label the stance of each of 819 claim paraphrases
on a five-point scale: strong favor (F), likely fa-
vor (f), neither (N), likely against (a), and, strong
against (A). We adopt the definition of F, N, and
A stance from Mohammad et al. (2016), with the

Stance

Claim paraphrase A1 A2

Gay couples should be able to experience par-
enting.

F F

Gay couples don’t have children. N N

By natural means, infertility is wrong. a a

A homosexual relationship lacks the ability to
procreate.

a A

Table 3: Claim stance annotations.

Regression Classification

Features 5-way 5-way 3-way-N 3-way-E

seg-w2v 0.084 0.230 0.259 0.383
seg-tfidf 0.133 0.170 0.248 0.297

par-w2c 0.133 0.170 0.248 0.297
par-tfidf 0.250 0.290 0.487 0.377

ms-onehot 0.316 0.320 0.507 0.473
ms-path 0.331 0.315 0.501 0.462

Table 4: Stance classification macro-averaged F1-
score using segments (seg), paraphrases (par), and
microstructures (ms) as features. The best result in
each group is shown in boldface.

addition of the in-between options (f and a) for in-
dicating implicit or indirect stance. Table 3 shows
some examples. On the five classes, we observe
a moderate inter-annotator agreement of 0.53 Co-
hen’s κ (Cohen, 1960). The aggregation was done
by first removing 16 instances on which the anno-
tators disagreed in stance polarity, and then averag-
ing and rounding the two labels by treating them
as numbers from the [−2,+2] interval.

Baselines. We compare against two baselines,
which, to the best of our knowledge, are consid-
ered state of the art for stance classification (Sob-
hani et al., 2016): (1) a sum of skip-gram vec-
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tors (Mikolov et al., 2013)2 for each word and a
(2) tf-idf unigram and bigram representation of
a claim. For baselines, we use these representa-
tions on claim segments (seg). For the sake of
completeness, we also run the baselines on claim
paraphrases (par), but note that this serves only as
a reference, as obtaining paraphrases is arguably a
task that is more difficult to automate than obtain-
ing microstructures.

Microstructures. To represent the claim mi-
crostructures (ms), we adopted a simple one-hot
encoding scheme: we use one one-hot vector for
each of the modalities, relations, relation negations,
concepts, and opinion holders concatenating the
vectors into a single feature vector (onehot). In
addition, to leverage the taxonomical relations be-
tween concepts, we experimented with encoding
for each concept its ancestors in the taxonomy, by
encoding the nodes along the path leading from the
root to the concept (path).

Models. We used support vector machine (SVM)
classifier and regression models with an RBF ker-
nel, as implemented in the LibSVM library of
Chang and Lin (2011). We trained and evaluated
the models on 803 claim instances (either seg-
ments, paraphrases, or microstructures) using a
5×3 nested cross-validation, using grid search to
optimize hyperparameters C and γ.

Tasks. We considered four task: (1) a 5-way re-
gression setup, in which the model is trained to
predict the numeric stance score, but afterwards
the predictions are rounded and mapped to labels,
(2) a 5-way classification task, (3) a 3-way classi-
fication task in which the implicit labels (a and f)
are mapped to neutral (3-way-N), and a (4) 3-way
classification task in which the implicit labels are
mapped to explicit for and against labels (3-way-E).
The last two tasks are easier, so we expected the
models to perform better on these tasks.

4.2 Results

Table 4 shows the classification results in terms
of macro-averaged F1-score. As expected, the
3-way classification tasks are easier than 5-way
classification tasks. Furthermore, the 5-way re-
gression model performs better than 5-way classi-
fier, suggesting that using distance-sensitive loss
is beneficial for this task. In all four tasks, the

2We use the pre-trained vectors available at
https://code.google.com/p/word2vec/

claim microstructures considerably outperform
both segment-based baselines, yielding between
9 and 25 points of improvement in F1-score, de-
pending on the task. All differences between the
baseline and the microstructure model are statis-
tically significant at p<0.05 (tested using a two-
tailed permutation test (Yeh, 2000)). By comparing
with claim paraphrases as a reference, we find that
microstructures give comparable performance for
5-way and 3-way-N classification tasks (the differ-
ences are not statistically significant at p<0.05),
while for 5-way regression and 3-way-E classifi-
cation tasks the microstructures outperform para-
phrase representations. Finally, the performance
difference between one-hot encoded microstruc-
tures and microstructures with path-encoded con-
cepts are not statistically significant at p<0.05, sug-
gesting that stance classification did not profit from
encoding taxonomical relations.

In the above experiments, the results for mi-
crostructures were obtained on annotations of A1.
The models trained on annotations of A2 gave con-
sistently lower performance, albeit still better (and
statistically different) than the baseline.

We conclude the experimental section by noting
that microstructures improve claim stance classifi-
cation performance over a segment-based baseline
by a maximum of 50.7% F1-score for a 3-way clas-
sification setup.

5 Conclusion and Future Work

We presented a framework for representing the mi-
crostructures of claims. A microstructure expresses
the relations between domain-specific concepts,
and is intended to capture the beliefs, value judg-
ments, and desired policies conveyed by claims. In
the proof-of-concept study, we manually annotated
microstructures for one debating topic. The anno-
tators were able to translate 89% of claims into
microstructures, thus proving the viability of the
approach. We next demonstrated the usefulness of
microstructures on the task of claim stance classifi-
cation, where a simple encoding of microstructures
yielded notable performance improvements over
segment-based baselines. This in turn suggests that
a claim microstructure does a good job in capturing
the argumentative gist of the claim.

We note, however, that this is a preliminary study,
which has left aside some important practical is-
sues. While our results are promising, the major
question now is how to automatically extract the
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microstructures from text. In our study, the claims
were segmented and paraphrased by human anno-
tators; an end-to-end system would need to both
segment out the claims and extract the correspond-
ing microstructures. We believe that one way to
tackle this problem might be to frame it as an infor-
mation extraction task.

In our preliminary study, the annotators managed
to translate most of the claims into microstructures.
However, the low agreement rate (6.3%) suggests
that the annotation workflow could perhaps be im-
proved.

Another issue worth investigating is the applica-
tion of the framework to a new domain: the tedious
work of deriving a domain-specific taxonomy of
concepts and the microstructures could perhaps be
alleviated using active learning methods.

Finally, it would of course be interesting to inves-
tigate the use of microstructures in other opinion
mining and argument mining tasks, including tasks
that could profit from analyzing the logical links
between claims. We intend to pursue some of these
directions in future work.
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Abstract

Different theories posit different sources
for feelings of well-being and happiness.
Appraisal theory grounds our emotional
responses in our goals and desires and
their fulfillment, or lack of fulfillment.
Self-Determination theory posits that the
basis for well-being rests on our assess-
ments of our competence, autonomy and
social connection. And surveys that mea-
sure happiness empirically note that peo-
ple require their basic needs to be met for
food and shelter, but beyond that tend to be
happiest when socializing, eating or hav-
ing sex. We analyze a corpus of private
micro-blogs from a well-being application
called ECHO, where users label each writ-
ten post about daily events with a happi-
ness score between 1 and 9. Our goal
is to ground the linguistic descriptions of
events that users experience in theories of
well-being and happiness, and then exam-
ine the extent to which different theoretical
accounts can explain the variance in the
happiness scores. We show that recurrent
event types, such as OBLIGATION and IN-
COMPETENCE, which affect people’s feel-
ings of well-being are not captured in cur-
rent lexical or semantic resources.

1 Introduction

There has recently been huge interest in well-
being, with a recent review arguing that psycho-
logical well-being plays a causal role in promot-
ing job success, physical health, and long-term re-
lationships (Lyubomirsky et al., 2005; Kahneman,
1999). In this paper we analyze a corpus of private
micro-blogs from a well-being application called
ECHO, with the aim to detect, understand, and fur-

RECORDING (Negative): I have to clean the kitchen since
it’s my chore this week, but I really don’t want to do it!
REFLECTION (Positive): I’m glad I did it!! The kitchen
was clean and I watched the kardashians while doing it!

RECORDING (Positive): I am having a lovely lunch with
my two friends. We are eating at Pacific Thai. Tom yu-
umm!!
REFLECTION (Negative): I miss hanging out with friends,
I’ve been so busy lately.

Figure 1: RECORDING and REFLECTION of Echo

ther advance systems that can improve both short
and longer-term issues with well-being.

ECHO initiates user-written reactions to daily
events, called RECORDINGS, as well as subsequent
REFLECTIONS on those events at points in the fu-
ture (Isaacs et al., 2013).1 Each reaction is labelled
at the time of recording or reflection by the user,
the first-person experiencer, with a happiness rat-
ing from 1 and 9. Note that all users’ posts and
ratings are private, distinguishing this corpus from
public sources like LiveJournal, where the content
of posts might be influenced by considerations of
self-presentation. Figure 1 shows a RECORDING

and REFLECTION from two users, after binning the
happiness ratings into positive and negative.

Our goal is to ground the linguistic descrip-
tions of events that users experience, such as those
in Figure 1, in theories of well-being and hap-
piness. Without such a grounding, it is difficult
for the ECHO system to make recommendations
to users to improve their well-being, or to explain
the relationships between different event types and
well-being, or to develop a policy that can do a
good job of selecting events for targeted reflec-
tion (Konrad et al., 2015; Isaacs et al., 2013). That
is, for ECHO’s purposes, we need techniques that

1The ECHO corpus is not publicly available because of
the ethical agreement with ECHO users. To protect users’
privacy, the uploaded images are not stored for analysis.
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not only reliably categorize a user’s scalar happi-
ness level, but are explanatory with respect to the
sources of that happiness level.

There are two principal challenges to this goal.
First, different theories posit different sources for
feelings of well-being and happiness. Second,
the relevant computational resources for senti-
ment or mood are primarily lexically based, while
many of the events can only be characterized well
via their compositional semantics (Reschke and
Anand, 2011).

Other research also shares our motivation of un-
derstanding the relationship between what peo-
ple say and their levels of happiness and related
moods. Mishne (2005) used a corpus of 340,000
posts from Livejournal that were self-annotated
with the 40 most common moods. Lexical fea-
tures alone improved classification accuracy by 6
to 15% over a balanced baseline. These results
were then improved considerably (Keshtkar and
Inkpen, 2009). Mihalcea and Liu (2006) exper-
imented with the subset of happy/sad posts, and
used conditional probability to explore the “hap-
piness factor” of various terms, and the relation-
ship of these terms to well-being categories such
as human-centeredness and socialness. Schwartz
et al. (2016) extract 5,100 public status updates on
Facebook and have Turkers annotate them using
Seligman’s dimensions for well-being: Positive
Emotions, Engagement, Relationships, Meaning,
and Accomplish (Seligman et al., 2006; Forgeard
et al., 2011). They then predict each dimension
with lexical and LDA topic features.

A related line of work builds lexico-semantic
resources for sentiment analysis with a focus on
how the participants of an event are affected by it.
Goyal and Riloff (2013) bootstrap a set of patient-
polarity verbs from narratives and Ding and Riloff
(2016) extract event-triples from blogs that reli-
ably indicate positive or negative affect on one of
the event participants. Reed et al. (2017) take a
similar approach. Deng et al. (2013) annotate how
participants of an event are affected, and Deng
& Wiebe (2014) show that this assists inference
about the author’s sentiment towards entities or
events. Balahur et al. (2012) use the narratives
produced by the ISEAR questionnaire (Scherer
et al., 1986) for first-person examples of partic-
ular emotions (“I felt angry when X and then Y
happened”) and extract sequences of subject-verb-
object triples, which they then annotate for seven

basic emotions. Choi & Wiebe (2014) use Word-
Net to try to learn similar patterns, and Rupen-
hofer & Brandes (2015) annotate synsets in Ger-
maNet based on an event decomposition frame-
work. Russo et al. (2015) proposed a shared task
for recognition of a set of pleasant and unpleasant
events from a clinical framework for well-being
(MacPhillamy and Lewinsohn, 1982). Work on
AFINN, SentiWordNet and the Connotation Lexi-
con also aim to refine existing sentiment resources
to capture more subtle notions of sentiment (Feng
et al., 2013; Kang et al., 2014; Baccianella et al.,
2010; Nielsen, 2011).

Here we report an exploratory study where we
synthesize theoretical constructs associated with
well-being and happiness from different sources.
We then develop several methods for characteriz-
ing events in terms of these theories. We examine
the extent to which different theoretical accounts
can explain the variance in the happiness scores
in ECHO. We show that each theory explains a
part of the variance, but that our event character-
izations need to be more fine-grained. We show
that several recurrent event types which affect peo-
ple’s feelings of well-being, such as OBLIGATION

and INCOMPETENCE, are not captured in current
lexical or semantic resources.

2 Background and Motivation

ECHO is designed to encourage users to react to
daily events as well as to periodically reflect on
past events (Isaacs et al., 2013). Figure 2 depicts
the user interface, showing a RECORDING from to-
day, as well as prompts to reflect on events from
the past. ECHO has been deployed with 134 users,
in three different experiments on well-being (Kon-
rad et al., 2016b,a). The total corpus consists of
10354 posts, where 7573 are RECORDINGS and
2781 are REFLECTIONS. While the corpus could
be considered relatively small, these posts provide
a window onto users’ private thoughts as opposed
to what users are willing to make public on social
media. In addtion, the annotations for happiness
are provided by the user, the first-person experi-
encer, and not by a third party.

Our aim is to explain users’ emotional reac-
tions to different categories of events mentioned
in ECHO posts, linking the user reactions directly
to theories of well-being as exemplified in Table 1.

Influential accounts such as Appraisal Theory
(Scherer et al., 2001, 1986; Ortony et al., 1990)
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Row # Source Subtype Affect Example

1 Goals Achieved POS I applied to an scholarship got a large chunk of my read-
ing done and got started cramming for next test .

2 Thwarted NEG Wasn’t able to get back in time for my class section .

3 Eudaimonics Autonomy POS Good day at work had the right support and students
were listening and behaving which was awesome.

4 Lack-Autonomy NEG Long list of things to do before going out tonight.
5 Competence POS After working hard and spending so many countless

hours, I finally finished my project for my psych class !
6 Incompetence NEG My midterm was really long and I didn’t finish.
7 Connection POS Having a nice time with my parents watching the Open-

ing Winter Olympic Ceremony.
8 Lack or Neg-Connection NEG My friend needs a bone marrow biopsy and chemo.

9 Hedonics Savouring POS I love home cooking! Especially if it’s Italian.
Savouring NEG The bus was rather packed and had a few people bump

into me from where I was sitting.

Table 1: Examples of Theoretical Categories and Instantiations in ECHO

Figure 2: Screenshot of the Echo Interface

argue that success or failure in personal goals di-
rectly mediates affect. Rows 1 and 2 in Table 1.
Such mediation arises because emotions have an
important adaptive signaling function that serves
to motivate future behaviors in relation to those
goals. Row 1 provides a description from ECHO

of successfully achieving goals. Appraisal the-
ory posits that goal achievement promotes posi-
tive affect, which then serves to reinforce the rele-
vant behavior. Row 2 provides an example of fail-
ing to achieve an important personal goal, which

is posited to promote negative affect, motivating
people to modify current behaviors to change that
negative outcome.

There are significant critiques of the adaptive
goal-based account espoused in Appraisal theory.
Appraisal theory focuses on short-term personal
goals, but Eudaimonic psychologists instead focus
on what determines long-term happiness. Eudai-
monic theorists suggest that certain fundamental
psychological needs have to be satisfied for people
to experience sustained positive long-term emo-
tions. Self-determination theory argues that there
are 3 basic psychological needs: AUTONOMY,
COMPETENCE and CONNECTION (Deci and Ryan,
2010; Ryan and Deci, 2000; Bandura, 1977). We
add these to our inventory in Table 1 in Rows 3
to 8. According to self-determination theory, sat-
isfaction of these basic needs results in positive
emotions. Row 3 describes a good day at work.
Row 5 describes feeling competent because hard
work led to an achievement, and Row 7 describes
feeling connected with family. On the other hand,
if these basic needs are not satisfied, then negative
emotions will regularly arise. For example, obli-
gations to do things one does not feel like doing
(Row 4), or a job that does not engage personal
decision making or involvement (lack of auton-
omy) can make one feel unhappy. Similarly, peo-
ple may feel unhappy due to an experience where
the demands of the situation outstrip one’s basic
abilities, such as doing poorly on a test (lack of
competence), as in Row 6. In addition, bad things
happening to friends (Row 8) as well as separa-
tion from family or friends often reduces happi-
ness (lack of connection).
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In addition, there is strong evidence from
SAVOURING theory (Jose et al., 2012; Bryant
et al., 2011) arguing that people often experience
highly positive or negative emotions arising from
situations that aren’t directly goal-related, and that
relate more directly to basic drives (Maslow, 1943;
Elson, 2012). For example, experiences such as
eating, experiencing nature, sex and physical exer-
cise tend to engender positive emotions, whereas
pain, discomfort and inactivity have the opposite
effects, and these are documented in results from
happiness surveys (Kahneman et al., 2004; Selig-
man et al., 2006). Thus while experiences such as
eating may serve the survival goal of preventing
starvation, avoiding starvation is unlikely to be a
direct personal goal every time we eat, suggest-
ing that such experiences are not explained by Ap-
praisal theory. Similar arguments have been made
by Lewinsohn and colleagues who have shown
that encouraging people to engage in certain sim-
ple activities (shopping, mowing the lawn, driving,
personal hygiene) have quite predictable effects on
mood without engaging significant personal goals
(MacPhillamy and Lewinsohn, 1982; Lewinsohn
et al., 1985; Lewinsohn and Amenson, 1978).

3 Empirical Approach

Dataset Pos Neg Total

Train 4743 3180 7923
Test 810 515 1325

Table 2: Number of Sentences for Train and Test

We start with the 10354 posts from the ECHO

corpus and map happiness scores between [1, 4] to
negative, and scores between [6, 9] to positive. For
posts labelled 5 by the experiencer, we categorize
it as negative if its REFLECTION score decreases to
lower than 5, and positive if its REFLECTION score
increases. We label the rest of the 5s as neutral,
and leave them aside. We then have 5997 posi-
tive posts and 3573 negative posts. We randomly
sample 2868 posts as training data, and 478 as test
data. We keep the rest of the 6224 posts untouched
for future work. Then we split the posts into sen-
tences. Table 2 shows the splits for each class.

We first test the separability of the positive and
negative sentences with an SVM classifier from
Weka 3.8, using as baselines only unigrams and
LIWC (Pennebaker et al., 2001) as features. Re-
sults for these baseline classifiers are in Table 3,

Features Metric Pos Neg All

UniGram Prec 0.75 0.66 0.72
Rec 0.81 0.59 0.72
F1 0.78 0.62 0.72

LIWC Prec 0.72 0.72 0.72
Rec 0.89 0.45 0.72
F1 0.80 0.55 0.70

Table 3: Weighted Metrics for SVM on Test

Unigram LIWC

fun affect,posemo,leisure
good affect,posemo,drives,reward
we we,social,drives,affiliation
lunch bio,ingest
glad affect,posemo
want cogproc,discrep
why interrog,cogproc,cause
need cogproc,discrep
no negate
not negate,cogproc,differ

Table 4: The most informative UniGram features
weighted by Information Gain

LIWC Words

negemo stress*, sad, sick, hate
posemo fun, well, great, love
negate dont, didnt, no, cant, havent
anger hate, frustrat*, annoying
i i, my, me, im, myself
differ but, not, really, didnt
leisure fun, game*, relax*, family
discrep want, need, would, should
sad sad, miss, hurt*, missed
risk stop, problem*, avoid*
anx stress*, nervous, worried
ingest food*, dinner*, lunch*
body sleep, slept, stomach*
insight feel, know, think, found
affiliat we, friends, friend, love
reward good, got, get, great
feel feel, feeling, felt, hard
family family, mom, sister*, dad
we we, our, us, weve, lets

Table 5: The most informative LIWC features
ranked by Information Gain.

illustrating that the positive and negative classes
can be separated with F1 above .70, and that both
unigrams and LIWC perform worse on the nega-
tive class.

However, as discussed above, the word level
representations of the features in the baselines
do not help us with our goal to understand how
linguistic descriptions of events that affect well-
being map onto theoretical constructs. Table 4 and
Table 5 provide the most informative UniGrams
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Well-Being Frames Example Lexical Units

Goal Desiring, Intentionally Act, Purpose want, feel like, hope, wanted, wish, do, did, done, doing, does,
plan, purpose, in order, intention, goals

Autonomy
& Obliga-
tion

Being obligated, Required event,
Avoiding, Inhibit movement,
Have as requirement, Complaining

complain, grumble, complaints, have to, had to, should, having
to, need, get to, had to, have to, got to, should, avoid , ducking,
take, need, needed, requires

Competence Activity done state, Attempt, Capabil-
ity, Bungling, Difficulty, Practice, Ac-
tivity finish, Accomplishment

finished, trying, try, tried, effort, attempt, efforts, can, could,
exercise, practice, rehearsal, exercising, able, ability, unable,
messed up; ruined; screwed up , ruin, hard, difficult, easy,
tough, easier challenging, impossible, a breeze, hardest, finish,
finishing, completed, accomplished, achieve

Connection
& Lack-of
Connection

Death, Forming relationships, So-
cial event, Kinship, People, Peo-
ple by residence, Telling, Communica-
tion response

birthday, married, divorce, befriend, dinner, social, party, pic-
nic, mom, family, parents, sister, cousin, told, tell, informed,
people, girl, man, roommate, reply, answers, answer, reacted

Savouring Emotions of mental activity, Feel-
ing, Annoyance, Desirability, Food,
Chemical-sense description, Ambi-
ent temperature, Emotions-by-stimulus,
Stimulus focus, Intoxicants, Commu-
nication noise, Experiencer Focus,
Perception experience, Biological urge,
Death

enjoyed, like, hate, glad, annoyed, cry, yelled, whooped,
honked, irritated, feel, feeling, yummy, alcohol, weed, drugs,
dope, see, felt, seeing, hear, experience, senses, experiences,
taste, feel, delicious, tasty, sweet, food, coffee, bread, cheese,
good, bad, great, better, best, horrible, worst wonderful, weird,
nice, relaxing, annoying, interesting, sad, weird enjoyable,
comforting, entertaining, unpleasant, hilarious, rest, relaxation,
exhilarating, tiring, nicer, disturbing, disappointing, embar-
rassing, irritating, upsetting, heartbreaking, consoling, tedious,
traumatic, chilling, calming, frightening touching, pleasure, sat-
isfying, fascinating, tired, exhausted, sleepy, hungry, nauseated,
horny

Table 6: Frame Categories and Associated Well-Being Classes.

and LIWC categories. We cannot recommend to
an ECHO user that they should for example, try to
use the word why less (Row 7) because it is corre-
lated with negative feelings, or try to use less nega-
tion (Rows 9 and 10). It is difficult to associate
these features with well-being classes. Even in
cases where the words seem to be strongly related
to a well-being category, a single word typically
fails to provide enough information, e.g., “it was
fun talking to him” and “worked on a fun project”
belong to different well-being classes. Moreover,
the mapping of LIWC categories to words are
many-to-many, e.g. the “discrep” category con-
tains words related to both Goals and Autonomy.
We posit that we need compositional semantic fea-
tures to ground our a Well-Being classification of
events.

We thus explore two different methods for map-
ping these well-being event categories into lexi-
cal descriptions, one of which is top-down and the
other which is bottom-up. Our top-down method
is based on mapping general event types from
FrameNet to the theoretical categories enumerated
in Table 1. We take frame specific features for
each theoretical category from the lexical units for
each frame. For example, GOALS are often dis-

cussed in terms of specific frames from the Desir-
ing and the Intentionally act classes, as shown in
the first two rows of Table 6.

We show that FrameNet features do pro-
vide an interesting level of generalization but
much of the compositional semantics of events
is still missing from this characterization (Sec-
tion 4). Thus, our bottom-up method applies
the AutoSlog linguistic-pattern learner to induce
lexically-grounded predicate patterns from the
ECHO data (Section 5). We show how many light
verbs acquire a specific semantics with their ar-
guments, and how common events like “Talking”
are separated into positive and negative events de-
pending on whether they are “Talking about” or
“Talking with”.

4 Frames and Well-Being

Table 6 provides our posited mapping from frame
categories to the appraisal category of GOALS as
well as to the eudaimonic categories of AUTON-
OMY, COMPETENCE and CONNECTION, and to
the hedonic category of SAVOURING. To develop
features related to these frame categories, we ap-
ply SEMAFOR (Das et al., 2013) to label the
ECHO posts with their corresponding frames using
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FrameNet 1.5 (Baker et al., 2015; Baker, 2014).
We partition frame features into subsets corre-
sponding to the different theoretical constructs as
defined in Table 6. We acknowledge that our map-
ping may not be perfect, and that some frames
could conceivably be categorized as both goal re-
lated and eudaimonic.

Features Metric Pos Neg All

GOALS Prec 0.62 0.49 0.57
Rec 0.94 0.09 0.61
F1 0.75 0.15 0.51

EUDAIMONIC Prec 0.63 0.58 0.61
Rec 0.93 0.16 0.63
F1 0.75 0.25 0.56

SAVOURING Prec 0.61 0.44 0.55
Rec 0.97 0.04 0.61
F1 0.75 0.08 0.49

ALL FRAMES Prec 0.69 0.74 0.71
Rec 0.91 0.38 0.70
F1 0.78 0.50 0.67

Table 7: Coverage of Different Theoretical Cate-
gories.

We train an SVM with each feature subset, and
evaluate the models on our test set, with results in
Table 7. The general ALL FRAME feature is also
listed for comparison. The .67 F1 of FRAME is
slightly lower than LIWC in Table 3, but in our
view, more interpretable. In addition, the aver-
age count of FRAME features per sentence is an or-
der of magnitude less than LIWC features (hence,
much less than unigram features), suggesting the
targeted power of these features. See Table 8. We
posit that FRAMES are thus more discriminative
than LIWC for well-being classes, and that FRAME

features are more naturally categorized into well-
being categories at a semantic level.

Features Dataset Pos Neg Total

UniGram Train 8.5 9.9 9.1
Test 8.1 9.8 8.7

LIWC Train 25.4 31.4 27.8
Test 23.8 30.6 26.4

ALL FRAMES Train 2.7 5.2 3.7
Test 3.3 4.0 3.6

Table 8: Average Feature Counts for Sentence

The Goals section of Table 7 shows that Ap-
praisal theory does well at predicting positive
events, but performs poorly for negative events,
primarily due to low recall. All features achieve

Features Metric Pos Neg All

AUTONOMY Prec 0.0 0.39 0.15
Rec 0.0 1.0 0..39
F1 0.0 .56 0.22

COMPETENCE Prec 0.56 0.58 0.60
Rec 0.98 0.04 0.61
F1 0.76 0.07 0.49

CONNECTION Prec 0.62 0.58 0.60
Rec 0.97 0.06 0.62
F1 0.76 0.11 0.49

Table 9: Results for Individual Eudaimonic Cate-
gories.

good F1 for the positive class, but not the negative
class. This is consistent with the results in Table 3.

The EUDAIMONIC features include Autonomy
& Obligation, Competence and Connection. The
SVM trained with just eudaimonic features pro-
duces the highest F1 score for the negative class,
highlighting the role of eudaimonic related events
in negative well-being. See Table 7. The results
for an breaking eudaimonic into its constituent cat-
egories is in Table 9. The results show that most
of our autonomy categories are related to nega-
tive autonomy, to obligations that cause feelings
of negative well-being. On the other hand, the re-
sults indicate that competence and connection play
a large role in positive well-being.

The top 25 most informative frame features
are illustrated in Table 10 (out of 639 instanti-
ated in ECHO). These illustrate general events for
well-being, but compositional differences, such as
“spending my nights by the side of my textbook”
and “spending my nights with friends” are not cap-
tured. The first “spend (time)” evokes the theo-
retical construct of obligation, while “spend (time
with)” is related to connection.

5 Linguistic Pattern Learning

We also apply Autoslog-TS, a weakly supervised
linguistic-pattern learner as a way of learning
some compositional patterns. Autoslog only re-
quires training documents labeled broadly into
our two classes of POSITIVE or NEGATIVE. The
learner uses a set of syntactic templates to define
different types of linguistic expressions. In gen-
eral, this method tends to produce high precision
(and potentially low recall) markers of the partic-
ular classes that can seed further hypothesizing.

The left-hand side of Table 11 lists example pat-
tern template and the right-hand side illustrates
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Well-Being Frame Affect Example

GOALS Desiring POS I think it went well and I hope I did a good job.
Intentionally act NEG My midterm was really long and I didn’t finish.

AUTONOMY Being obligated NEG I’m mad that I had to drive all the way to Fresno.
Required event NEG I need to stay awake and listen, but it ’s hard.

COMPETENCE Capability POS I feel so empowering whenever I’m able to help others.
Attempt NEG Tried to chat with some people online, did n’t work out.

CONNECTION Kinship POS My mom and I hung out and walked around for 6 hours .
Telling NEG I wonder how much they will tell me my teeth are bad today.

SAVOURING Chemical-sense description POS Yummy burgers and sides.
Food POS Made homemade ice cream with my husband:...cookie dough

Table 10: Top Frame Categories and Associated Well-Being Classes.

a specific lexico-syntactic pattern (in bold) that
represents an instantiation of each general pattern
template for learning well-being patterns in our
data.2

In order to enable selection of particular pat-
terns, AutoSlog-TS computes statistics on the
strength of association of each pattern with each
class, i.e. P(POSITIVE | p) and P(NEGATIVE | p),
along with the pattern’s overall frequency. We
define two tuning parameters for each class: θf ,
the frequency with which a pattern occurs, θp, the
probability with which a pattern is associated with
the given class. AutoSlog lets us systematically
explore tradeoffs with precision and recall. Here
we select θf and θp to optimize F1 on our test set.
For more detail, see (Riloff, 1996; Oraby et al.,
2015).

Our primary interest here is Autoslog’s ability
to learn compositional patterns. Autoslog can, in
principle, provide three kinds of information: i)
it can provide supplement the lexical units for a
given frame; ii) it can supplement the frames in a
well-being category; and iii) it can reveal reliable
markers of mood that well-being categories do not
capture. Because our interest in frames is ulti-
mately as a way of relating well-being categories
with linguistic signals, we will not distinguish (i)
and (ii) here.

Here we discuss all patterns with a θp > .7 Sev-
eral lexicosyntactic patterns fit within our well-
being categories but are not captured by frames,
while as expected there are overlaps between
FrameNet and Autoslog as well. Examples are
listed in Table 12. One large class includes
straightforward lexical patterns: FINISHED, FIN-

2The examples are shown as general expressions for read-
ability, but the actual patterns must match the syntactic con-
straints associated with the pattern template.

ISH, and FINALLY which we associate with feel-
ings of comptence. Verbal patterns with EAT

and ATE indicate savouring, with NOT EAT reli-
ably marking negative sentences. The frames also
show many specific types of food (cake), and we
use a comprehensive list from DBpedia (Lehmann
et al., 2014) to collapse all these to the general
type FOOD, allowing us to develop patterns such
as MADE FOOD.

Autoslog also discovers many patterns syntacti-
cally linking content (nouns and verbs) and func-
tion words (e.g., prepositions and light verbs). It
thus furnishes a ready source for multi-word, par-
tially compositional expressions of positivity or
negativity. In what follows, we provide some ex-
amples (note that in the patterns below, expres-
sions in brackets are used to indicate expressions
not part of the pattern that correlate with it in the
data).

There are 262 positive patterns of the form
Verb/Noun + “with”, e.g. TALKED WITH,
DINNER WITH, BREAKFAST WITH, STUDY-
ING WITH, PLAYED WITH, TIME WITH,
MET WITH, SHOPPING WITH, COFFEE WITH,
all of which describe activities that involve
connection. There are also 100 negative patterns
of this form, which are much more heteroge-
nous, involving both negative social experiences
(ARGUMENT WITH, DRAMA WITH, INFURI-
ATED WITH, FIGHT WITH), but also various
problematic events (STRESSED WITH, DIF-
FICULTIES WITH, DISSATISFIED WITH) and
instruments for negative events (STOP WITH,
POISONING WITH). Moreover, while the positive
patterns cover 523 sentences in the data, the
negative patterns cover only 133.

There are 62 patterns involving the string
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Pattern Template Example Instantiations

1 <subj> PassVP <I> am so relaxed after
getting to sleep in and rest
all morning.

2 <subj> ActVP When it does happen, <I>
feel energized because IT
IS a special experience to
me.

3 <subj> ActVP Dobj <I> enjoy his efforts
lately to make me happier.

4 <subj> ActInfVP Found some some stuff but
I AM not sure if <I> want
to keep them.

5 <subj> PassInfVP 2 of <my housemates>
were supposed to clean
on Tuesday and they still
haven’t.

6 <subj> AuxVP Dobj We ate and <We> had a
glass of my favorite wine.

7 <subj> AuxVP Adj <All of the colors> are so
much more vibrant.

8 ActVP <dobj> Cannot wait to study while
eating <this>.

9 InfVP <dobj> Just realized I forgot to
turn in <my homework>.

10 ActInfVP <dobj> I really need to start <my
hw> sooner...

11 Subj AuxVP <dobj> IT IS the Super Bowl today
and THERE IS <a party>
at my house.

12 NP Prep <np> Driving in <the rain> is
scary.

13 ActVP Prep <np> Almost as if I forgot some-
thing terribly important or
I messed up <something>
important in my life.

14 PassVP Prep <np> And I feel like I did but
just this once I messed up
and I might be punished for
<it>.

15 InfVP Prep <np> Felt amazing to be done
with <finals>!

16 <possessive> NP <Her> attitude is not
working anymore.

Table 11: AutoSlog-TS Templates and Example
Instantiations

“talk”, 32 positive (71 items) and 30 negative
(66 items). The positive ones strongly indicate
connection (e.g., TALK WITH, HAVE TALK,
REMEMBER [TO] TALK, GOT [TO] TALK,
TALK THROUGH). In contrast, the negative index

either the obligation to talk (e.g., TRYING TALK,
NEED TALK, HAVE [TO] TALK) or a failure to
talk (e.g., NOT TALK TO, NOT WANT TALK,
STOP TALKING).

There are 36 patterns with the string ‘go’, 12
positive (16 items) and 24 negative (40 items).
There are 34 patterns involving the past tense form
“went”, which reverses the polarity to 25 posi-
tive patterns (273 items) and 9 negative (9 items).
Across the two versions of the lemma, the positive
patterns provide several expressions for savour-
ing (WENT/GO ON/FOR [a walk, a hike, a ride],
WENT/GO SHOPPING/SWIMMING, WENT/GO TO

[the mall, a movie]). For the negative, the predom-
inance of ‘go’ comes from the fact that they are
largely negated (NOT GO TO [the movies]) or in
infinitive contexts that suggest obligation ([HAVE

TO] GO TO [class], [HAVE TO] GO WORK). Sim-
ilarly, the positive class contains 9 patterns with
‘bought’ and 1 with ‘buy’ (ENTICED [TO] BUY)
and the negative class has 6 patterns with
‘bought’ and 16 with ‘buy’, all emphasiz-
ing buying necessities (BUY GROCERIES/TICKET,
NEED/WANT BUY, NOT BUY) Thus, even though
these expressions all involve the same verbs and
prepositions, the surrounding environments, as re-
flected in the form of the verb, split between posi-
tive and negative sentence classes.

There are 73 bigram patterns of the form
NEW X, 56 positive (83 items) and 17 negative (21
items). In general, the positive ones describe new
objects – SHIRT, SHEETS, COMPUTER, CLOTHES,
TEA – and acquaintances (NEW FRIEND), thus en-
compassing both Connection and possibly Savour-
ing. In contrast, the negative patterns describe
changes to routines – HABITS, school QUARTER,
PROFESSOR, LIVING [conditions], or SCHEDULE

– which are likely to engender a sense of instabil-
ity, and hence be Eudaimonically negative.

Thus, these patterns illustrate that Autoslog can
serve as a high-precision method of building addi-
tional patterns – especially compositional ones –
for a given well-being category.

6 Conclusions and Future Work

In this paper, we have advanced a synthetic cate-
gorization of the sources for well-being and hap-
piness. We have used a corpus of private micro-
blogs from the ECHO application to explore how
well we can map linguistic expressions of well-
being to this classification. We have shown that
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Prob. Freq. Pattern and Text Match Sample Post
Positive Example Patterns

1.00 11 ActVp Prep <NP> (WENT ON) I just went on a hike this is the best thing ever.
1.00 7 <subj> ActVP Dobj (MADE FOOD) Made a German pancake for breakfast.
1.00 7 NP Prep <np> (CATCHING WITH) Catching up with old friends!
1.00 7 ActVP <dobj> (USED) Used the Laurel’s Kitchen Bread Book recipe.
1.00 6 ActVP Prep <np> (GOT OFF) Got off work.
1.00 4 NP Prep <np> (TALK WITH) Having a really nice talk with my aunt.
0.95 18 ActVP <dobj> (FINISHED) Finished my paper.
0.78 39 ActVP <dobj> (TOOK) Took a walk after class and truly enjoyed the outdoors!
0.78 25 <subj> ActVP (ATE) We ate and had a glass of my favorite wine.
0.73 11 InfVP Prep <np> (SPEND WITH) Happy to simply spend time with friends.

Negative Example Patterns
1.00 9 InfVP <dobj> (AVOID) Better buy ... in smaller packaging to avoid wasting again.
1.00 8 ActVP <dobj> (USE) All she did was use water and wipe a few corners.
1.00 7 InfVP <dobj> (STOP) I need to stop smoking.
1.00 6 <subj> ActVP Prep <np> (NOT TALK TO) And now my bf is busy and can’t talk to me.
1.00 5 <subj> ActVP Dobj (TEXTED ME) He texted me finally but then he randomly stopped.
1.00 5 <subj> ActVP (NOT SLEEP) Have to get up early and I can’t sleep.
1.00 4 ActVP <dobj> (NOT FIND) I did not find the time to finish my homework.
0.82 14 <subj> ActVP (REALIZED) I JUST realized that I have to go tomorrow.
0.81 13 <subj> ActVP (TAKE) Since I take around 35 minutes to get ready, I missed ...
0.80 20 ActVP <dobj> (TOLD) Told my mom about my grades.

Table 12: Examples of Characteristic ECHO Patterns using AutoSlog-TS Templates

FrameNet provides useful generalizations, while
the linguistic pattern learner AutoSlog illustrates
the details and challenges of the compositional na-
ture of user’s descriptions of their daily experi-
ences. Moreover, we have demonstrated that, in-
dependently, each of these methods can produce
performance similar to that of conventional lexical
methods with a feature space that is smaller, and,
in the case of FrameNet features, psychologically
grounded. Our Autoslog exploration moreover re-
veals a way of exploring the space of patterns
that our FrameNet mapping has missed. In future
work, we aim to automatically combine these two
methods and bring the Autoslog patterns under the
well-being categorization we have advocated here.
We also plan to investigate new models with the
untouched 6224 Echo posts, as well as larger pub-
lic corpus like LiveJournal.

In addition, we plan to explore the source of the
fact that there are more positive patterns (both as
types and the tokens they capture) than the nega-
tive ones, which directly relates to the lower Neg
recall for all classifiers we tested. While we could
not find any clear reason in our examination of the
data, this asymmetry may indicate that markers of
negativity are more syntactically distributed than

our current list of patterns looks for, or perhaps
less linguistically reliable.
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Abstract

Consumer spending is a vital macroeco-
nomic indicator. In this paper we present
a novel method for predicting future con-
sumer spending from social media data. In
contrast to previous work that largely re-
lied on sentiment analysis, the proposed
method models consumer spending from
purchase intentions found on social media.
Our experiments with time series analy-
sis models and machine-learning regres-
sion models reveal utility of this data for
making short-term forecasts of consumer
spending: for three- and seven-day hori-
zons, prediction variables derived from so-
cial media help to improve forecast ac-
curacy by 11% to 18% for all the three
models, in comparison to models that used
only autoregressive predictors.

1 Introduction

Social media is increasingly reflecting many so-
cial phenomena that previously could be studied
only with traditional surveying techniques such as
telephone or face-to-face interviews. Recent re-
search has demonstrated that it can be used to track
the spread of epidemics (Culotta, 2010), mon-
itor mass emergency situations (Nguyen et al.,
2017), study political preferences during election
campaigns (Tumasjan et al., 2010), predict prod-
uct sales (Elshendy et al., 2017) and stock price
changes (Si et al., 2014).

In this paper we examine the idea that social
media can provide useful evidence about con-
sumer confidence, a macroeconomic indicator de-
scribing the propensity of households to consume
goods and services in the near future. Consumer
confidence is one of the most crucial indicators
of the health of an economy, as consumer spend-

ing constitutes the largest component of GDP in
many developed countries. Government institu-
tions and market research agencies compile their
consumer confidence indices on a regular basis.
Among the best-known ones are the Consumer
Sentiment Index produced by University of Michi-
gan for the US and GfK’s Income Expectation and
Willingness-to-buy indicators for the EU. These
measures are obtained using traditional surveys,
which have significant drawbacks: they are costly
to conduct, based on low-frequency observations
and published with substantial delays. Social me-
dia data hold the promise to overcome these draw-
backs.

Previous research studied models of consumer
spending trained on search engine data, based on
the intuition that web searches for product names
indicate intended purchases (Vosen and Schmidt,
2011; Scott and Varian, 2015; Wu and Brynjolf-
sson, 2015). Search engine data, however, do
not capture the context of the purchase intention,
such as the context available on social media in
the form of extended coherent text, and thus are
more likely to contain noise. A number of stud-
ies aimed to estimate a consumer confidence in-
dex from social media using sentiment analysis
(O’Connor et al., 2010; Daas and Puts, 2014; Ig-
boayaka, 2015). These methods derive a sentiment
index from messages related to the economic out-
look, which is compared with an official index to
detect correlation or to train a model to predict it.

In contrast to this work, our method aims to
model future consumer spending from purchase
intentions expressed on social media. The method
determines phrases referring to intended purchases
and creates their condensed semantic representa-
tions, which are then used in a regression model
alongside autoregressive predictors. Our experi-
ments with time series analysis models (Seasonal
Autoregressive Integrated Moving Average) and
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machine-learning regression models (AdaBoost
and Gradient Boosting) demonstrate utility of this
data for making short-term forecasts of consumer
spending. We find that for three- and seven-day
horizons the semantic predictors help to improve
forecast accuracy by 11% to 18% for all the three
models.

The main novel contributions of this paper are
(i) a prediction model that uses semantic informa-
tion obtained from purchase intentions, which al-
lows on the one hand, to abstract from specific lex-
ical data, and on the other, reduce the complexity
of the model; (ii) a study of optimal forecast hori-
zons for the model that uses this information; (iii)
an investigation of possibilities to incorporate se-
mantic predictors with endogenous variables (i.e.,
lagged values of the consumer spending index)
within the model.

The remainder of the paper is organized as fol-
lows. In the next section we review related work.
The proposed method is described in Section 3.
Section 4 details experimental setup. Results and
their discussion are presented in Section 5. Sec-
tion 6 concludes.

2 Related work

2.1 Sentiment analysis

A popular approach in previous work on mod-
elling economic indicators from textual data has
been to use automatically detected sentiment of
documents. The study by O’Connor et al. (2010)
predicts consumer confidence from sentiment
found in Twitter posts that contain pre-defined
keywords, such as ”economy” or ”job”. Sentiment
is assessed using a lexicon-based method and a
daily sentiment index is constructed, which is then
used as a predictor in an ordinary least-squares
model of the ICS index. Daas and Putz (2014) take
a similar approach, using a commercial sentiment
analyser and a list of economy-related keywords,
to study consumer confidence in Dutch social me-
dia. They find their sentiment measure to correlate
and co-integrate with an official consumer index.
Georgoula et al. (2015) use time-series analysis to
study the relationship between Bitcoin prices, fun-
damental economic variables, and measurements
of collective mood derived from Twitter. Using
an SVM classifier trained on tweets mentioning
Bitcoin, they obtain a sentiment measure which
is used as a variable in an OLS and a VECM
models. Souza et al. (2016) examine the relation-

ship between Twitter sentiment, on the one hand,
and the trade volume, returns, and volatility of se-
lected stocks, on the other. Their method uses a
domain-independent SVM classifier to construct
a daily sentiment index, which is then used in a
VAR framework along with the economic vari-
ables. Granger causality tests are used to identify
causality links between these variables.

2.2 Lexical analysis
Sentiment analysis is known to be a difficult NLP
problem, where accuracy varies greatly depend-
ing on domain customization. Therefore, meth-
ods that use lexical information instead seem to be
an interesting alternative. Dergiades et al. (2015)
examined raw counts of Twitter and Facebook
posts containing ”Grexit”-related words, detect-
ing causality from them to changes in Greek gov-
ernment bonds for the same time period using
Granger causality tests. Scott and Varian (2015)
use search engine queries as predictors of Con-
sumer Sentiment Index. To deal with the ”fat re-
gression” problem (the number of potential pre-
dictors is similar or even greater than the num-
ber of available observations), they introduce a
Bayesian method to select predictor variables.

To deal with a large number of predictors de-
rived from lexical data, various dimensionality re-
duction techniques have been proposed. Cousse-
ment and Van den Poel (2008) predict customer
churn from the text of call centre emails. Creat-
ing classification features using Latent Semantic
Indexing applied to the email corpus, they com-
bined them with features traditionally used to pre-
dict customer churn (such as product usage data)
in a maximum entropy classifier, and found that
the former were helpful in identifying customers
prone to churn. Rönnqvist and Sarlin (2015) anal-
yse news articles to predict ”bank distress” events,
such as government interventions. Their approach
constructs para2vec (Le and Mikolov, 2014) rep-
resentations of news articles which are input into
a neural network model to predict a distress score
for a bank.

2.3 Combining sentiment and lexical data
Several papers used a combination of sentiment
and lexical information in their models. Hansen
and McMahon (2016) assess the effect of cen-
tral bank communications on different market and
real economic variables. From a corpus of central
bank publications, they estimate an LDA model
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and manually select those topics that have to
do with a discussion of economic outlook. A
dictionary-based sentiment analysis is used to ob-
tain a monthly sentiment index, which is input as a
variable in a Factor-Augmented VAR framework.
Archak et al. (2011) present a hedonic regression
model of product sales that uses customer reviews
of the products as input. The reviews are analysed
to extract nouns as potential references to prod-
uct features and adjectives related to the nouns as
potential evaluative phrases. The noun-adjective
co-occurrences are arranged into a matrix which
is then transformed using a technique similar to
ANOVA decomposition. The reduced dimension-
ality matrix is input as variables of a regression
model, along with non-textual variables such as
the price of the product. Si et al. (2014) use a com-
bination of lexicon-based sentiment analysis and
LDA topics extracted from Twitter posts contain-
ing a stock’s ticker symbol, on which the stock’s
price is regressed using a VAR model.

3 Proposed method

Our method aims to predict an official consumer
spending index from the mentions of purchase in-
tentions. Specifically, we expect that the semantics
of noun phrases that are stated as intended pur-
chases will be predictive of the official index for
a certain number of subsequent days. The method
consists of the following steps. First, tweets men-
tioning a purchase intention are collected from
Twitter API. Second, noun phrases referring to the
objects of the intended purchases are extracted and
their daily counts are obtained to create a noun-
by-date matrix. In order to account for semantic
similarities between the nouns, a word2vec model
is used to create a semantic vector for each date.
Finally, a regression model of the consumer index
is trained that uses the semantic vectors as well as
lagged values of the index. These steps are de-
tailed in the following sections.

3.1 Detecting purchase intention

Prior work on recognizing intentions have used
both rule-based (Hamroun et al., 2016) and ma-
chine learning approaches (Chen et al., 2013). In
this paper we opt for a rule-based method, as it can
ensure high precision, while recall is of a less con-
cern considering large volumes of available data.
To obtain tweets mentioning purchase intentions,
we issue a set of queries to the Twitter Search

API, which are meant to capture common ways
to express an intention to buy something. They
are created from combinations of (1) first-person
pronouns (”I” and ”we”), (2) verbs denoting in-
tentions (”will”, ”’ll”, ”be going to”, ”be looking
to”, ”want to”, ”wanna”, ”gonna”), and (3) verbs
denoting purchase (”buy”, ”shop for”, ”get one-
self”), thus obtaining queries such as ”I will buy”
or ”we are going to buy”.

The text of each tweet is cleaned (any material
outside of the grammatical text is removed) and
processed with a part-of-speech tagger. PoS tag
patterns are then applied to extract the head noun
of the noun phrase following the purchase verb
(e.g., ”headphones” in ”I am looking to buy new
headphones”). After that, daily counts of the head
nouns are calculated.

3.2 Semantic vectors

To represent the semantics of the nouns, we use
the word2vec method (Mikolov et al., 2013) which
has proven to produce accurate approximations
of word meaning in different NLP tasks (Baroni
et al., 2014). A word2vec model is a neural net-
work that is trained to reconstruct the linguistic
context of words. The model is built by taking
a sequence of words as input and learning to pre-
dict the next word, using a feed-forward topology
where a projection layer in the middle is taken
to constitute a semantic vector for the word, af-
ter connection weights have been learned. The se-
mantic vector is a fixed-length, real-valued pattern
of activations reaching the projection layer. For
each word, the input text originally has a dimen-
sionality equal to the vocabulary size of the train-
ing corpus (typically millions of words), but the
semantic modelling provides reduction to the size
of the vector (typically several hundreds). The
reduced dimensionality helps to reduce the com-
plexity of the models, prevent overfitting, and is
beneficial in computationally intensive classifica-
tion and regression algorithms.

For each date, we map each noun that was
observed on that day to a semantic vector, us-
ing word2vec vectors trained on a large corpus
of Twitter posts. The semantic vectors of all the
nouns for each day are then averaged to obtain a
single vector. The components of the vectors will
then be used as variables in regression models.

To allow for some time between the stated pur-
chase intention and the actual purchase, we exper-
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iment with different numbers of days between the
day on which intentions were registered and the
day for which the value of the consumer spending
index is predicted.

3.3 Combining endogenous and exogenous
variables

Our method makes predictions based on endoge-
nous variables (i.e., lagged values of the index it-
self) and exogenous variables (i.e., semantic vec-
tors obtained from Twitter). Thus, given a tar-
get value of the consumer spending index yt at
day t, a lag p, a k-dimensional semantic vector,
and allowing for s days between the day when
purchase intentions were registered and the day
for which spending was reported (i.e., day t), a
training instance is composed of endogenous vari-
ables yt−1, yt−2, ..., yt−p and exogenous variables
x1

t−s, x
2
t−s, ..., x

k
t−s.

We implemented two ways to combine the two
types of variables to obtain a prediction. The first
is simple concatenation of the variables into one
vector of predictors. The second involves first
training separate regression models for the en-
dogenous variables and semantic variables sepa-
rately, and then using the predicted values of each
to train a third model that outputs the final pre-
dicted value.

3.4 Regression methods
In our experiments we include the following re-
gression methods1.

SARIMA(X). The Seasonal Autoregressive In-
tegrated Moving Average (SARIMA) is a variety
of the general ARIMA model. ARIMA(p,d,q) is
defined via terms p, d, and q, where p represents
the number of time-lagged variables; d− the num-
ber of differences required to remove seasonality
and make the forecast variable stationary; and q
− the number of time-lagged error parameters to
account for an observed moving average. The or-
ders of p and q can be identified using an auto-
correlation and a partial autocorrelation function,
or using information criteria, such as Akaike IC,
or estimated from a validation set. The degree of
differencing can be determined using stationarity
tests such as the Dickey-Fuller test. Given order
values, coefficients of the model can be estimated
by least square regression or maximum likelihood
estimators.

1We use the implementations in the scikit-learn and
statsmodels packages.

SARIMA is formed by including additional sea-
sonal terms: SARIMA(p, d, q)(P , D, Q)m, where
P , D, and Q are used to represent seasonal au-
toregressive model, the degree of seasonal differ-
encing, and the seasonal moving average, corre-
spondingly, while m stands for the length of the
seasonal period. To identify the P , D, Q, and m
terms, the autocorrelation and partial autocorrela-
tion algorithms or information criteria can also be
used.

SARIMAX is a SARIMA that allows for one
or more exogenous variables to be included into
the regression. We input the semantic vector as
exogenous variables into SARIMAX.

AdaBoost Regression. AdaBoost (Freund and
Schapire, 1996) is a machine-learning ensemble
algorithm that uses the entire training data to suc-
cessively train a series of weak learners, such as
decision stumps. After one weak model is trained,
the algorithm identifies the most difficult instances
and computes their weights to exaggerate their ef-
fect on the training of the next model. The ob-
jective of this step is to ”teach” the next model to
correctly predict the test instances on which er-
rors were made. Initially all instances have the
same weight and hence have the same impact on
training of the initial model. After each iteration,
the weights of instances are adjusted, while the
weights of instances with accurate predictions are
decreased. Furthermore, each model is assigned a
weight based on its overall accuracy. During the
testing phase, the forecast values and the weights
of the models are taken into account to produce a
weighted average value.

Gradient Boosting Regression. Gradient
Boosting (Friedman, 2001) is a gradient descent
ensemble algorithm, which, similar to other boost-
ing methods, operates by sequential training of
weak models, which collectively would form a
strong model. This is accomplished by training
successive regression models on the residuals of
the previous model, computed from errors it made.
With each training round, Gradient Boosting im-
proves the previous model by adding to it a new
model that is trained only on the residuals, thus
gradually fixing up errors made in the previous
steps. To prevent overfitting, we additionally use
an early stopping technique: the training of the
model stops, if the validation loss has been in-
creasing in four consecutive iterations.

During evaluation, we experimentally deter-
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mine parameters of AdaBoost and Gradient Boost-
ing on a validation dataset using the grid search
technique. The model with the best parameter
configuration is then evaluated on the test set.

4 Experiment setup

4.1 Data

Consumer Spending Index. As the forecast vari-
able in our model, we use the Gallup Consumer
Spending Index (CSI) 2. The index represents the
average dollar amount Americans report spending
on a daily basis. The survey is conducted using
telephone interviews with approximately 1,500
national adults. Respondents are asked to reflect
on the day prior to being surveyed and provide an
estimate of how much money they spent on that
day. The eventual index is presented as a 3-day
and a 14-day rolling averages of these amounts. In
our evaluation, we used the 3-day values of CSI,
between October 1, 2015 and July 31, 2016, i.e.
297 days in total.

Twitter. For the same period, we collected
Twitter posts that originate from the US and that
express intentions to buy, obtaining the total of
68,730 messages. Counts of nouns referring to
purchases were extracted and rolling averages for
each noun for three-day periods were calculated.
To eliminate noisy data, we selected the 1000 most
common nouns to construct semantic vectors.

Semantic vectors. Considering the amount
of available training instances, we use the 25-
dimensional vectors pre-trained on a large corpus
of Twitter posts from the GloVe project3.

Train-validation-test split. The available data
was divided into the training, validation and test
parts, in proportion 60%-20%-20%. The CSI val-
ues and their split into the three parts are shown
in Figure 1. Because we use seven-day lags to cre-
ate endogenous variables, there are seven-day gaps
between the train and validation sets as well as be-
tween the validation and test sets there are seven
day gaps, to ensure that no training data is used
for validation or testing.

4.2 Evaluation method

Once a model was trained on the training set and
its parameters optimized on the validation set, it

2http://www.gallup.com/poll/112723/gallup-daily-us-
consumer-spending.aspx

3Available at https://nlp.stanford.edu/projects/glove/

was evaluated on the test set using dynamic fore-
casting: given the first day t of the test set, and the
forecast horizon h, the model predicted h days in
the future, for each day from t2 to th the values
predicted by the model for previous days were in-
put as endogenous variables. In the following, we
report results for h = 1, 3 and 7.

As evaluation metric, we use the Root Mean
Squared Error (RMSE):

RMSE =

√√√√ 1
T

T∑
n=1

(yn − ŷn)2

where yn and ŷn are the actual observation and the
predicted value at day tn, and T is the set of test
values.

As the baselines, we use prediction models
trained with the same algorithms but only on en-
dogenous variables.

5 Results and discussion

5.1 SARIMA

5.1.1 Parameter identification
To construct a SARIMA(p, d, q)(P , D, Q)m
model, we follow the Box-Jenkins procedure (Box
and Jenkins, 1990) for time-series models. First,
we establish that the time series being mod-
elled is stationary using both DF-GLS, a version
of the Dickey-Fuller test (a unit root hypothe-
sis rejected at α=0.001, for 8 auto-selected lags),
and the Kwiatkowski-Phillips-Schmidt-Shin test
(a stationarity hypothesis cannot be rejected at
α=0.1 for auto-selected lags). Thus, no differenc-
ing is required and we select the d parameter of the
non-seasonal part to be 0.

Next, we identify the other two non-seasonal
parameters using autocorrelation and partial au-
tocorrelation plots (see Figure 2), as the number
of lags at which the two functions enter the 95%
confidence interval, thus suggesting p=1 and q=1.
Examining ACF, we also find indications of sea-
sonality: there are spikes at lags 7 and 8 and at
13 and 14 lags, but these spikes die down fairly
quickly. This observation suggests a weekly sea-
sonality (m = 7) as well as stationarity at the sea-
sonal level.

Additionally, we tested different values for p
and q as well as P and Q using Akaike In-
formation Criterion, Bayesian Information Crite-
rion, and Hannan-Quinn Information Criterion for
time-series model selection. The results, shown
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Figure 1: Train-validation-test split in the CSI values.

Figure 2: Auto-correlation and partial autocorre-
lation functions of CSI.

in Tables 1 and 2, largely agree with parame-
ter identification based on ACF and PACF, and
suggest that the optimal model takes the form
SARIMA(1,0,2)(0,0,2)7, which we thus used in
further experiments.

AIC BIC HQIC
(1,0,2) -267.49 (1,0,2) -251.58 (1,0,2) -261.03
(3,0,4) -267.22 (1,0,3) -248.02 (1,0,3) -259.37
(1,0,3) -267.11 (2,0,2) -246.76 (2,0,2) -258.11
(1,0,4) -266.48 (1,0,4) -244.2 (1,0,4) -257.44
(3,0,2) -266.25 (3,0,2) -243.98 (3,0,2) -257.22

Table 1: Identification of non-seasonal AR and
MA parameters in SARIMA based on Akaike IC,
Bayesian IC and Hannan-Quinn IC.

AIC BIC HQIC
(3,0,5) -245.45 (0,0,2) -148.88 (0,0,2) -203.74
(0,0,2) -241.15 (0,0,3) -145.5 (0,0,3) -202.24
(0,0,3) -240.95 (1,0,2) -144.99 (1,0,2) -201.74
(1,0,2) -240.45 (0,0,4) -141.4 (3,0,5) -200.29
(0,0,4) -240.04 (2,0,2) -140.63 (0,0,4) -200.04

Table 2: Identification of seasonal AR and MA
parameters in SARIMA based on Akaike IC,
Bayesian IC and Hannan-Quinn IC.

Horizon=1 Horizon=3 Horizon=7
Lag 0 14.93 13.72 13.74
Lag 1 14.79 14.16 12.61
Lag 2 15.85 14.57 14.91
Lag 3 14.88 14.37 14.72
Lag 4 16.02 16.28 15.97
Lag 5 15.03 13.37 14.07
Lag 6 15.21 14.78 14.7
Lag 7 15.27 14.86 14.12

Table 3: RMSE on the test set of SARIMA at dif-
ferent forecast horizons, for different lags between
the day of registered purchase intentions and the
forecasted CSI.

5.1.2 Lag length between purchase intention
and spending index

Having identified the parameters of SARIMA for
endogenous variables, we tested its quality with
exogenous (i.e., semantic) variables supplied to it.
To do that, we varied the number of days between
the day of the CSI index and the day on which
purchase intentions were registered that were used
to forecast the index. These results are shown in
Table 3.

The lag of one day seems a good choice: it is the
best for the forecast horizons of 1 and 7 days, and
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Train Validation Test ∆, %

Horizon=1
Endogenous 7.15 13.46 15.09 −
Endog+Semantic 5.77 13.88 14.79* -1.9
Horizon=3
Endogenous 7.15 13.83 15.44 −
Endog+Semantic 6.65 14.26 13.37* -13.4
Horizon=7
Endogenous 7.15 13.46 15.09 −
Endog+Semantic 5.78 13.74 12.52* -17.03

Table 4: SARIMAX vs. baseline SARIMA. Im-
provements on the baseline are in bold, significant
improvements (at p < 0.05) are indicated with an
asterisk.

one of the best settings for the horizon of 3 days. It
can be noted that for all the horizons RMSE values
are considerably higher for lags greater than 1.

5.1.3 Adding exogenous variables
Table 4 compares SARIMAX with the optimal
intention-index lag and the baseline SARIMA, for
the three forecast horizons, on the train, validation
and test datasets. The last column shows the dif-
ference of SARIMAX to the baseline as percent-
age of RMSE change. Statistical significance of
the difference to the baseline was measured us-
ing a paired t-test. The results show that the ad-
dition of semantic variables leads to significantly
improved forecasts, for all the three horizons, and
the improvements tend to become greater as the
forecast horizon increases: at h=7, the reduction
in RMSE is 17%.

5.2 AdaBoost
5.2.1 Lag length between purchase intention

and spending index
As the first step in experiments with AdaBoost, we
examined different lags between the day on which
purchase intentions were expressed and the day
for which CSI was forecasted. To that end, we
trained AdaBoost models on only semantic vari-
ables for different lag values. The performance
of these models is shown in Table 5. Note that
the results are the same for all the three forecast
horizons, since the models included only on ex-
ogenous variables and past predicted values are
not used to forecast the current value. These re-
sults suggest that the best lags are between 4 and 6
days, this contrasts with the findings for SARIMA,
where the optimal was lag 1.

AdaBoost Gradient Boosting
Lag 0 15.34 12.91
Lag 1 14.78 12.98
Lag 2 14.38 12.71
Lag 3 14.24 13.59
Lag 4 13.59 13.18
Lag 5 13.8 13.09
Lag 6 13.38 12.86
Lag 7 15.21 12.86

Table 5: RMSE on the test set of AdaBoost and
Gradient Boosting, for different lags between the
day of registered purchase intentions and the fore-
casted CSI.

Train Validation Test ∆, %

Horizon=1
Endogenous 5.94 8.86 9.61 −
Endog+Semantic 6.22 10.38 11.05 +14.9
Ensemble 7.16 10.16 11.92 +24.0
Horizon=3
Endogenous 5.94 9.38 14.58 −
Endog+Semantic 7.39 12.69 12.61 -13.5
Ensemble 9.16 11.39 14.51 0.0
Horizon=7
Endogenous 7.23 9.72 14.33 −
Endog+Semantic 4.73 11.99 11.69* -18.4
Ensemble 9.44 11.6 11.94* -16.6

Table 6: AdaBoost models with exogenous vari-
ables vs. Baseline AdaBoost.

5.2.2 Adding exogenous variables
Table 6 describes evaluation of two ways to in-
troduce exogenous variables to forecast CSI with
AdaBoost: the concatenation of endogenous and
exogenous variables into one vector of predictors
(”Endog+Semantic”) and the ensemble method
(”Ensemble”, see Section 3.3). The last col-
umn shows each method’s difference to the base-
line (”Endogenous”). Because the experiments
with SARIMA revealed that the CSI values have
weekly seasonality, we use seven lagged values as
endogenous variables in the AdaBoost algorithms.
Exogenous variables are semantic variables at lag
6, which was found to be the optimal in the previ-
ous step.

Similar to the SARIMA results, these results
also indicate that exogenous variables become
beneficial as forecast horizons increase: at h=1,
the baseline could not be beaten, but at h=3 and
h=7 both methods which use exogenous variables
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Train Validation Test ∆, %

Horizon=1
Endogenous 4.51 9.48 9.52 −
Endog+Semantic 2.47 10.22 10.49 +10.1
Ensemble 6.46 9.04 9.05 -4.9
Horizon=3
Endogenous 4.92 9.72 13.18 −
Endog+Semantic 4.55 10.83 13.28 0.0
Ensemble 8.56 9.43 11.62 -11.8
Horizon=7
Endogenous 2.99 10.6 13.98 −
Endog+Semantic 4.55 10.68 12.07 -13.6
Ensemble 9.96 9.56 14.65 +4.7

Table 7: Best Gradient Boosting settings vs.
Baseline.

improve on the baseline, often to a statistically
significant level. The greatest improvement is
achieved at h=7 with the concatenation method,
which reduced RMSE by 18%.

5.3 Gradient Boosting
5.3.1 Lag length between purchase intention

and spending index
As with the other regression methods, we first
looked at the effect of the lag between the pur-
chase intentions and the forecasted index on Gra-
dient Boosting: for each lag between 0 and 7, a
model was trained using only exogenous variables.
The results are shown in Table 5.

While the best lag was found to be the lag of
2, the differences between the lags are not very
prominent and tend to stay within 7% of each
other. This result is still at odds with what was
found for SARIMAX and AdaBoost. In subse-
quent experiments with Gradient Boosting, exoge-
nous variables were used to forecast CSI at the lag
of 2.

5.3.2 Adding exogenous variables
Table 7 describes the performance for Gradient
Boosting models when exogenous variables are in-
troduced via concatenation with the endogenous
ones (”Endog+Semantic”) and via an ensemble re-
gressor that combines separate predictions made
with endogenous and exogenous variables (”En-
semble”). The results again suggest that exoge-
nous variables become helpful at longer forecast
horizons: while at h=1 the concatenation method
fails to outperform the baseline, and for the en-
semble method the RMSE reduction is only 4.9%,

the improvement on the baseline at h=3 and h=7
reaches 13.6%. The ensemble method tends to
fare better than the concatenation method, but not
consistently so: at h=7 its forecasts are worse than
those of the baseline.

6 Conclusion

In this paper we have presented a new method to
forecast consumer spending from purchase inten-
tions found on social media, aiming to approxi-
mate responses of participants of traditional con-
sumer surveys. In contrast to previous work that
modelled economic confidence from the sentiment
of social media posts, we use semantic models of
nouns that are stated as intended purchases, which,
on the one hand, helps to incorporate richer evi-
dence available in the data, and on the other, cre-
ates low-complexity regression models. The util-
ity of the data was evaluated using three popu-
lar forecasting methods: Seasonal ARIMA, Ad-
aBoost, and Gradient Boosting regressors.

The key findings of this work can be sum-
marized as follows. Adding information on in-
tended purchases as exogenous variables along-
side lagged values of the consumer spending index
often yields statistically significant improvements
over a baseline that is trained on the lag variables
alone. The benefits are greater at longer forecast
horizons: while we found little evidence of im-
provement at one-step ahead forecasts, at the hori-
zons of three and seven days, exogenous variables
reduced forecast errors by between 11% and 18%
for all the regression methods. Furthermore, we
analysed the optimal lag length between the day
on which purchase intentions were registered and
the day for which spending is forecasted, but could
not find any lag values that would be consistently
better than others across the regression methods.

As future work, we plan to further explore the
proposed method on larger datasets. A particular
interesting extension may be a comparison of this
method to those that derive a prediction of con-
sumer spending from search engine queries, con-
sidering that both approaches aim to capture con-
sumer purchase intentions, but do so using very
different types of user-generated content. An-
other promising extension may study techniques
for eliminating the demographic bias present on
social media, in order to create models that better
approximate real-world data on consumer spend-
ing.
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Abstract

Video reviews are the natural evolution of
written product reviews. In this paper we
target this phenomenon and introduce the
first dataset created from closed captions
of YouTube product review videos as well
as a new attention-RNN model for aspect
extraction and joint aspect extraction and
sentiment classification. Our model pro-
vides state-of-the-art performance on as-
pect extraction without requiring the usage
of hand-crafted features on the SemEval
ABSA corpus, while it outperforms the
baseline on the joint task. In our dataset,
the attention-RNN model outperforms the
baseline for both tasks, but we observe im-
portant performance drops for all models
in comparison to SemEval. These results,
as well as further experiments on domain
adaptation for aspect extraction, suggest
that differences between speech and writ-
ten text, which have been discussed exten-
sively in the literature, also extend to the
domain of product reviews, where they are
relevant for fine-grained opinion mining.

1 Introduction

On-line videos have become indispensable to peo-
ple’s daily lives, as traffic statistics showed that
by 2010 it accounted for 56.6% of the total global
consumer traffic (Siersdorfer et al., 2010). Studies
support the notion that on-line reviews can have a
strong influence in the decision-making of poten-
tial Internet buyers (Chevalier and Mayzlin, 2006),
thus becoming a major factor for both consumers
and marketers (Hu et al., 2008).

Video reviews are the natural evolution of writ-
ten product reviews. In fact, people are increas-
ingly turning to platforms such as YouTube to help

them shop, looking for product reviews (Lawson,
2015). YouTube unboxing videos have become
a growing phenomenon (Lawson, 2015; Insights,
2014). In 2015 alone, people in the U.S. watched
60M hours of them on YouTube, totaling 1.1 B
views. The same year, views of product review
videos increased by 40% compared to 2014, and
more than 1 million channels related to product re-
views were counted (Baysinger, 2015). Despite all
of this, the most widely used approaches in opin-
ion mining focus only on tweets or written product
reviews available on websites like Amazon.

Therefore, in this paper we present the first
opinion mining study focusing on video product
reviews. We take the fine-grained approach, which
aims to detect the subjective expressions in text
and to characterize their sentiment orientation, and
analyze the closed captions of video product re-
views extracted from YouTube. Fine-grained opin-
ion mining is important for a variety of NLP prob-
lems, including opinion-oriented question answer-
ing and opinion summarization, having been stud-
ied extensively in recent years. In practical terms,
this approach defines the tasks of aspect extraction
(AE), sentiment classification (SC) and a joint set-
ting (AESC).

While AE and AESC have often been tackled as
sequence labeling problem, where the sentence is
a stream of tokens to be labeled using IOB and
collapsed or sentiment-bearing IOB labels (Zhang
et al., 2015) respectively, SC can be regarded as
a semantic compositional problem, where the ob-
tained representation is used to predict the senti-
ment.

Accounting for the patent differences be-
tween speech and written text, which have also
led linguists to consider them as different do-
mains (Biber, 1991) exhibiting different syntactic
(O’Donnell, 1974) and distributional properties,
we created the first annotated dataset using closed
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captions of YouTube product review videos, which
we named the Youtubean dataset.

Motivated by the success of attention-based ap-
proaches in multiple NLP problems such as ma-
chine translation (Bahdanau et al., 2015), parsing
(Vinyals et al., 2015), slot-filling (Liu and Lane,
2016) and others (Luong et al., 2015), we also in-
troduce an attention-augmented RNN model for
AE and AESC. Compared to previous work, the
attentional component makes our model specially
suitable for AESC, since it directly addresses the
compositional nature of the sentiment classifica-
tion task as it allows the model to represent the in-
put sentence as a convex combination of word rep-
resentations. This is confirmed by our results on
the SemEval ABSA dataset (Pontiki et al., 2014),
given that our model offers state-of-the-art perfor-
mance for AESC while also performing equiva-
lently to the state-of-the-art for aspect extraction
without the need for manually-crafted features.

We also show that our attention-RNN model
outperforms the baseline for both AE and AESC on
our dataset. However, we observed that compared
to the SemEval corpora, all the tested models de-
creased their performance on it. As indicated by
a descriptive analysis of our corpus and by addi-
tional experiments using domain adaptation tech-
niques for AE, which did not offer considerable
gains, our results seem to support the existence
of the aforementioned differences between speech
and written text in the context of product reviews
and their importance for fine-trained opinion min-
ing. Our code and data are available for download
on GitHub1.

2 Related Work

Our work is related to aspect extraction using deep
learning, a task that is often tackled as a sequence
labeling problem. In particular, our work is related
to Irsoy and Cardie (2014), who pioneered in the
field by using multi-layered RNNs on a subset of
the MPQA 1.2 dataset (Wiebe et al., 2005). Later,
Liu et al. (2015) successfully adapted the architec-
tures by Mesnil et al. (2013), experimenting on the
SemEval 2014 dataset (Pontiki et al., 2014). Com-
pared to these, our model is novel since it intro-
duces the usage of attention for AE. In this sense,
our work is also related to Liu and Lane (2016),
who introduced an attention RNN for slot-filling
in Natural Language Understanding.

1github.com/epochx/opinatt

We also find related work on the usage of RNNs
for open domain targeted sentiment (Mitchell
et al., 2013), where Zhang et al. (2015) exper-
imented with neural CRF models using various
RNN architectures on a dataset of informal lan-
guage from Twitter. In our case, the domain is
different since we focus on product reviews.

Regarding target-based sentiment analysis, we
find several ad-hoc models that account for the
sentence structure and the position of the aspect
on it, such as Tang et al. (2016b) and Tang et al.
(2016a), who use attention-augmented RNNs for
the task. However, these models require the lo-
cation of the aspect to be known in advance and
therefore are only useful in pipeline models. Our
work is similar to these since it also makes use
of an attentional component to model composi-
tionally in sentiment classification, but we model
aspect extraction and sentiment classification as a
joint task instead of using a pipeline approach.

AESC has also often been tackled as a sequence
labeling problem, mainly using CRFs (Mitchell
et al., 2013). To model the problem in this fashion,
collapsed or sentiment-bearing IOB labels (Zhang
et al., 2015) are used. Pipeline models (i.e. task-
independent model ensembles) have also been ex-
tensively studied by the same authors. We also
find Xu et al. (2014) who performed AESC by
modeling the linking relation between aspects and
the sentiment-bearing phrases.

When it comes to the video review domain,
we find related work on YouTube mining, mainly
focused on exploiting user comments. For ex-
ample, Wu et al. (2014) exploited crowdsourced
texual data from time-synced commented videos,
proposing a temporal topic model based on LDA.
However, Schultes et al. (2013) showed that com-
ments with references to video content2 represent
only 2% to 4% of comments in YouTube. There-
fore, we think this kind of analysis might be lim-
ited. The work of Tahara et al. (2010) introduced a
similar approach for Nico Nico using time-indexed
social annotations to search for desirable scenes
inside videos.

On the other hand, Severyn et al. (2014) pro-
posed a systematic approach to mine user com-
ments that relies on tree kernel models. Addi-
tionally, Krishna et al. (2013) performed sentiment
analysis on YouTube comments related to popular
topics using machine learning techniques, show-

2Class C7 in the paper
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Video title Video id Length # of sentences
Sprint Samsung Galaxy S5 Full Review! jdzbw68mpZE 10:23 97

Samsung Galaxy S5 Review zV0u2UFwv6E 12:07 147
Samsung Galaxy S5 Review - Phones 4u 1lxAO YgZ98 5:07 41

Samsung Galaxy S5 Review Ihe7jm63kU 3:49 45
Samsung Galaxy S5 “Special ”Review & Camera Samples nayKYv 7b6M 12:00 52
Samsung Galaxy S5 vs Apple iPhone 5s: Which Is Better? 1dvzHyHID0k 3:34 32

Samsung Galaxy S5 review bRv5JrKnp3M 24:15 164

Table 1: Detail of the reviews used to create the Youtubean dataset.

ing that the trends in users’ sentiments is well
correlated to the corresponding real-world events.
Siersdorfer et al. (2010) presented an analysis of
dependencies between comments and comment
ratings, proving that community feedback in com-
bination with term features in comments can be
used for automatically determining the community
acceptance of comments.

Finally, we find some papers that have suc-
cessfully attempted to use closed caption min-
ing for video activity recognition (Gupta and
Mooney, 2010) and scene segmentation (Gupta
and Mooney, 2009). Similar work has been done
using closed captions to classify movies by genre
(Brezeale and Cook, 2006) and summarize video
programs (Brezeale and Cook, 2006).

3 Dataset

In YouTube, video authors con provide their own
closed captions, or they can be generated automat-
ically by the engine. In both cases, these cap-
tions can be interpreted as a time-indexed tran-
script of the speech in the video. Therefore, to
minimize the amount of noise in the data, we uti-
lized the user-provided closed captions of seven of
the most popular reviews of the Samsung Galaxy
S5 and creatd an annotated dataset for fine-grained
opinion mining. We obtained, cleaned and pro-
cessed the data, and annotated the aspects follow-
ing the guidelines by Pontiki et al. (2014) using
brat3 (Stenetorp et al., 2012). We divided the an-
notation process into two steps.

First, two different annotators tagged aspects in-
dependently, obtaining an exact inter-annotation
agreement of 0.705 F1-score. This value rose to
0.823 when allowing for partial matches, which
we defined as any overlap between the annotated
terms. Discrepancies were discussed until a final
setting was reached.

With these annotations fixed, we asked the same
annotators to tag the sentiment of each extracted

3http://brat.nlplab.org/

aspect. On this task, the annotators obtained an
average agreement of 0.942 F1-score. This time,
discrepancies were discussed with a third person
who acted as an arbiter, until an agreement was
reached. Both aspect extraction and sentiment
classification inter-annotator agreements are com-
parable to the values obtained in similar tasks
(Jimenez-Zafra et al., 2015) (Wiebe et al., 2005).

Corpus R L Y
# Sentences 3041 3045 578
# Aspects 1288 1042 525

Mean word/sentence 15.47 16.76 20.71
Mean const. tree depth 9.10 10.16 11.40

Mean word/aspect 1.97 1.83 2.14
Mean aspects/sentence 1.20 0.76 1.38
Sentences with aspects 66.46% 48.87% 66.96%

Table 2: Descriptive corpora comparison.

Table 1 provides some key information about
the the source video reviews we have used to
build our dataset, which we named the Youtubean
dataset. Table 2 compares it to the SemEval Lap-
tops and Restaurants corpora, regarded as the de
facto datasets for written review mining. Several
differences can be observed. A big distinction
lies in mean sentence and aspect lengths, both of
which are considerably longer in Youtubean. We
also analyzed sentence syntax complexity in terms
of the constituency tree depth, observing that our
sentence trees are deeper on average. Further-
more, Youtubean exhibits both longer and more
frequent aspect mentions.

4 Proposed Model

Our proposed model is a two-pass bidirectional
RNN architecture that includes an attentional
component. Formally, given an embedded input
sequence x = [x1, ..., xn] with one-hot encoded
labels y = [y1, ..., yn], we define the first pass as
follows.

x̄i = [xi−d; ...;xi; ...;xi+d] (1)
~hi = σ(x̄i,~hi−1) (2)
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~hi = σ(x̄i, ~hi+1) (3)

hi = [~hi; ~hi] (4)

Where σ denotes the sigmoid nonlinearity, ~hi and
~hi are the forward and backward hidden states of

the RNN, which are concatenated, and x̄i is a con-
text window of ordered word embedding vectors
around position i, with a total size of 2d+ 1. This
context window is intended to improve the model
capabilities to capture short-term temporal depen-
dencies (Mesnil et al., 2013).

The second pass goes through the hidden states
hi and performs sequence labeling token by to-
ken. We use the attentional decoder from (Vinyals
et al., 2015).

ui,j = v> tanh(Wα[hi;hj ]) (5)

αi,j = softmax(ui,j) (6)

ti =
n∑
j=1

αi,j · hj (7)

ŷi = softmax(Ws[hi; ti; yi−1]) (8)

Where ŷi is a probability distribution over the label
vocabulary for input i. As shown, this is obtained
using both the corresponding aligned input hi and
the attention distribution over all hidden states ti,
i.e. using a global attention scheme (Luong et al.,
2015). While generating the output ŷi, we explic-
itly model the dependency on the previous label by
adding yi−1 to the computation. These two com-
ponents are combined using a feed forward neural
network, whose output dimension is the size of the
tag label vocabulary for AE or AESC. To initialize
the attention matrix hn is used so the model does
not bypass it. As a loss function we use the mini-
batch average cross-entropy.

The addition of the attentional component to our
model is motivated by two factors. In the first
place, in contrast to Mesnil et al. (2013) who di-
rectly make use of a window of previous hidden
states for AE, the attentional components allows
us to access contextual information in a more nat-
ural and selective way. For AESC, the attention
directly models sentiment compositionality.

5 Experimental setup

For our experiments, in addition to Youtubean, we
also worked with the SemEval ABSA 2014 Lap-
tops and Restaurants corpora (Pontiki et al., 2014),
which can be regarded as the de facto datasets for
fine-grained review mining. For AE we use the

train/test splits provided for Phase B. For AESC,
since the test data does not have sentiment labels,
we worked only with the training data. On the
other hand, since the size of Youtubean is smaller
than the SemEval corpora, we used 5-fold cross
validation to make results more robust. For each
fold, we used 10% of the development data as a
validation set and compare our results using two-
sided t-tests.

For evaluation, we used the CoNLL conlleval
script for evaluation based on F1-score. To per-
form joint aspect extraction and sentiment classi-
fication, we only considered positive (+), nega-
tive (−) and neutral (0) as sentiment classes, and
the additional conflict class is mapped to neutral.
To gain insights on the output of the models for
AESC, we decoupled the IOB collapsed tags us-
ing simple heuristics to recover the simple aspect
extraction F1-score as well as classification per-
formances for each sentiment class, but we used
the joint tagging conlleval F1-score to evaluate the
models.

As a baseline, we implemented the RNN archi-
tectures by Liu et al. (2015), which are the state-
of-the-art in fine-grained aspect extraction. We
experimented with Jordan-style RNNs (JRNN),
Elman-style RNNs (RNN), LSTMs and the bidi-
rectional versions of these last two. We followed
Irsoy and Cardie (2014) to merge the forward and
backward hidden states, setting yt = σ(~U~ht +
~U ~ht), where ~U , ~U are output matrices for the for-

ward and backward hidden states ~ht, ~ht, respec-
tively. This gives the models more flexibility to
capture complex relations in a sentence, making
them able to learn how to weight future and past
information.

For both our attention-RNN model and the
baseline RNNs, we experimented with Senna em-
beddings (Collobert et al., 2011), GoogleNews
embeddings (Mikolov et al., 2013) and WikiDeps
(Levy and Goldberg, 2014). The usefulness of
working with pre-trained embeddings for the base-
line RNNs was already shown by (Liu et al.,
2015). However, for comparison when experi-
menting with our model, we also used randomly
initialized embeddings of sizes 50 and 300 to test
this hypothesis.

To make our results more transparent, we
explicitly experimented with two different pre-
processing pipelines. We used Senna (Collobert
et al., 2011), which provides both a POS-tagger
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and a chunker, and CoreNLP (Manning et al.,
2014). The latter lacks a chunker so we com-
bined it with the CoNLL chunklink script4. As
Liu et al. (2015), we also experimented adding
the same 14 linguistic binary features they used,
which are based on POS-tags and chunk IOB-tags.
These are concatenated to the hidden layer of the
RNN before the final output non-linearity.

To train our baseline models we set a learning
rate of 0.01 with decay and early stopping on the
validation set. We set a fixed window size of 1 for
bi-directional and 3 for unidirectional models, and
always train word embeddings. Exploratory ex-
periments showed that most models stop learning
after a few epochs —3 or 4— so we only trained
for a maximum of 5 epochs.

In the case of our attention-RNN model
(ARNN), here we only report results using
LSTMs, which outperformed all others cells we
tried on preliminary experiments. We explored
different hyper-parameter configurations, includ-
ing context window sizes of 1, 3 and 5 as well
as hidden state sizes of 100, 200 and 300, and
dropout keep probabilities of 0.5 and 0.8. We
also experimented concatenating the RNN hidden
states after the first pass with the binary features
used by (Liu et al., 2015). Finally, we also experi-
mented with unidirectional versions of the RNNs.
For training, we used mini-batch stochastic gra-
dient descent with a mini-batch size of 16 and
padded sequences to a maximum size of 200 to-
kens. We used exponential decay of ratio 0.9 and
early stopping on the validation when there was
no improvement in the F1-score after 1000 train-
ing steps.

6 Results

6.1 Aspect Extraction (AE)

6.1.1 Laptops
Table 3 summarizes our best baseline results on
the Laptops datasets. For contrast we include
the best F1-scores obtained by Liu et al. (2015)
(cf. F1* columns). We observed the CoreNLP
pipeline outperformed the Senna pipeline, with
an average absolute gain of 2.105%, significant
at p = 1.29 × 10−5, and binary features proved
useful offering average absolute gains of 1.538%
(p = 1.29× 10−5). Finally, note that the best con-
figurations always use SennaEmbeddings, which

4http://ilk.uvt.nl/team/sabine/homepage/software.html

outperformed others significantly for each case.

Model Emb. |h| feat F1 F1*
JRNN Senna 50 No 70.81 73.42
LSTM Senna 100 Yes 70.92 75.00

BiLSTM Senna 50 Yes 69.03 74.03
RNN Senna 50 No 71.87 74.43

BiRNN Senna 50 Yes 69.45 74.57

Table 3: Results of our implemented baseline
RNN models on the Laptops dataset.

Table 4 summarizes the best results of our
ARNN model on the Laptops dataset, where we
obtained a maximum F1-score of 74.74. Again,
the CoreNLP pipeline significantly outperformed
Senna, with an average absolute gain of 1.39 (p =
3.4 × 10−33) F1-score. Bidirectionality provided
an absolute average gain of 1.15 F1-score (p =
4.61× 10−20).

Both SennaEmbeddings and GoogleNews pro-
vided statistically equivalent results (p =
0.65), which were also significantly superior to
WikiDeps with p-values 9.54 × 1017 and 2.6 ×
10−13 respectively. Pre-trained embeddings out-
performed random embeddings on average, com-
paring across same-sized cases. Linguistic binary
features did not statistically contribute to the per-
formance.

Embeddings |d| |cw| |h| F1
SennaEmbeddings 50 1 100 74.74
Random 50 3 300 70.19
WikiDeps 300 3 200 69.53
GoogleNews 300 3 100 71.17
Random 300 3 200 70.03

Table 4: Best results for our ARNN on AE for the
Laptops dataset.

6.1.2 Restaurants
Table 5 summarizes our best baseline results for
the Restaurants dataset, again for contrast we in-
clude the best F1-scores obtained by Liu et al.
(2015) (cf. F1* columns).

Regarding the usage of the linguistic features,
we found that they contributed to increasing per-
formance with an average absolute gain of 1.083%
(p = 1.65 × 10−6). This is consistent with pre-
vious findings by Liu et al. (2015). The Senna
pipeline outperformed CoreNLP with an average
absolute gain of 1.161% (p = 1.02 × 10−8).
Embeddings caused statistically significant differ-
ences, where WikiDeps outperformed both other
embeddings on average.
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Model Emb. |h| feat F1 F1*
JRNN WDeps 100 Yes 78.20 79.89
LSTM WDeps 100 Yes 78.97 81.37

BiLSTM WDeps 200 Yes 74.73 81.06
RNN Senna 200 Yes 77.13 81.66

BiRNN WDeps 100 No 74.33 82.06

Table 5: Results of our implemented baseline
RNN models on the Restaurants dataset.

Table 6 summarizes the best results by our
ARNN model on the Restaurants dataset, where
we obtained a maximum F1-score of 81.83. All
of our best performing models use a bidirectional
architecture. In fact, bidirectionality provided
an average significant absolute gain of 0.89 F1-
score (p = 1.25 × 10−17). Additionally, using
CoreNLP as preprocessing pipeline provided an
average gain of 0.585 F1-score (p = 2.98×10−21)
over Senna.

Embeddings |d| |cw| |h| F1
SennaEmbeddings 50 1 100 81.83
Random 50 3 100 78.79
WikiDeps 300 3 100 78.68
GoogleNews 300 3 300 78.73
Random 300 1 100 78.38

Table 6: Best results for our attention-RNNs on
AE on the Restaurants dataset.

Context windows proved beneficial as con-
firmed by the significantly different average F1-
scores of 76.55, 77.59 and 77.28 for window sizes
1, 3 and 5 respectively. We also observed sig-
nificant performance differences using SennaEm-
beddings, which outperformed all others with an
average F1-score of 77.94. GoogleNews and
WikiDeps exhibited average F1-scores of 76.93
and 76.55, which are statistically different (p =
4.08×10−6) and although they also outperformed
random embeddings for d = 300, they performed
statistically worse than random embeddings for
d = 50. Linguistic binary features did not sta-
tistically contribute to the performance.

6.1.3 Youtubean
Table 7 summarizes our results for baseline RNNs
on Youtubean. Again, we observed that adding lin-
guistic features had a positive effect on the perfor-
mance, with an average absolute gain of 1.30%
(p = 0.01). SennaEmbeddings and WikiDeps
provided better performance compared to Google-
News, with average F1-scores of 49.11, 49.64 and
45.37 respectively. The first two values were sta-
tistically indistinguishable. We could not observe

significant differences in the performance for dif-
ferent pipelines.

RNN Pipeline Emb. Feat. |h| F1
RNN Senna WDeps Yes 100 55.82*
RNN CoreNLP WDeps No 200 55.69*

LSTM CoreNLP Senna No 100 56.13
BiRNN CoreNLP WDeps No 200 50.15

BiLSTM Senna Senna Yes 100 50.09

Table 7: Results of our implemented baseline
RNN models on AE for the Youtubean dataset.

To further study the relation between written
and video product reviews for aspect extraction, a
task that has been broadly studied by our commu-
nity, we complemented our RNNs baseline with
two classic domain adaptation methods. Despite
their simplicity, they are surprisingly difficult to
beat (Daume III and Marcu, 2006). These tech-
niques basically mean using each of the SemEval
corpora as a source (SRC) dataset for transfer
learning, where Youtubean is set as the target
(TGT).

Our first domain-adaptation technique was
WEIGHTED, a method that trains a model on
the union of the SRC and TGT datasets, re-
weighting examples from SRC (Daume III and
Marcu, 2006). We did so by multiplying the input
embedding matrix by the given weight w, which
we set to 0.2 based on the corpus size ratio. For
training, we used 10-fold cross validation, adding
all the examples of the SRC dataset to the train-
ing part of each fold-based arrangement. Since
these model took longer to train we only experi-
mented with the Senna pipeline. We omitted our
bidirectional architectures given their poor per-
formance and always included linguistic features,
which generally contributed to an improved F1-
score in our in-domain models.

RNN SRC Emb. |h| F1
LSTM L Google 50 57.17
RNN L Google 100 55.12
JRNN L WDeps 200 58.30

Table 8: Results for the WEIGHTED technique.

As Table 8 shows, using the Laptops dataset as
SRC gives the best results in each case. Using this
corpus led to an average absolute improvement
over Restaurants of 3.79% (p = 7.76 × 10−11.)
When it comes to embeddings, GoogleNews pro-
vided the best average performance with 53.44 F1-
score. However, this value was statistically indis-
tinguishable at p < 0.08 from WikiDeps, with an
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average 52.8 F1-score.
Our second domain adaptation method was

PRED, which uses the output of a SRC-trained
classifier as a feature in the TGT model. Con-
cretely, we first trained a model using all the ex-
amples on SRC. We then fed that model with all
the TGT examples, adding its outputs as additional
features to the TGT dataset, thus creating a new
augmented version of it. Since these features are
IOB-tags, we concatenate them with the linguis-
tic features. We trained our models on the aug-
mented TGT dataset, choosing the best perform-
ing settings from our previous experiments on AE.

RNN SRC Emb. |h| F1
LSTM L Senna 100 56.83

BiLSTM R WDeps 100 52.81
BiRNN R WDeps 100 52.99*
BiRNN R WDeps 200 52.90*
RNN R WDeps 100 57.70
JRNN R WDeps 200 59.69

Table 9: Results for the PRED technique.

Table 9 summarizes our results for PRED. We
found that using Senna as the pre-processor pro-
vided better results in average, with an 0.89% ab-
solute gain significant at p = 0.01. The Restau-
rants dataset provided better results than Laptops
in average, with an absolute gain of 3.23%, signif-
icant at p = 8.78× 10−6.

Finally, Table 10 shows our best results for our
introduced ARNN in the Youtubean dataset. For
this case, we omitted random embeddings and bi-
nary features as previous experiments showed they
did not contribute to increase the performance.

Embeddings |cw| |h| F1
SennaEmbeddings 3 100 56.28

WikiDeps 3 100 57.21
GoogleNews 3 100 57.67

Table 10: Best results for our ARNNs for AE on
Youtubean.

6.2 Joint aspect extraction and sentiment
classification (AESC)

On our experiments for this task we based our pa-
rameter settings on the results for AE, so we only
used bidirectional ARNN models, and skipped bi-
nary features and random embeddings.

6.2.1 Laptops
Table 11 summarizes our best results for the Lap-
tops corpus. Based on the results for AE, we only

used CoreNLP as a pre-processing pipeline. For
the RNN baseline, embeddings also reported sig-
nificant differences, with SennaEmbeddings of-
fering average absolute gains of 5.78 F1-score
(p = 10−4) over GoogleNews and 2.47 F1-score
(p = 8× 10−3) over WikiDeps.

For training our ARNN we only used the
CoreNLP pipeline, since it significantly outper-
formed Senna in our experiments for AE. All
the values in the table were significantly differ-
ent, although we observed different embeddings
provided statistically equivalent results for certain
lower performing parameter settings.

Tagging F1 Classification F1
Model Emb. single joint + − 0
LSTM Senna 74.30 47.19 77.40 12.63 80.00
RNN Senna 74.08 46.52 77.13 17.70 80.52
JRNN Senna 76.00 46.62 77.97 22.86 80.39
ARNN Google 68.22 46.69 69.23 62.69 86.83
ARNN Senna 72.85 52.46 73.23 69.29 85.59
ARNN Wiki 71.46 50.85 63.94 61.07 83.23

Table 11: Results for AESC on Laptops

6.2.2 Restaurants
Regarding the Restaurants dataset, Table 12 shows
a summary of our best results. For this case, we
only used the Senna pipeline, as it provided bet-
ter results for AE. We found that in the baseline
RNNs SennaEmbeddings outperformed both other
embeddings with average absolute gains of 2.37
(p = 7.2× 10−4) and 3.36 (p = 1.19× 10−6) F1-
score WikiDeps and GoogleNews, respectively.

For our ARNN, as in the previous case, we only
used CoreNLP as preprocessing pipeline given
that it provided better results for AE. All the values
in the table were significantly different.

Tagging F1 Classification F1
Model Emb. single joint + − 0
LSTM Senna 69.24 44.75 67.81 62.40 87.22
RNN Senna 67.08 40.64 70.73 58.47 87.39
JRNN Senna 66.74 40.65 67.04 49.29 86.47
ARNN Google 73.80 50.63 78.90 53.25 81.08
ARNN Senna 79.57 54.75 79.78 46.45 82.70
ARNN Wiki 74.90 52.74 81.47 51.39 83.22

Table 12: Results for AESC on Restaurants

6.2.3 Youtubean
On Youtubean, as Table 13 shows, we see im-
portant performance drops compared to SemEval.
In particular, the baseline models seem to be un-
able to correctly classify negative aspects. For
this dataset, we found out that Senna provides bet-
ter results than CoreNLP with an average abso-
lute gain of 3.94 F1-score, which was significant
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at p = 2.5 × 10−4. Embeddings did not provide
statistically significant differences. Similarly, bi-
nary features did not statistically contribute to the
performance either.

Tagging F1 Classification F1
Model Emb. single joint + − 0
LSTM Senna 41.32 25.38 35.83 9.59 72.53
RNN Senna 47.59 30.12 0 0 76.64
JRNN Senna 42.86 30.45 23.33 0 62.32
ARNN Google 52.84 40.58 45.39 22.07 79.94
ARNN Senna 52.43 41.17 48.05 15.58 80.28
ARNN Wiki 55.50 41.49 52.32 14.85 81.07

Table 13: Results for AESC on Youtubean.

7 Discussion

Results for aspect extraction showed that our im-
plemented RNN baseline performs similarly to the
original models by (Liu et al., 2015), although we
remained unable to replicate their exact numbers.
Despite that, our attention-RNN is able to provide
results that are better than our implementation and
comparable to the original values for both Laptops
and Restaurants datasets. Moreover, we achieved
these results without the need to add the linguis-
tic features, which did not offer significant perfor-
mance differences in our experiments. We think
the variable sentence representation introduced by
the attentional component is able to model some
of the semantics encoded in these binary features.

For aspect extraction in our dataset, we see our
model is able to perform better than the base-
line, again without the need to add manually-
crafted features. However, simple domain adap-
tation techniques applied to the baseline RNNs
managed to obtain the best results, adding a maxi-
mum of 3.56 F1-score over the baseline. We think
this shows that video reviews and written reviews
share some regularities, which could be exploited
further to obtain better results. In this sense, it
would be interesting to apply these domain adapta-
tions techniques to our attention-RNN model and
compare the results. However, regularities among
these domains seem to be limited, given that our
obtained gains were small and that no domain con-
sistently delivered better performance.

Regarding AESC, as shown by our decoupled
results, we see all models slowly decreased their
performance for aspect extraction, compared with
results for AE. This seems reasonable given the ad-
ditional challenges of performing both tasks at the
same time.

When it comes to sentiment classification, we
see our attention-RNN outperforms the baseline

RNNs by a solid margin. However, all models tend
to perform poorly for the negative (−) class. We
believe this may be related to the imbalanced na-
ture of the datasets, or due to the additional com-
position challenges negation involves, which seem
to be critical in our dataset. Compared to the base-
line RNNs, which in some cases seemed basically
unable to detect negative sentiment, our attention-
RNN model offers increased, although yet limited
capabilities to deal with the negative class.

For AESC, we also observed that SennaEmbed-
dings did not always provide top performances,
being outperformed by other embeddings, even
though the former were previously shown to of-
fer the best performance for aspect extraction in
all cases. We think this is related to the nature
of the embeddings, since SennaEmbeddings were
designed for the tasks in (Collobert et al., 2011)
which do not include sentiment, while other em-
beddings can be regarded as general-purpose.

8 Conclusions

In this paper we presented the first fine-grained
opinion mining study focusing on product video
reviews. We introduced the first annotated dataset
for the domain, Youtubean, and aspect extraction
and AESC with a novel attention-RNN. Our model
offered state-of-the art performance for AESC and
results comparable to a strong RNN baseline for
aspect extraction. Our descriptive corpus analy-
sis as well as the performance obtained by all the
models in our dataset suggest that differences be-
tween speech and written text, discussed exten-
sively in the literature, also extend to the domain
of product reviews, where they are relevant for
fine-grained opinion mining. These findings in-
troduce relevant research challenges and concrete
paths for future researchers.

For future work, we plan to increase the size
of our dataset and include reviews extracted from
different product categories. By doing this, we in-
tend to make our results more robust and to further
study the differences between written and video
review, ultimately deriving new ways to overcome
them. Finally, we also want to exploit the addi-
tional data from YouTube, such as the audio, video
or specific frames extracted from it, and user com-
ments, to improve our results.
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Abstract

1 Abstract

Emotions can be triggered by various factors. Ac-
cording to the Appraisal Theories (De Rivera,
1977; Frijda, 1986; Ortony et al., 1988; Johnson-
Laird and Oatley, 1989) emotions are elicited and
differentiated on the basis of the cognitive evalua-
tion of the personal significance of a situa-tion, ob-
ject or event based on appraisal criteria (intrinsic
characteristics of objects and events, sig-nificance
of events to individual needs and goals, individuals
ability to cope with the con-sequences of the event,
compatibility of event with social or personal stan-
dards, norms and val-ues). These differences in
values can trigger re-actions such as anger, disgust
(contempt), sad-ness, etc., because these behav-
iors are evaluated by the public as being incom-
patible with their social/personal standards, norms
or values. Such arguments are frequently present
both in main-stream media, as well as social me-
dia, building a society-wide view, attitude and
emotional reac-tion towards refugees/immigrants.
In this demo, I will talk about experiments to
annotate and de-tect factual arguments that are
linked to human needs/motivations from text and
in consequence trigger emotion in the media au-
dience and pro-pose a new task for next year’s
WASSA.
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Did you ever read about Frogs drinking Coffee?
Investigating the Compositionality of Multi-Emoji Expressions

Rebeca Padilla López and Fabienne Cap

Abstract

In this work, we present a first at-
tempt to investigate multi-emoji expres-
sions and whether they behave similarly
to multiword expressions in terms of non-
compositionality. We focus on the com-
bination of the frog and the hot bever-
age emoji, but also show some preliminary
results for other non-compositional emoji
combinations. We use off-the-shelf senti-
ment analysers as well as manual classi-
fications to approach the compositionality
of these emoji combinations.

1 Introduction

Emojis do not only represent faces, but also con-
cepts and ideas such as weather, objects, or activ-
ities (Pavalanathan and Eisenstein, 2016). We as-
sume that these “concept” emojis are not always
used as literal representations, but that there are
many instances of their use as indicators of a cer-
tain emotion or intention. In this paper, we fo-
cus on two such “concept” emojis: the frog face
emoji and the hot beverage emoji. We want to
analyse the sentiment value of these emojis when
used together and when used separately. By look-
ing up tweets that contain the emojis and clas-
sifying them as positive, neutral or negative, we
show that the meaning of the combination of these
emojis is non-compositional, and could not be in-
ferred from the meaning of its components. This
is in-line with the behaviour of multi-word expres-
sions and motivates for further study of the phe-

Figure 1: Frog face, hot beverage, tropical drink, cocktail
glass, teacup without handle, clapping hands sign, nail polish
and lipstick.

nomenon. The choice of emojis is based on what
has been observed in social media sites such as
Facebook, Twitter and Tumblr. The users of these
sites seem to use these emojis with a definite emo-
tion and intention in mind. This is likely to have its
origin in a popular internet meme known as “But
That’s None of My Business”.

According to Know Your Meme1, this meme
represents “a sarcastic expression used as a
postscript to an insult or disrespectful remark said
towards a specific individual or group”. Thus, this
is the kind of sentiment we expect to find in tweets
that include both the frog face and the hot bever-
age emoji. When analysing tweets that only in-
clude the frog face emoji, we expect the sentiment
to be neutral. For the hot beverage emoji, we as-
sume a neutral sentiment too. When it comes to
the frequency distribution of words, the separate
meanings of the hot beverage emoji and the frog
face emoji are expected to be quite literal. It is ex-
pected to find that words related to frogs and bev-
erages are very common in these tweets, but not in
tweets where both emojis appear.

2 Background

In recent years, sentiment analysis has found an
invaluable source of material and information in
social media. Because of their prevalence in social
media, emoticons became the focus of many sen-
timent analysis studies. Kouloumpis et al. (2011)
found that, in the microblogging domain, emoti-
cons were more useful than part-of-speech fea-
tures for training data collection. Research shows
that emoticons do not only represent affective
stances, but also intention or identity and can be
used to strengthen a message (Derks et al., 2008).
Because of their similarities, it is likely that this is

1http://knowyourmeme.com/memes/but-that-s-none-of-
my-business
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true also of emojis.
Nowadays, emojis have started substituting

emoticons for conveying emotions (Pavalanathan
and Eisenstein, 2016) and they are becoming an
important part of internet language. Chin et al.
(2016) have used emojis to expand on positive or
negative sentiment and classified tweets into five
emotions. This shows that emojis can help us be
more precise in our sentiment analysis. Moreover,
Kelly and Watts (2015) investigate the “appropri-
ation” of emojis. In other words, appropriation is
the usage in a way that was not intended or en-
visaged by the designer (Dix, 2007). Even though
there has not been much previous work on emojis,
they have certain interesting characteristics that
make them worthy of being investigated and they
could become a useful feature when analysing the
sentiment of social media text in the future.

3 Methodology

3.1 Collecting tweets
In order to collect tweets, we went through
iEmoji’s archive of tweets2 and manually retrieved
1,000 tweets that contained the hot beverage emoji
and not the frog face emoji, 1,000 that had the frog
face but not the hot beverage and 1,000 that had
both. All tweets were published between 2013
and 2016 and were chosen randomly from random
pages from the archive. They were pre-processed
before the analysis: all hash characters, usernames
and emojis were deleted.

3.2 Sentiment analysis and frequency
distribution

The three tweet sets were analysed using two dif-
ferent analysers: i) TEXTBLOB (Smedt and Daele-
mans, 2012) and ii) VADER (Hutto and Gilbert,
2014).

TEXTBLOB is based on a pattern library and re-
turns a tweet’s polarity and subjectivity. For the
present work, we focused on polarity, which goes
from -1 (negative) to 1 (positive), 0 being neutral.
VADER was trained to be used on social media and
microblogging texts. It returns a dictionary such
as: “’’pos’: 0.446, ’neg’: 0.0, ’neu’: 0.554, ’com-
pound’: 0.6166”. We used the “compound” value,
since it represents the overall sentiment value of
the tweet and uses the same scale as TEXTBLOB.

To evaluate their performance, we manually
classified the 100 first tweets from each set and

2http://www.iemoji.com/

compared this manual annotation to the results the
analysers gave for them. Then, we calculated their
precision and recall for positive, negative and neu-
tral tweets. Finally, we had a look at the frequency
distribution of the words in the tweets, focusing on
the 15 most common words.

4 Results

We evaluated our hypothesis using three differ-
ent approaches: off-the-shelf sentiment analysers
(4.1), manual classification (4.2) and finally we re-
port on the most frequent words occurring in the
context of the investigated emojis and their com-
bination (4.3).

4.1 Sentiment Analysis

Both FrogFace Hot Beverage
TEXTBLOB 0,048 0,11 0,17
VADER 0,011 0,16 0,18

Table 1: Polarity results for each tweet set. Polarity ranges
from 1 (positive) over 0 (neutral) to -1 (negative).

After automatically analysing each of the 3000
tweets and obtaining its polarity score, the aver-
age score for every 1000 tweet sets was calcu-
lated. The results are shown in Table 1. The sen-
timent analysis shows a small but clear difference
between the sentiment that each emoji has sepa-
rately and the sentiment they have when used to-
gether. TEXTBLOB and VADER give very simi-
lar scores to the frog face tweets (0,11 and 0,16)
and to the hot beverage tweets (0,17 and 0,18),
and these two sets are at the same time quite sim-
ilar to each other in their scores. Since they seem
to have a similar sentiment, if their meaning were
still literal when combined, we would expect the
combination to have the same score, but from our
results we can see that the score for the combi-
nation is lower. Even though we first assumed a
more negative sentiment for the combination, the
results make sense: tweets with both emojis are
supposed to have a subtle, sarcastic tone, which is
not easily recognised by sentiment analysers yet.
Nevertheless, the distinction is there, and we will
have a closer look at it in an additional evaluation
using manual classification.

4.2 Manual Classification
We manually classified 100 tweets for each tweet
set as negative, positive or neutral. An overview is
given in Table 3. The frog face set and the hot
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Positive Tweets Negative Tweets Neutral Tweets Average
Precision Recall Precision Recall Precision Recall Precision Recall

T
B

Both 0.10 0.26 0.47 0.11 0.15 0.28 0.24 0.21
FrogFace 0.69 0.68 0.55 0.33 0.62 0.73 0.62 0.58
HotBeverage 0.70 0.66 0.22 0.25 0.57 0.60 0.49 0.50

V
A

D
E

R Both 0.20 0.60 0.63 0.26 0.14 0.22 0.32 0.36
FrogFace 0.73 0.70 0.58 0.46 0.62 0.71 0.64 0.62
HotBeverage 0.70 0.66 0.00 0.00 0.60 0.68 0.43 0.44

Table 2: Precision and recall for all tweet sets, calculated using the manual classification as gold standard.

beverage set have a similar distribution and are
in general fairly positive, but the combination of
both is clearly negative, which supports the hy-
pothesis in question. The meaning in this case
is non-compositional and non-literal. While clas-
sifying the tweets, it was obvious that they had
the same sarcastic, disrespectful tone as the “But
That’s None of My Business” meme, and some
even used the same words. For example, one Twit-
ter user wrote “I can solve all your problems, yet
you do stupid shit. But that’s none of my business.”
3, followed by a hot beverage and a frog face.

We also used this manual classification to eval-
uate the performance of both classifiers. The re-
sults are given in Table 2. Precision and recall are
lower for both analysers when it comes to the com-
bination of emojis. This is not surprising, since
they were expected to be more difficult to analyse
due to the sarcasm and the subtlety of their senti-
ment. The analysers performed best when classi-
fying positive tweets. VADER performed sightly
better for the frog face tweets, and TEXTBLOB

performed better for the hot beverage tweets. We
attribute the overall low performance to the fact
that there was a lot of sarcasm in the tweets, and
for this to be understood one needs some real-
world knowledge which is almost impossible for
a classifier to make use of.

Positive Negative Neutral
Both 15 67 18
FrogFace 47 15 38
HotBeverage 54 8 38

Table 3: Manual classification of tweets.

4.3 Word count
For the word count-based evaluation, we looked
at the 15 most common words in each set of 1000
tweets. If a word is repeated in the same tweet, it is

3https://twitter.com/rai close/status/557368926506864640

Both FrogFace HotBeverage
1 but (372) frog (256) coffee (396)
2 be (132) emoji (225) tea (132)
3 the (123) the (103) the (124)
4 people (114) like (102) a (90)
5 you (99) I (90) I (85)
6 like (97) frogs (85) morning (73)
7 don’t (97) my (77) day (72)
8 all (91) have (66) my (65)
9 are (88) a (56) need (60)
10 a (86) but (55) good (59)
11 I (76) I’m (54) I’m (59)
12 not (75) ! (52) be (58)
13 girls (71) love (52) cup (57)
14 if (70) be (49) hot (56)
15 have (65) no (48) starbucks (55)

Table 4: Most common words from each 1,000 tweet set.

counted as many times as it appears. In Table 4 we
see the hot beverage set’s most common word is
“coffee”, and the second one is “tea”. Most of the
words are semantically related and show a literal
use of the emoji. For the frog face tweets, the most
common word is “frog”, and the plural “frogs” is
on 6th place, which also points to a literal use. In
the combined set the most common word is “but”.
Even though it is a function word and would usu-
ally be ignored, in this case it is not, because it is
the first word in the meme (“But That’s None of
My Business”) and it can indicate an objection. In
this last case, the words do not tell us much about
the sentiment or meaning of the emoji combina-
tion. This suggests that the emojis have a non-
literal meaning. The results also show emojis are
often used in addition to the concept they repre-
sent, without substituting it. This could be an in-
teresting direction for future work.
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5 Other emoji combinations

5.1 Frog face plus other beverages

While retrieving tweets we noticed a few tweets
that expressed the same sentiment as the frog face
and hot beverage tweets, but had a different bever-
age emoji, e.g. the tropical drink, cocktail glass
or teacup without handle emojis. We found 18
such tweets. For example, a user wrote “Got a
pic of u that could expose u so keep saying stuff” 4

and added a frog face and a teacup without handle.
This sample is too small to confirm that the senti-
ment and meaning of these combinations will re-
main the same regardless of the drink emoji. How-
ever, nothing similar was observed when retriev-
ing tweets containing the hot beverage. The frog
face was never substituted by another face. This
might indicate that the frog face is the main ele-
ment of the combination and the one which brings
the sarcastic, negative tone to the expression.

5.2 Clapping Hands Sign emoji

For the clapping hands sign emoji, we expect
a change of meaning whenever it is repeated or
placed in certain parts of the sentence. On its own,
it is mostly used to show excitement or apprecia-
tion. However, when placed between each word
in a sentence (sometimes two or three words), the
connotation turns negative. In this case, the user is
aggressively sharing their opinion, telling off the
readers or correcting them.

In order to investigate this hypothesis, we used
iEmoji to retrieve 50 tweets in which the emoji
appeared several times between the words and 50
tweets where the emoji appeared differently. We
found a significant change in meaning and senti-
ment in all of them. For example, one user wrote
“@Michael Sanchez I didn’t expect this to hap-
pen. So happy rn. Good luck sir” 5, with a clap-
ping hands sign at its end. On the other hand,
another user wrote “PLANNED PARENTHOOD
DOESN’T JUST DO ABORTIONS” 6. After ev-
ery word, there was a clapping hands sign emoji,
emphasising the message and seemingly trying to
correct a false idea. We investigated only a small
sample, but this use of the emojis was consistent

4https://twitter.com/jc00003333/status/525776951966183
424

5https://twitter.com/BrokenHarmonyML/status/78953474
3117205504

6https://twitter.com/Jeeennnnaa/status/788912245975748
608

throughout all tweets, which indicates there is a
pattern worth studying.

5.3 Nail Polish emoji
The nail polish emoji shares the sarcastic subtext
of the emoji combination we extensively studied
in this paper, but its meaning changes and be-
comes literal when used in combination with the
lipstick emoji. In this case, the lipstick emoji re-
tains its literal meaning and turns the nail polish
emoji into a literal representation of nail polish.
We retrieved 50 tweets with the nail polish emoji
appearing next to the lipstick emoji, and 50 tweets
with only the nail polish emoji. In 47 out of the
50 tweets, the difference was clear. For example,
one user tweeted “@TAMU sorry my tampons and
wallet are so threatening,” 7 adding a nail polish
at the end. This tweet is clearly sarcastic and has
nothing to do with makeup. A counter example is
this tweet: “I need a makeup advent calendar in
my life” 8 with a nail polish next to a lipstick and a
clearly literal meaning. This is a small sample, but
the pattern is found in most of the tweets, which
suggests it is not accidental.

6 Conclusion

We showed that there is a distinct change between
the literal meaning the frog face and the hot bev-
erage emojis have when used separately and the
more subtle, non-literal meaning their combina-
tion has. This is shown in the frequency distri-
bution of the words and in the sentiment analysis
of the tweets. Both sentiment analysers showed a
small yet observable difference in sentiment, and
while this was not enough to reach any conclu-
sions, the difference became clearer after the man-
ual classification of the tweets.

This kind of multi-emoji expression is not
unique, since there are similar cases that have also
been examined, but it is uncommon and each case
has its own characteristics. Even though the case
that has been studied here is not a widespread phe-
nomenon, emojis are a very recent addition to our
communication methods. In the future we expect
to see more transformations in the way emoji are
used, which would be worth being researched in
depth.

7https://twitter.com/ShelbyLCole/status/80002227867936
7680

8https://twitter.com/sophiaguyy/status/801143183157686
272
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Abstract

In this paper we present an annotated cor-
pus created with the aim of analyzing the
informative behaviour of emoji – an issue
of importance for sentiment analysis and
natural language processing. The corpus
consists of 2475 tweets all containing at
least one emoji, which has been annotated
using one of the three possible classes: Re-
dundant, Non Redundant, and Non Redun-
dant + POS. We explain how the corpus
was collected, describe the annotation pro-
cedure and the interface developed for the
task. We provide an analysis of the cor-
pus, considering also possible predictive
features, discuss the problematic aspects
of the annotation, and suggest future im-
provements.

1 Introduction

Nowadays emoji are widespread throughout mo-
bile and web communication both in private con-
versations and public contexts such as blog entries
or comments. In 2015, the Oxford Dictionary de-
clared the emoji Face with tears of joy ”Word of
the year”, and since then the academic interest to-
wards the topic, as well as the development of rel-
evant resources, have grown substantially. Emoji
are best known to be markers for emotions, and
in this sense they can be considered an evolution
of emoticons. However, these pictographs can be
used to represent a much wider range of concepts
than emoticons, including objects, ideas and ac-
tions in addition to emotions, and thus they inter-
act with the content expressed in the surrounding
text in more complex ways. Furthermore, emoji
are used not only at the end of a message, e.g.
a tweet, but can occur anywhere and possibly in
sequences. Therefore, understanding the seman-

tic relation they have with the surrounding text, in
particular whether emoji add independent mean-
ing, is an important step in any approach attempt-
ing to process their contribution to the overall con-
tent of a given message, both for the purposes of
sentiment analysis and natural language process-
ing.

We are interested in investigating to what extent
it is possible for a human annotator, and subse-
quently for an automatic classifier, to determine
if emoji in tweets are used to emphasize or add
information, which may well be emotional infor-
mation, but could also have a different semantic
flavour. If emoji do add meaning, we also ask how
easy it is to understand if they are being used as
syntactic substitutes for words. In this paper, we
focus on the corpus of English tweets that was col-
lected and annotated to provide training data for a
number of classifiers aiming at predicting whether
emoji in microblogs are used in a redundant or a
non-redundant way.

The classification experiments achieved
promising results (F-score of 0.7) for the best
performing model, which combined LSA with
handcrafted features and employed a linear SVM
in a One vs. All fashion. The process and results
of the experiments will be described in a future
paper (in preparation).

In Section (2) we review related research, then
in Section (3) we describe how the tweets were
extracted and collected to create the corpus, and
give counts of the various represented categories.
In Section (4) the annotation process is described,
Section (5) presents and discusses the results, and
finally in Section (6) we provide a conclusion.

2 Related research

Several studies trace parallels between emoticons
and emoji, sometimes using both terms inter-
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changeably, with the purpose of dealing with emo-
tion expression or automatic emotion detection,
and thus only considering those pictographs that
resemble facial features. Boia et al. (2013) focus
on emoticons and their use in tweets. The authors
attempted to determine the reliability of emoti-
con labels in sentiment classification by means of
a user study and generated a sentiment lexicon
from a corpus of 2.1 million tweets. They found
that agreement between the sentiment expressed
by emoticons and the sentiment expressed by the
surrounding words is only slightly higher than ran-
dom, showing that emoticons are likely to be used
as a means to add emotion to an otherwise neu-
tral text. The experiment based on the sentiment
lexicon proved that emoticons are good indicators
of sentiment in the tweet, but are less effective in
retrieving related sentiment words, thus confirm-
ing that emoticons complement the text rather than
stressing what is already expressed by the words.

The paper by Hallsmar and Palm (2016) is in-
stead focused on the effectiveness of using emoji
to automatically annotate training data for mul-
ticlass emotion classification. The researchers
employed a training corpus of 400,000 tweets,
100,000 for each of four classes (sadness, anger,
fear and happiness), then tested against 80 in-
stances, manually collected and labeled accord-
ing to their textual content. The results show
that emoji can be effectively used to automati-
cally annotate the emotion class in large sets of
tweets, thus suggesting that emoji, in contrast with
emoticons, may co-occur with semantically re-
lated words.

Other works have analyzed the semantics of
emoji, mostly by means of distributional seman-
tics. In Barbieri et al. (2016), the authors used
the skip-gram model paired with different dataset
sizes and different filtering methods to generate
emoji embeddings. These were evaluated against
a set of 50 emoji pairs manually annotated for
similarity and relatedness scores. The similarity
scores obtained by the models were strongly cor-
related with those in the gold standard, particularly
if stop words and punctuation are removed from
the dataset. This indicates that surrounding words
and other emoji are useful for inferring the mean-
ing of a given emoji, possibly indicating that the
emoji is being used in a redundant way.

In Eisner et al. (2016), emoji embeddings were
learnt from their description in the Unicode emoji

standard, and representations are thus obtained for
all represented emoji including those that appear
infrequently in online text. In spite of the model
being trained on much less data, the authors claim
to outperform Barbieri et al. (2016) on the task of
Twitter sentiment analysis. These results point to
the fact that the emoji descriptions in the Unicode
standard are a valid source from which to model
their semantics.

The issue whether emoji add content to the text
they occur in, particularly in tweets, or whether
they are largely redundant, as well as how their
specific use in this respect can be predicted, is
not investigated directly in any of the studies men-
tioned so far.

The paper by Zanzotto et al. (2011) addresses
the problem of linguistic redundancy within the
realm of microblogs. Although this study does not
specifically target emoji, it is of particular inter-
est for our work given the formal definitions pro-
vided for both redundancy and non redundancy as
well as the methodology employed. The authors
performed a classification experiment on 1242
pairs of tweets related to news, previously anno-
tated considering four possible relations, i.e. en-
tailment (redundant), paraphrase (redundant), re-
lated/unrelated (non-redundant), and contradiction
(non-redundant). They used the annotated corpus
to test different models in a classification exper-
iment, and obtained the best results with a com-
bination of syntactic and similarity features com-
puted across the word vectors of each pair.

The methodology adopted in our work builds on
the Zanzotto et al. (2011) study, both as concerns
the fundamental question we ask, and the way we
have collected and annotated our training corpus.
A crucial difference is, however, that our analysis
focuses on the use of emoji.

3 Corpus Preparation

To answer our research questions we set up a
corpus of English tweets automatically extracted
from Twitter with the aid of specific emoji key-
words. The corpus was then annotated by four hu-
man coders to be further used in a machine learn-
ing experiment. The annotated corpus consists of
tweets containing emoji paired with their counter-
parts where the emoji has been removed, for a total
of 2475 pairs.

The purpose of the corpus collection and anno-
tation was twofold. Our primary goal was to pro-
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Category Emoji Names
Traveling/Commuting car, airplane, sailboat

Events party popper, jack-o-lantern, graduation cap

Places school, european castle, home + garden

Other Activities artist palette, books, television

Feelings smiling face with heart eyes, unamused face, crying
face

People man and woman holding hands, person walking,
person raising one hand

Eating & Drinking pizza, doughnut, hot beverage

Nature & Animals dog, snowflake, maple leaf

Music microphone, guitar, musical notes

Sport trophy, swimmer, basketball and hoop

Table 1: List of the emoji used to extract tweets for the corpus collection

vide training data to develop classifiers that could
predict the relation of emoji in unseen tweets. A
secondary goal was to investigate how easy it is
for human coders to distinguish different uses of
emoji with respect to their semantic contribution.
In order to clarify this aspect, we run an inter-
annotator agreement test on part of the annotated
material.

3.1 Emoji Selection

To select a set of meaningful emoji to use for the
data extraction, we start by defining a categoriza-
tion of the whole emoji set. The Unicode con-
sortium website provides the full emoji dataset, in
which every emoji is annotated with a code, four-
teen different graphic renderings, the emoji name,
the date of addition to the Unicode standard, and a
set of keywords that identify the content of each
pictograph. Unicode separates groups of emoji
according to similar renderings and, possibly, se-
mantic relatedness, but does not provide an official
ontology.

Previous studies interested in emoji semantics
use different categorizations for their purposes.
Cappallo et al. (2015) relied on the categories
listed in the MSCOCO (Lin et al., 2014) dataset:
Person & Accessory, Animal, Vehicle, Outdoor
Object, Indoor Object, Sport, Kitchenware, Food,
Furniture, Appliance, Electronics. These cate-
gories partially overlap the ones in Emojipedia
(Burge, 2013): Smileys & People, Animals & Na-
ture, Food & Drink, Activity, Travel & Places,

Objects, Symbols, Flags. Emojipedia categorizes
the pictographs considering their graphical prop-
erties, while the MSCOCO categories are modeled
for object recognition, thus they discriminate more
precisely among inanimate objects.

Barbieri et al. (2016) used word embeddings,
dimensionality reduction and clustering, to iden-
tify 11 clusters labeled as: Sports & Animals, Na-
ture, Body gestures & Positive, Free Time, Un-
clear, Love & Parties, Letters, Barber & Symbols,
Eating & Drinking, Music, Sad & Tears. These
labels reflect the graphical and conceptual similar-
ity of the data points included in a specific cluster.
Nevertheless, some of the labels are claimed to be
inconsistent since the relevant clusters include few
and apparently unrelated pictographs.

Vidal et al. (2016) used a categorization based
on Emojipedia which includes six categories:
Food & Drinks, Non-food objects, Celebrations,
Activity, Travel & Places, Nature.

After having considered the categorizations
mentioned above we developed our own including
the following labels: Nature & Animals, Places,
Traveling/Commuting, Sport, Events, Other Activ-
ities, Music, Eating & Drinking, People, Feelings.
Our intent was to select a small number of rel-
atively broad and easily recognizable categories.
Furthermore, we chose to keep events and activ-
ities separate from entities, as is done in many
linguistically-oriented ontologies.

From each category in our list we have se-
lected three emoji; in order to get clearly distin-
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guishable pictographs we have considered both
their frequency of use given by the Emojitracker,
thus favouring the most frequent tokens, and their
graphical features. The full list of emoji is shown
in table 1.

3.2 Data Collection

All the data were collected between the 1st and
2nd of November 2016 by means of the Twitter
Streaming API and the Python Tweepy wrapper.

To extract the data we added to the script a filter
for the English language and passed the list of the
selected emoji as the keywords parameter. Both
the possibilities of filtering data by language and
keywords are provided as features by the API.

The raw data included 501,342 tweets, subse-
quently reduced to 196,434 after removing all du-
plicate entries. A series of common preprocessing
steps were applied before the annotation: in par-
ticular all the mentions of other users and all the
links were replaced with placeholders.

The accepted character length on Twitter is 140;
in the cleaned corpus the average length of the
tweets was of 50 characters, 555 tweets were
longer than 140 characters with a maximum length
of 196 characters. Thus, as an additional step, all
the tweets below a threshold length of 10 charac-
ters and above a threshold length of 140 characters
were discarded. We checked again for the pres-
ence of duplicates after replacing mentions and
links, since tweets may have the same content and
differ only for these elements; this lead to a result-
ing collection of 180,958 instances. In this cleaned
version of the corpus the average tweet length is of
52 characters with a standard deviation of 32.

The best represented category is, unsurpris-
ingly, Feelings with a total of 99,050 instances.
Within Feelings the most frequent emoji is Smil-
ing face with heart shaped eyes with 60,479 ex-
tracted tweets. The least represented category is
Places with a total of 900 instances. Within this
category the least frequent emoji is School with 47
extracted tweets.

From these data we created a balanced cor-
pus by sampling 900 instances from each cate-
gory, since this is the size of the least populated
one. From the resulting corpus of 9000 instances
we further removed all the tweets containing only
the emoji used for the data extraction since this
would have resulted in pairs containing one empty
tweet and one tweet consisting in an emoji key-

word repeated multiple times. The final collection
contained 8985 pairs; from this corpus we ran-
domly sampled 4100 pairs for the annotation. The
size was chosen considering the corpus size in the
Zanzotto et al. (2011) paper, which we used as a
methodological model for our work.

4 Annotation

The annotation of the 4100 tweet pairs took place
remotely between the 21st and the 31st of Decem-
ber 2016 and was performed by four annotators,
three located in Greece and one in the Netherlands.
All the annotators were fluent English speakers.
For the annotation we developed an ad-hoc user
interface.

We chose a multiclass setup with three classes
of interest: Redundant, Non-redundant, and Non-
redundant + POS; we will further define these
classes and explain them with examples shortly
below. The annotators were asked to assign a class
to each pair in the corpus.

4.1 Classes Definition

The general definition of redundancy is repetition
of already expressed information; to describe the
classes for the annotation we relied on Zanzotto
et al. (2011), who define as redundant tweet pairs
which are in a relation of paraphrase or entailment,
while pairs in a relation of contradiction or related-
ness are considered non-redundant. We expect an
emoji to be considered redundant if it represents
an object or an action also expressed by words in
the text (the emoji is a synonym of another word)
or if it represents an object or action whose pres-
ence is directly implied by the text (the emoji is
entailed by the words).

The final set of classes includes three labels: Re-
dundant, Non-Redundant, Non-Redundant + POS.
The Redundant class indicates that the emoji of in-
terest repeats the information present in the text or
that its meaning is implied by the text.

On the contrary, we expect the Non-Redundant
class to be assigned when the emoji adds informa-
tion not already present or implied in the text.

Lastly the Non-Redundant + POS class, which
can be considered as a subset of the Non Redun-
dant class, indicates the case where the emoji is
used with a syntactic function (and can be labeled
with its POS), thus replacing a word. We provided
a set of examples to the annotators and clarified
possible edge cases. An extract from the examples
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is listed here:

1. Redundant

• ”We’ll always have Beer. I’ll see to it. I
got your back on that one. ”

• ”@USER I need u in Paris girls ”

2. Non-Redundant

• ”I wish you were here ”

• ”Hopin for the best ”

3. Non-Redundant + POS

• ”Thank you so so so so much ily Here’s

a as a thank you gift x”

• ”Good morning ”

An edge case could be represented by:

• ”Reading is always a good idea . Thank
you for your sincere support @USER. Happy
reading.”

In this case the emoji represents books which are
related to the verb ”reading”, however the act of
reading does not necessarily imply the presence of
books (it is not an entailment) since it is possible
to read newspapers, blogs, comments, emails; the
emoji is narrowing down the meaning of the verb,
therefore it is adding information and we should
consider it non-redundant.

Emotions also represent a challenge since we
need to rely on symbols or simplifications to de-
pict complex expressions. While a case such as:

• ”i’m so proud of myself *pats my back*”

is clearly non-redundant (here the emoji is used
ironically), a tweet like:

• ”My forever love @URL”

represents redundant use.

4.2 Interface
To annotate the tweets we set up a dynamic inter-
face accessible online and hosted - until the com-
pletion of the task - on a server at the Demokri-
tos Institute of Research in Athens (http://
www.demokritos.gr/); we provided detailed
guidelines explaining how to access and use the
interface and describing the annotation criteria and
the classes with the aid of examples.

Before the annotation started, we tested the in-
terface on the latest versions of Mozilla Firefox
and Google Chrome. Since browsers do not al-
ways render emoji automatically we provided our
interface with a link to the Symbola Font, one of
the richest in emoji renderings.

On the first page of the interface each annotator
had a welcoming message and a briefer version of
the instructions already provided in the guidelines.
After the instructions and three examples of tweet
pairs with the correspondent class checked, the
annotators could move on to the annotation page
which presented the pairs, a forced choice form
to select the class and a submit button. The pairs
were updated dynamically after each submission
and the checked value was stored together with the
index of the pair and the annotator id. The default
value of the form was set to blank; we gave the
annotators the possibility to submit a blank value
whenever they were undecided about the class to
pick; the blank submissions were recorded as un-
defined.

Figure 1: Screen capture of the annotation interface

The first 100 pairs were annotated by all the an-
notators to measure the inter-annotator agreement;
after this set of common pairs the annotators had
random access to further 1,000 pairs each among
the remaining 4000. On completion of the task
the annotators were redirected to a thanksgiving
page. Furthermore, we gave them the option to in-
terrupt and restart the annotation process in order
to complete the task in multiple sessions. Their
work was automatically saved to a csv (comma
separated value) file after each session’s interrup-
tion.

Due to the random access, after the first 100
pairs, some of the 1,000 pairs left were presented
and annotated more than once, hence they were
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discarded from the final corpus. Additionally, one
of the annotators reported problems with the inter-
face when saving the last part of her work. There-
fore, and also considering the fact that we ex-
cluded the 100 pairs used to calculate the agree-
ment, our final corpus consists of 2475 annotated
pairs in total.

4.3 Annotation Reliability

To assess the inter-annotator agreement we adopt
Cohen’s kappa coefficient (Cohen, 1960).

Coehn’s κ is used to assess agreement between
two annotators and it is considered more robust
than simple percentage agreement since it corrects
for chance agreement. Moreover, this choice al-
lows us to compare our results with those obtained
by Zanzotto et al. (2011) for a similar, although
more complex, task.

Considering the agreement results described in
Zanzotto et al. (2011) we expected to get a κ
of 0.6, which is generally considered moderate
agreement (Landis and Koch, 1977).

A1 A2 A3 A4
A1 - 0.76 0.78 0.7
A2 0.76 - 0.81 0.8
A3 0.78 0.81 - 0.71
A4 0.7 0.8 0.71 -

Table 2: Observed agreement

A1 A2 A3 A4
A1 - 0.57 0.62 0.48
A2 0.57 - 0.66 0.64
A3 0.62 0.66 - 0.5
A4 0.48 0.64 0.5 -

Table 3: Cohen’s κ agreement

In tables 2 and 3 we report the results for
the percentage and Cohen’s κ agreement between
each pair of annotators. The average percentage
agreement is 76%, while the average Cohen’s κ is
0.576, a value only slightly lower than what we
were aiming for. A discussion of the difficulties
encountered by the annotators is provided in the
next section. To comply with the suggestion given
by one of the anonymous reviewers, we also cal-
culated agreement using Fleiss’ kappa and Krip-
pendorff’s alfa. The values we obtained, however,
are very similar (0.575 and 0.576, respectively.)

5 Analysis and Discussion

5.1 Corpus Analysis
Our gold standard contains a total of 2475 anno-
tated pairs, as stated in the previous section.

End Not End Total
R 452

(0.357)
382
(0.316)

834
(0.337)

Non-R 768
(0.607)

660
(0.546)

1428
(0.577)

Non-R+POS 37
(0.029)

139
(0.115)

176
(0.071)

Undefined 9 (0.007) 28
(0.023)

37
(0.015)

Total 1266 (1) 1155 (1) 2475 (1)

Table 4: Conditional frequency of the emoji class given the
emoji position: absolute counts and proportions. The largest
proportion for each class in each condition is in boldface.

CD NN Other Total
R 362

(0.348)
328
(0.336)

144
(0.314)

834
(0.337)

Non-R 583
(0.560)

565
(0.580)

280
(0.610)

1428
(0.577)

Non-R+POS 73
(0.070)

79
(0.081)

24
(0.052)

176
(0.071)

Undefined 23
(0.022)

3
(0.003)

11
(0.024)

37
(0.015)

Total 1041
(1)

975
(1)

459
(1)

2475
(1)

Table 5: Conditional frequency of the emoji class given
the emoji POS tag: counts and proportions. The largest
proportion for each class in each condition is in boldface.

The distribution of the classes is as follows: the
Redundant class has 834 instances (33.7%), the
Non-Redundant class has 1428 instances (57.7%),
the Non-Redundant + POS class has 176 instances
(7.1%). Additionally, 37 instances are annotated
as undefined (1.5%).

Table 4 details how the classes are distributed
given the position of the emoji as either close to
the end of the tweet or not1: 35.7% of the in-
stances are annotated as Redundant (R in the ta-
bles), 60.7% as Non-Redundant (Non-R), 2.9% as

1The emoji position was computed by dividing the index
of the emoji in the tokenized tweet by the number of tokens
in the tweet. We considered close to the end those emoji with
a value equal or above 0.7
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Non-Redundant + POS (Non-R+POS), and 0.7%
are undefined. In the opposite condition (when
the position of the emoji is not close to the end of
the tweet) 31.6% instances are Redundant, 54.6%
are Non-Redundant, 11.5% are Non-Redundant
+ POS, and 2.3% are undefined. Interestingly,
although not surprisingly, the Non-Redundant +
POS class is the only one (leaving the undefined
instances out) to show a higher probability of oc-
currence in the ”not close to the end” than the
”close to the end” condition.

From the distribution we can see that, at least in
a corpus the size of ours, the distinction between
close or non close to the end is not a strong in-
dicator of whether the emoji is used to repeat or
add information, with the exception of the case
in which the emoji not only adds information but
also replaces a word. The differences in the dis-
tribution are significant, as demonstrated by a χ-
squared test of independence (χ-squared = 81.644,
df = 3, p-value < 0.001). An analysis of the resid-
uals confirmed that the effect of position is highest
in the case of the Non-Redundant + POS class.

We had an intuition that the part-of-speech cat-
egory of the emoji might be an interesting feature
to look for the purposes of training classifiers to
predict the relation of the emoji with the content
of the rest of the text. Therefore, the corpus was
run through the Stanford Tagger. We decided to
use the standard Stanford POS Tagger from the
Python NLTK wrapper since traditional POS tag-
gers have been reported to achieve satisfactory re-
sults when compared with domain specific taggers
(Derczynski et al., 2013), and also since Twitter-
specific POS taggers do not seem to provide tags
for emoji.

In table 5 we report the frequencies for the
most frequent tags, which are CD or NN (cardi-
nal number and noun, respectively). The column
Other sums the frequencies of the remaining cat-
egories. The Stanford POS Tagger considers sev-
eral features prior to assigning a tag to unknown
words. This set of features includes capitaliza-
tion, context (n-grams), hyphens, numbers, and
allcaps (Toutanova et al., 2003). Tokens contain-
ing allcaps, a slash or a dash as well as numbers
are tagged with NN (since they might be company
names). Thus the POS-tag assigned to an emoji
may either be the result of these specific features
or may be based on the n-gram sequence in which
the emoji is embedded.

From the numbers in the table, and again leav-
ing out the undefined instances, it would appear
that NN might be used as a predictor of the two
Non Redundant classes, while CD seems more
predictive of Redundant use. The differences are
significant on a χ-squared test of independence
(χ-squared = 21.385, df = 6, p-value < 0.01). An
analysis of the residuals showed that, if we ignored
the undefined instances, the largest contributions
to the differences are found in the negative effect
of CD on the Non-Redundant class, the negative
effect of Other on Non-Redundant + POS and the
positive effect of NN on that same class.

To sum up, the analysis shows that position
(close to the end or not) and part-of-speech class
might be useful features to consider when training
a classifier to predict whether emoji in tweets are
being used in a redundant or additive way.

5.2 Annotation difficulties

We saw earlier that the inter-annotator results are
slightly lower than expected. Some annotators
reported difficulty in assigning a class when the
tweet content was not meaningful, thus a possi-
ble way to improve the annotation design and in-
crease the agreement would be to filter out all the
spam and advertisement tweets that contain little
or non-informative text and keep only tweets from
individual (possibly verified) users, avoiding cor-
porate accounts and bots.

To gain a better understanding of the difficulties
of the annotation process we considered a small
sample of pairs where two annotators assigned the
Non-Redundant class and the other two assigned
the Non-Redundant + POS class, some examples
are listed here:

• ” Legia Warsaw”

• ” - like who comments ’ifb’”

From these examples it can be seen that disagree-
ment emerges when the tweet content is very short
and unstructured and the function of the emoji is
ambiguous, given also the lack of syntactic cues in
the text. Such cases include occurrences where the
text of the tweet consists of hashtags only.

We also noted disagreement (mostly among a
single annotator and the three others) in cases
where the emoji is strongly related to other words
in the text. E.g.:

• ”I wish I was a pet so I could just stay home,
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lounge all day and have no responsibilities
”

• ”@USER mom, my birthday is coming ”

In such cases it is possible that one or more annota-
tor identified a relation of synonymy or entailment
(thus, label the instance as ”Redundant”) while the
others consider it as relatedness or similarity (thus,
label the instance as ”Non Redundant”). This sug-
gests that identifying entailment at token level in-
stead than from pairs of sentences, especially in
unstructured and short text, is a hard task. We must
also note that even though we balanced the amount
of tweets per category in our corpus, we did not
further balance the tweets in each category accord-
ing to the emoji used to retrieve them. Therefore,
we cannot exclude a possible effect derived from
the most common of these emoji and we should
consider to improve this aspect in future research.

Lastly, we cannot exclude that difficulties
may have arisen due to renderings of other co-
occurring emoji that were missing from the Sym-
bola font we adopted.

6 Conclusion

We have presented an annotated corpus of tweets
that was developed with the purpose of training
models to classify the informative behaviour of
emoji in tweets.

We have described the entire process of retriev-
ing, cleaning, and presenting the data to the anno-
tators through the graphical user interface specifi-
cally developed for the task. The interface source
code is available at https://github.com/
giuliadnt/Annotation_gui; the corpus
can be provided by the main author on request.

The reliability of the annotation was measured
and, although the average κ score was slightly
lower than expected, it still showed close to mod-
erate agreement among the annotators, an accept-
able result given the difficulty of the task.

We have also provided an analysis of the cor-
pus in terms of the distribution of three classes
of emoji behaviour (Redundant, Non-Redundant,
and Non-Redundant + POS) given the position of
the emoji in the tweet, as well as their part-of-
speech category. Both dimensions seem to pro-
vide at least some predictive power, and have in
fact been used as features to develop classifiers
of emoji informative behaviour in tweets (paper in
preparation),

There are several aspects we have discussed in
this work that may constitute a limitation and are,
therefore, open to improvements and changes. The
most important is perhaps the fact that the three
classes of interest are far from being equally rep-
resented. Thus, more data should be collected.
Doing so could also reduce the effect of noisy ex-
amples, such as those of tweets only consisting of
emoji.

Regarding this aspect we could also consider
the possibility of using a binary setup, thus merg-
ing Non Redundant and Non Redundant + POS
into the same class and balancing the amount of
instances related to each case within it. Improve-
ments to the annotation interface should also be
considered if more data is annotated.

Considering the confusion sometimes made by
the annotators between similarity and entailment,
more examples should be provided to train them
more extensively to categorize such cases cor-
rectly.

Furthermore, the agreement can be improved
by including additional annotators and removing
from the corpus those tweets that result to be par-
ticularly problematic

As future work it will be interesting to evaluate
emoji’s behaviour in the context of specific NLP
tasks such as threads summarization. Moreover,
it would be important to verify if the redundancy
between emoji and words is equivalent or differs
from the redundancy among the words alone in the
context of the same tweet.
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Abstract

Patients turn to Online Health Commu-
nities not only for information on spe-
cific conditions but also for emotional sup-
port. Previous research has indicated that
the progression of emotional status can be
studied through the linguistic patterns of
an individual’s posts. We analyze a real-
world dataset from the Mental Health sec-
tion of healthboards.com. Estimated from
the word usages in their posts, we find
that the emotional progress across patients
vary widely.

We study the problem of predicting a pa-
tient’s emotional status in the future from
her past posts and we propose a Recur-
rent Neural Network (RNN) based archi-
tecture to address it. We find that the fu-
ture emotional status can be predicted with
reasonable accuracy given her historical
posts and participation features. Our eval-
uation results demonstrate the efficacy of
our proposed architecture, by outperform-
ing state-of-the-art approaches with over
0.13 reduction in Mean Absolute Error.

1 Introduction

Online mental health forums offer a medium of
peer support where individuals who have endured
the adversity of mental illness can share their own
experiences and offer help to others facing similar
conditions. While each individual goes through
life, their outlook and emotional state continue to
evolve over time.

Understanding the complex patterns in which
an individual interacts with an online commu-
nity can help us understand his or her emotional
state. Our hypothesis is that individuals’ online

forum participation can signal that state. Pre-
vious research on social media have established
the relation between an individual’s psychological
state and her linguistic and conversational patterns
(Tamersoy et al., 2015; Paul and Dredze, 2011;
De Choudhury et al., 2013a). This motivates us to
study user participations in online medical com-
munities through a linguistic lens.

We propose a framework for tracking linguis-
tic changes of a user over time for understanding
her emotional status. We use our framework to
analyze user participation on a large dataset col-
lected from the mental health forums of the web-
site healthboards.com1. These forums are
dedicated for users discussing mental health is-
sues ranging from anxiety, depression, stress, to
even self-injury recovery. We choose this com-
munity since it is one of the largest online mental
health forums, discussing a wide range of men-
tal health issues. Additionally it has highly ac-
tive members by not only their number of posts
but also by longer periods of time for which they
have been participating in the forum.

Models of time-varying user preferences in the
recommendation domain (Matsubara et al., 2012;
Koren, 2009) generally assume that users evolve
according to a ‘global clock’, whereas patients
participating in health forums progress according
to his or her own personal timeline. By observing
the word usage patterns of users in the site over
time, we find that there exist different classes of
users. While some users go through an improve-
ment over time, lessening their use of negative
words in their subsequent posts, some users move
on a deteriorating slope where increased nega-
tive emotions can be observed in their posts. De-
creased social interaction and increased negativ-
ity could be early indicators of depression, which

1www.healthboards.com/boards/
mental-health-board
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claims the lives of 15 − 20% of its patients (Sad-
eque et al., 2016). Hence it will be immensely
beneficial to detect such users early, to be able to
prevent unfortunate life-critical situations.

We make the key observation that people who
improve over time tend to participate more in the
community for the purpose of helping others (by
replying to others’ posts), than seeking help for
themselves (by initiating threads). This indicates
a belief in social support system and is reflected
through increasing positivity in their posts. On the
other hand, one of the major symptoms of depres-
sion is withdrawal from social interactions. Users
with decreasing levels of forum participation, in-
dicated by the increasing gap between their con-
secutive posts, tend to have increased negativity in
their future posts.

Building on these observations, we show that a
user’s patterns of participation can be predictive
of her emotions in the future posts. Inspired by
our empirical analysis, we design features to cap-
ture the interaction styles of a user along with the
textual contents of her posts. We use these hetero-
geneous features in a neural architecture to build a
time series predictor model.

In recent years, recurrent neural networks
(RNN) have achieved remarkable success in a
range of sequence modeling tasks (Lipton et al.,
2015; Kuremoto et al., 2014; Qiu et al., 2014). In-
spired by the success of recurrent neural networks
with pre-trained word embeddings for text model-
ing, we use a stack of RNN layers for encoding the
textual content of a post. Given the encoded tex-
tual features along with the other participation fea-
tures of a series of user posts, we employ another
set of RNN layers to model the temporal progres-
sion of her emotional status. We find that by us-
ing a small number of consecutive posts, we can
predict the emotional status of the next post with
reasonable accuracy.

The main contributions of the paper can be sum-
marized as:

• A systematic investigation of the temporal
progression of emotional status across users
from a real-world large dataset crawled from
an online mental health forum. We identify
three different classes of users according to
their emotional progress over time.

• Identification of several forum participation
and textual features indicative of users’ tem-
poral progression of emotional status.

• A proposed recurrent neural network based
architecture that uses the identified features
to predict the future emotional status of a
user.

• A comparative study of the efficacy of our
proposed architecture against state-of-the-art
methods, and a complementary analysis on
sensitivity of the prediction accuracy with re-
spect to history length and variants of the ar-
chitecture.

To the best of our knowledge, ours is the first
work towards modeling the temporal progression
of emotional status in online health forums.

2 Related Work

We start with a discussion of research efforts in un-
derstanding online textual contents related to men-
tal health issues posted in social media as well
dedicated health forums. Then we discuss works
on time series forecasting which are relevant for
temporal modeling of emotional status.

Detecting emotional crisis from social media
outlets (e.g., Twitter) has gained significant atten-
tion in recent years (De Choudhury et al., 2013b;
Coppersmith et al., 2014; De Choudhury et al.,
2013a). They investigate the use of several lin-
guistic features (choice of negative words in tweet,
increased medicinal words), as well as other so-
cial features (e.g., egonetwork) to accomplish the
task. However such social features are often not
available in case of online health forums. In
the absence of explicit signals by the users (e.g.,
‘mood’), the textual features can be indicative of
one’s emotional status.

There have been efforts from the intersection
of biomedical, and NLP community to under-
stand and analyze the textual contents users post
in online health forums (Rey-Villamizar et al.,
2016; Gkotsis et al., 2016; Paul and Dredze,
2011; Sadeque et al., 2016). After studying the
patient community of dailystrength.org,
Rey-Villamizar et al. found that on an average, the
anxiety levels of patients in the community lower
over time (Rey-Villamizar et al., 2016). Although
they spot a global trend at the community level,
there is a definite need to model the dynamics of
users’ emotional status over time. Sadeque et al.
consider a user’s linguistic and timeline features
to predict whether a user will withdraw from the
forum completely (Sadeque et al., 2016). In con-
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trast, we are interested in modeling the temporal
progression of users’ emotional status.

Traditionally for time series prediction deter-
ministic algorithms e.g., k-nearest neighbor (Wei
and Keogh, 2006), ARIMA models (Hillmer and
Tiao, 1982) have been used in different domains
such as stock price forecasting (Pai and Lin,
2005), weather prediction (Cadenas et al., 2016)
etc. Machine Learning based approaches have
also been used in the literature for temporal mod-
eling tasks in online communities (Matsubara
et al., 2012; Danescu-Niculescu-Mizil et al., 2013;
Cheng et al., 2015). Recently deep neural net-
works have shown significant progress due their
capability of modeling complex sequential pat-
terns (Ahmed et al., 2010; Lipton et al., 2015;
Kuremoto et al., 2014; Qiu et al., 2014).

We propose an architecture using neural net-
works for modeling the temporal progression of
a user using both textual and forum participation
features. We believe ours is the first work to use
RNNs on online health forum data and demon-
strate its effectiveness over traditional machine
learning models.

3 Analysis of Mental Health Forum

Online health forums provide a common platform
for patients to interact with others suffering from
similar diseases. Health forum websites provide a
variety of functionalities. Apart from conventional
discussion forum, some websites offer social me-
dia style features – e.g., “friend”, “follow”, vir-
tual “hug”. Although these could be indicative of
a user’s emotional status, in this work we focus on
the most common setting: the discussion forum2.

3.1 Dataset Description

We collected data from the Mental Health sec-
tion of healthboards.com, a long running support
group website. It comprises of individual forums
for mental conditions (24 in total e.g., Addiction
& Recovery, Anger Management, Anxiety, De-
pression, Hypochondria, Self-injury Recovery, and
Stress). The website grants users three forms of
participation:
• Starting a thread: typically contains a question
about her own health.
• Replying to own thread: acknowledging oth-
ers’ advice or providing additional context to the

2Found in healthboards.com, patientslikeme.com, dai-
lystrength.org, medhelp.org and many others

Number of posts 29,708
Number of users 1364
Average number of posts per user 21.7
Average number of words per post 140
Average life span of a user 528 days
90 percentile life span of a user 1515 days
Number of posts initiating a thread 4456
Number of posts Replying to own thread 4159
Number of posts Replying to others’ thread 21,093

Table 1: Statistics of our Mental Health Discus-
sion Forum Dataset.

original question.
• Replying to others’ thread: providing sugges-
tions in others’ threads.
Since the objective of this work is to study the pro-
gression of emotional status over time, we have
selected users who have spent at least 30 days and
have posted more than 5 times in any of the above
categories (statistics shown in Table 1).

3.2 Capturing Emotional Status
The emotional state a user is going through is
manifested by her choice of words in her posts
(Park et al., 2012; De Choudhury et al., 2013b;
Rey-Villamizar et al., 2016). Coppersmith et al.
show that standard polarity lexicons e.g., LIWC3

can be reliably used to identify emotional crisis
in the user posts (Coppersmith et al., 2014). In-
spired from their feature design, we define a met-
ric to capture the emotional status of a user from
the word usage in her posts. We note that although
some websites (e.g., dailystrength.org) let users
report their “mood” (e.g., horrible, okay, good)
along with the posts which could possibly be used
as an absolute metric — it is not commonly avail-
able in most of the health forum websites. Instead,
we rely on a simple metric derived from the polar-
ity word usages in the posts. We thus define the
Negative eMotion Index (NMI) of a post as:

NMI =
#negative words−#positive words

#total words

We obtain the list of stemmed polarity words
from the MPQA subjectivity lexicon4. Note that
the NMI score of a post is in the range {−1, 1}.
A high NMI score denotes more emotional crisis
in a post and vice versa. Apart from the individ-
ual words, we also handle simple negation struc-
tures: we account for occurrences like “not feel-
ing well”, “not ok” by reversing the polarity of

3http://liwc.wpengine.com/
4http://mpqa.cs.pitt.edu/lexicons/

subj_lexicon/
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Figure 1: Temporal progression of NMI for a sam-
ple user (suffering from depression) from 38 posts
made over a period of 90 days. The dashed red
line denotes the trend according to linear regres-
sion model.

a positive word in cases where it is preceded by
“not” or “no” (with distance≤ 2). Since writing
“n’t’ instead of “not” is a common practice (e.g.,
“haven’t”, “aren’t”), we replace them with “not”
as a part of pre-processing.

3.3 Temporal Progression of Emotional
Status

The NMI progression for a sample user is shown
in Figure 1. The posts (in chronological order)
are along X-axis and their NMI scores are plotted
along Y-axis. The trending line (based on linear
regression model), is shown in red. We introduce
a metric called NMI differential over time denoted
by NMI′:

NMI′ =
δNMI
δt

where δNMI is the difference in NMI over time
period δt. Note that the slope of the trending line
is same as NMI′. This admits three possible NMI′

trends:

NMI′


< 0 => NMI is reducing over time
> 0 => NMI is increasing over time
= 0 => NMI remains constant over time

The case NMI′ < 0 points to those patients
who are improving with time; > 0 is for those
who are deteriorating; otherwise it denotes those
patients who are stable. We present the CDF of
NMI′ across all the patients in Figure 2.

We find that the patients are Normally dis-
tributed among the three classes. Considering
a soft boundary of 0.03 for NMI′, we find that
around 31% are in improving (NMI′ < −0.03)
class, 49% belong to the stable (−0.03 < NMI′ <
0.03) class. Interestingly, 20% of all the users fall
in the deteriorating class.

Figure 2: CDF of NMI′ across all patients in Men-
tal Health section of HealthBoards. 31% are im-
proving, 20% are deteriorating, and 49% are sta-
ble with a soft threshold of NMI′ = 0.03.

3.4 Prediction Task
The above study shows that the global trends
observed on a community level do not reflect
well on an individual basis. Hence we ask the
following research question.

RQ: Given a user’s history of forum partici-
pations, can we model the progression of her
emotional status over time?

As we discussed in Section 2, this question is
largely unanswered by the existing literature. To
this end, we formally define a prediction task. The
graphical representation of the task is shown in
Figure 3. Given past k post details (text, and other
participation metrics), the task is to predict the
next NMI score. Note that we do not observe the
post text that the user would be writing next, the
task focuses on estimating the next NMI for her.

All the posts written by a user within a certain
time period are combined into a single post-block.
In this work, we set this time period to be 24 hours.
This is done primarily since a user’s emotional sta-
tus is unlikely to change within a single day. Ad-
ditionally, individual posts can be short and noisy
(e.g. “thank you”, “take care”) so combining mul-
tiple posts of the same day will be a better reflec-
tion of a user’s emotional health. For a user we
consider her last k post-blocks in the forum and
predict the NMI score of her next post-block.

4 Method

In this section we discuss our approach towards
modeling the temporal progression of a users’
emotional status. Our task falls in the guise of time
series forecasting. In our case, we have heteroge-
neous features (e.g., post types, timing of posts)
generated as artifact of user participation in the on-
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Figure 3: Graphical illustration of the prediction
task. The task is to predict the next NMI score
given past k posts. The shading on the text block
denotes that it is not observed.

line platforms. To this end, we propose an RNN
based architecture which not only takes the past
NMI scores, but also incorporates other evidences
seamlessly in the modeling process.

Our architecture consists of two components,
namely, (1) text encoder and (2) time series en-
coder. The text encoder takes text of a single post-
block as input and outputs a feature vector repre-
sentation for it. We first encode the textual com-
ponent of each post-block using the text encoder.
Overall we build an ensemble style network to ac-
count for both textual and other numeric features
since both these classes of features are heteroge-
neous in nature. One component of the network
learns from the temporal sequence of feature vec-
tors of text, while the other one from the numeric
features. Both of these components consider se-
quence of feature vectors for the past k post-blocks
in order to predict the NMI for the next to come.

In the following subsections we describe the nu-
meric features and the two components in detail.

4.1 Numeric Features
For each post-block we consider the following nu-
meric features.
Time Since Last Post (TSLP): The frequency
with which a user engages in the forum can be
indicative of her emotional health. Since people
with depression often tend to withdraw from so-
cial contacts, the time gap between a user’s posts
can represent her diminishing social interactions
(Sadeque et al., 2016). For each post-block of a
user, we consider the time difference between the
earliest post of the current block and the latest post
of the previous block as a feature.
Interaction Type (iType): An individual user
post can either be (i) initiating a thread or (ii) re-

Figure 4: Temporal cumulative distribution of in-
teraction types for a sample user in improving
class. She keeps posting to others’ threads instead
of starting her own increasingly with time.

plying to someone else’s thread or (iii) replying to
a self-initiated thread.

The type of interaction a user has on the forum
can reflect her current role or purpose in the com-
munity. While some users seek answers to their
own questions and troubles (by starting discussion
threads), some users help other community mem-
bers overcome theirs (by posting suggestions and
advices on other’s threads). The distribution of in-
teraction type for a sample patient who has im-
proved over time is shown in Figure 4. As we can
see, with time she starts posting more on others’
threads rather than starting her own. Similar trends
could be observed for other patients as well whose
emotional status have improved over time.

To encode this, for each post-block, we count
the number of individual posts within the block
that belong to the above three categories and use
the counts as features.
NMI score: Apart from the participation and tex-
tual features, the past NMI scores could also be
predictive of the future NMI score. Hence we use
NMI scores of the post-blocks as features. Since
there are multiple posts within a post-block, we
take their mean NMI and consider it as the NMI
score of the post-block.

For a post-block we concatenate the above men-
tioned numeric features to form a single numeric
feature vector.

4.2 Text Encoder

For each post-block we first concatenate the raw
texts of individual posts and use a text encoder
to encode it into a feature vector. In the text en-
coder we first embed each word using an embed-
ding layer, initialized with 50 dimensional Glove
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(a) Text Encoder (b) Time Series Predictor

Figure 5: Illustration of model architecture. Each post-block consists of text and numeric features. The
encoder for text is shown on the left side. The time series predictor, that combines both text and numeric
features to predict NMI score of the next post, is shown on the right.

word embeddings 5. The embeddings of the words
are made trainable so as to reflect the domain and
task dependent nature of the words. After embed-
ding the word vectors, the sequence of words go
through a stack of two LSTM layers, to encode the
text into a vector. In our experiments we find that,
using two stacked LSTM layers help in learning
the latent representation of a text better than just
a single layer. After each LSTM layer we add a
Dropout layer so as to prevent overfitting.

Note that, there is only one text encoder com-
ponent in the network. All the posts are encoded
using the same text encoder.

4.3 Time Series Predictor

Now, given the feature vectors of the past k post-
blocks we need to predict the NMI score of the
next post-block. To tackle this task of time series
prediction, we use a recurrent neural network ar-
chitecture due to its superiority in handling short
sequential data. There are two identical RNN
components in our network for text, and numeric
features respectively as shown in Figure 5b. The
input to the RNN at each time-step i is the fea-
ture vector representation of the ith post-block –
textual feature vector for one and numeric feature
vector for the other. The output of the RNN at

5nlp.stanford.edu/projects/glove/

the end of k time-steps yields the structural rep-
resentation of the temporal emotional progression
of the user. This is fed through a Dropout layer
to prevent over-fitting. Finally a Dense layer is
used to make a prediction from the output of the
RNN. Given the predictions from both textual and
numeric features, we aggregate (by taking mean)
these two real-valued numbers to get the final NMI
score of the (k + 1)th post-block.

Figure 5 shows an illustration of the architecture
of our proposed of model. We also considered dif-
ferent variants of this architecture. The findings
are discussed in Section 5.5.

5 Experiments

For our experiments, we consider a dataset from
mental health forums of HealthBoards (as de-
scribed in Section 3.1). In the following, we first
describe how we setup the data for our prediction
task. Later we describe the competitive baselines
and compare our model with them in terms of the
prediction accuracy. Finally we conclude with a
discussion on the parameter sensitivity and other
variants of our model.

5.1 Experimental Setup

Our objective is, given a history of k consecutive
post-blocks of a user, predicting the NMI score of
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her (k+1)th post-block. To this end, for each user
we first sort her posts in chronological order. Then
we combine all posts made within a 24-hour pe-
riod by a user to form a single post-block. There-
after we form tuples of length (k + 1) from the
sorted list of post-blocks using a sliding window
method. For each such tuple of length (k+ 1), us-
ing the features of the first k post-blocks we pre-
dict the NMI score of the (k + 1)th post-block.

Consider a user with the sequence of post-
blocks as shown in Table 2a. For history length
k = 3, we reconstruct the sequence into temporal
tuples as shown in Table 2b, where, given a tuple
of past 3 posts (P1, P2, P3) we are predicting the
NMI score of the next post (P4).

Post NMI
P1 0.21
P2 0.24
P3 0.27
P4 0.25
P5 0.31

(a) Chronologi-
cal Post-blocks
of a user

Post 1 Post 2 Post 3 NMI
P1 P2 P3 0.25
P2 P3 P4 0.31

(b) Tuples of Post-blocks

Table 2: Temporal dataset construction from posts

We split our dataset in 80% tuples for training
and 20% for testing and report five-fold cross val-
idation results. We randomly selected 10% of our
training data as the validation set.

To evaluate the performance of our NMI pre-
diction task we employ the commonly used Mean
Absolute Error (MAE) as our metric.

5.2 Parameter Settings

The parameters of our model include parameters
for history length k, parameters for the text en-
coder and parameters for the time series encoder.
We set the parameters using grid search on the val-
idation set. We set the history length k to 5.

For the text encoder, the max length of a post-
block text is set to 100. The embedding dimension
for the words is set to 50 and is initialized with
Glove embeddings. The sizes of the LSTM hidden
layers are set to 64. The output of the LSTM layers
go through dropout layers with 70% dropout rate
to prevent over fitting.

For the time series encoder the sizes of both
LSTM layers are set to 256. They are followed
by dropout layers with 60% dropout rate. The pre-
dictions are made using a Dense layer with hyper-
bolic tangent as a non-linearity function.

Mean absolute error is used as loss function and
Adam optimizer is used for optimization. Num-
ber of epochs is set to 20 but with an early stop-
ping criteria depending on the validation accuracy.
The analysis of the sensitivity of the parameters
are discussed in Section 5.5.

5.3 Baselines
We compare our proposed model with traditional
supervised regression models. We train the base-
line models using the same history length and
numeric participation features as our model and
use Bag-of-Words (BOW) features to represent the
textual content of a post. We consider the follow-
ing models for comparison:

• Linear Regression : This is the basic ordi-
nary least squares Linear Regression.

• SVM Regression : We experiment with sup-
port vector regression with both linear and
non-linear RBF kernels.

• Decision Tree Regression : Learns a local
linear regression approximating a sine curve.
We set the max depth of the tree to be 5.

• Random Forest Regression : An ensem-
ble learner that averages the predictions of a
number of decision trees to improve accuracy
and prevent over fitting. We use 100 decision
trees to constitute the forest.

We use python’s scikit-learn library6 for the above
models.

5.4 Prediction Results
We present a comparison of the results of the pro-
posed method with the competing the state-of-the-
art methods. Note that we have three sets of ob-
served signals – text features, participation fea-
tures, and NMI score. We collectively call the
latter two as numeric features in this section. We
perform an ablation study with numeric features,
and text features across all the competing meth-
ods. The results are presented in Table 3.

We observe that our method outperforms other
models comfortably. It achieves the best accuracy
when it considers both set of features. Interest-
ingly we find that the numeric feature set alone
is quite predictive about the future, whereas if we
only use the text features – the accuracy degrades.
The traditional ML based baseline models yield

6http://scikit-learn.org/stable/index.html

133



Model
MAE

Numeric
Features

Text
Features

Numeric + Text
Features

Linear Regression 0.2034 8.3553 3.4914
SVM (linear kernel) 0.2022 3.1513 0.2125
SVM (RBF kernel) 0.2724 0.2072 0.2071

Decision Tree 0.2106 0.2078 0.2106
Random Forest 0.2046 0.2032 0.2031

Our Model 0.0788 0.0802 0.0781

Table 3: Prediction results of different models

far less accurate results. Specifically we find that
both linear regressor model and the SVM regres-
sor with linear kernel model are unable to use the
BOW features for the prediction task. Overall
we can conclude that our architecture leveraging
RNNs, is able to capture the temporal progression
of emotional status with reasonable accuracy.

5.5 Parameter Sensitivity Analysis
We now study the sensitivity of our model by
varying the history length from 1 to 5. Table
4 presents the accuracy scores obtained by our
model with varying history lengths across differ-
ent feature combinations.

Generally the performance improves with in-
creasing history length, which is intuitive. We also
observe that the numeric feature consistently ap-
pear to be more predictive compared to text fea-
ture alone. However we achieve best score with
a combination of both while considering a history
length of 5.

History
Length

MAE
Numeric
Features

Text
Features

Numeric + Text
Features

1 0.0813 0.0824 0.0810
2 0.0813 0.0818 0.0808
3 0.0807 0.0814 0.0803
4 0.0797 0.0806 0.0798
5 0.0788 0.0802 0.0781

Table 4: Effect of history length and features on
the performance of our model.

Discussion on Model Architecture Variants:
Apart from the architecture presented in Section
4, we experimented with a few other variants as
mentioned below.

• For the RNN we experimented with both
LSTM (Hochreiter and Schmidhuber, 1997)
and GRU (Cho et al., 2014) and got simi-
lar results. Furthermore, we did not observe
any significant improvement by replacing the
RNN with a Bidirectional RNN (Schuster
and Paliwal, 1997).

• We tried with larger embedding dimensions
for words and larger neuron counts in the
RNN layers but that led to over-fitting, pos-
sibly due to the dataset size.

• Instead of using a simple mean as the aggre-
gation function, we experimented with using
another Dense layer for predicting the final
score. The Dense layer takes as input the con-
catenation of the outputs of the previous two
Dense layers (from textual and numeric fea-
tures) and outputs the final NMI score. This
increased the number of parameters in the
model but did not improve performance.

• Instead of using the textual and numeric fea-
tures separately in the time series predictor,
we also experimented with concatenating all
the features into a single post feature vec-
tor. Thereafter the sequence of post feature
vectors were fed into an RNN followed by
a Dense layer to make the prediction. The
performance of this model was slightly worse
with MAE 0.0787.

6 Conclusion

In this paper we have presented a framework
towards understanding temporal progression of
users’ emotional status in online mental health fo-
rums. We identify several forum participation fea-
tures that are indicative of a user’s temporal emo-
tional progression. Our proposed neural network
architecture uses textual content as well as partic-
ipation features from a user’s past posts to pre-
dict her future emotional status. Empirical evalu-
ations on a large real world dataset of online men-
tal health forum demonstrate the superiority of re-
current neural network for temporal modeling, as
our model outperforms state-of-the-art approaches
significantly.

In future, we would like to explore how our
model can be extended to capture progression of
other physical illnesses especially long term ones
e.g., ALS, Multiple Sclerosis. Incorporating so-
cial features into the model could be another in-
teresting direction. Social media and other online
platforms will play an important role in provid-
ing healthcare in the 21st century (Dredze, 2012).
With the constant influx of users seeking help
from online health outlets, we believe our generic
framework would be applicable to a wide spec-
trum of online mental health forums.
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Abstract

This paper presents an integrated ABSA
pipeline for Dutch that has been developed
and tested on qualitative user feedback
coming from three domains: retail, bank-
ing and human resources. The two lat-
ter domains provide service-oriented data,
which has not been investigated before
in ABSA. By performing in-domain and
cross-domain experiments the validity of
our approach was investigated. We show
promising results for the three ABSA sub-
tasks, aspect term extraction, aspect cat-
egory classification and aspect polarity
classification.

1 Introduction

With the rise of web 2.0 applications, customers
have been given a new platform to express their
opinions in the form of reviews on designated
websites. At the same time many companies
proactively collect direct customer feedback af-
ter an interaction, such as a store visit, a client
meeting or online purchase. Both information
types have in common that besides quantitative
data (“How would you rate the overall shopping
experience on a scale from one to ten”) also quali-
tative data (“Why did you assign this score”) is be-
ing collected. A fine-grained analysis of this qual-
itative textual feedback offers companies valuable
detailed insights into the strong and weak aspects
of their products and services and allows them to
strengthen their offer.

Extracting this information automatically is
known as the task of aspect-based sentiment anal-
ysis (ABSA). ABSA systems (Pontiki et al., 2014)
focus on the detection of all sentiment expressions
within a given document and the concepts and as-
pects (or features) to which they refer. Such sys-

tems do not only try to distinguish the positive
from the negative utterances, but also strive to de-
tect the target of the opinion, which comes down
to a very fine-grained sentiment analysis task and
“almost all real-life sentiment analysis systems in
industry should be based on this level of analy-
sis” (Liu, 2015, p10).

This fine-grained sentiment analysis task re-
ceived special attention in the framework of
three SemEval shared tasks: SemEval 2014 Task
4 (Pontiki et al., 2014) and SemEval 2015 Task
12 (Pontiki et al., 2015), which focussed on En-
glish customer reviews, and SemEval 2016 Task
5 (Pontiki et al., 2016) where seven other lan-
guages were also included. Each time the idea was
to perform three subtasks: (i) extract all aspect
expressions of the entities, (ii) categorize these
aspect expressions into predefined categories and
(iii) determine whether an opinion on an aspect is
positive, negative or neutral.

In this paper, we discuss a fine-grained sen-
timent analysis pipeline to deal with qualitative
Dutch feedback data coming from three differ-
ent domains: banking, retail, and human re-
sources. This paper presents a collaboration be-
tween academia and industry to create a proof-
of-concept, the pipeline is currently in production
at Hello Customer. In the framework of the Se-
mEval shared tasks, similar methodologies have
been investigated, but the research presented here
differs in two ways. First, the main focus has
always been on customer reviews of experiences
(restaurants, hotels, movies) or tangible products
(laptops, smartphones). Besides product-oriented
data, we move towards more service-oriented data
coming from financial institutions and human re-
sources agencies. Second, the various ABSA sub-
tasks have always been tackled and evaluated sep-
arately in the framework of SemEval. In reality,
however, all steps have to be performed sequen-
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tially, entailing error percolation from one step to
the other. In this paper we present such an inte-
grated pipeline for each domain and also perform
cross-domain experiments.

The remainder of this paper is organized as
follows. Section 2 describes the data we have
collected and annotated. Next, in Section 3 we
present the pipeline that has been developed for
performing this task and in Section 4 we discuss
the results. We end this paper with a conclusion
and suggestions for future work.

2 Datasets and Annotations

In the past, ABSA datasets have been annotated
comprising movie reviews (Thet et al., 2010), re-
views for electronic products(Hu and Liu, 2004;
Brody and Elhadad, 2010), and restaurant re-
views (Brody and Elhadad, 2010; Ganu et al.,
2009). As mentioned above, in the framework of
three SemEval shared tasks (Pontiki et al., 2014,
2015, 2016), several benchmark review datasets
coming from various domains (electronics, hotels,
restaurants, and telecom) and languages (English,
Dutch, French, Arabic, Chinese, Spanish, Turkish
and Russian) have been made publicly available.

For the work presented here, direct customer
feedback data written in Dutch was collected in
three domains: banking, retail and human re-
sources (HR). The data provider for the first do-
main, banking, is a large Belgian financial insti-
tution offering basic financial products (e.g. loans,
insurances) and services (e.g. investing or finan-
cial advice). The second domain, retail, com-
prises data coming from a large clothing company
with offline stores all over Belgium and an online
webshop. Data for the third domain, HR, comes
from two data providers who are active in the re-
cruiting sector, namely employment agencies.

For all domains, data was collected by asking
customers two things: (i) assign a NPS score1 to
the company and (ii) provide textual feedback for
this score. This feedback is referred to as a ver-
batim, which can vary from one short sentence to
various sentences discussing various aspects. Ta-
ble 1 presents an overview of all data that has been
collected and annotated in the three domains, ex-
pressed in number of verbatims and tokens.

1Net Promotor Score, a customer loyalty business metric.
Customers are asked: How likely is it that you would recom-
mend [company] to a friend or colleague? Trademark of Bain
& Company, Inc and Fred Reichheld.

Domain # verbatims # tokens
Banking 1700 15870
Retail 1500 15796
HR 1000 11960

Table 1: Verbatims and tokens in each domain.

For the actual annotations, see Figure 1 for a vi-
sualization, we annotated each aspect term and as-
signed it to a predefined aspect category (CatEx).
These aspect categories are domain-dependent and
consist of a main category (e.g. Personnel) and
subcategory (e.g. quality)2. For banking there are
22 such possible combinations, for retail 24 and
for HR 23. Table 2 gives an overview of the three
largest main categories per domain.

In a next step, sentiment bearing words were
selected, assigned a polarity: positive, negative
or neutral (OpinEx), and linked to the appropri-
ate aspect term (is about arrow). All annotations
were carried out with the BRAT rapid annotation
tool (Stenetorp et al., 2012).

Figure 1: Annotation (EN: Friendly service).

For all three domains, we went through the
same annotation process to ensure consistency.
First, a preliminary aspect category typology was
devised after which 50 verbatims were annotated
by two annotators independently from each other.
These annotations were discussed, inconsistencies
were resolved and the typology was altered, if nec-
essary. Next, an inter-annotator agreement study
was conducted on 50 new verbatims, which were
again annotated by two independent annotators.
The annotations were compared to the annotations
of a third, more experienced annotator who also
received more time to complete the task. Accuracy
was calculated on two levels: the consistency of
the annotated category expressions (cat) and the
consistency of the annotated polarity expressions
(pol).

As can be observed in Table 3, the IAA was
high for all three domains. For the remainder of
the annotation work, the same two annotators per-
formed all annotations and frequently checked and
discussed their work to ensure consistency.

2We were inspired by the SemEval ABSA annotation
guidelines available at http://bit.ly/2t0EkaB.
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Domain cat # cat # cat #
Banking BANK 317 PERSONNEL 903 PRODUCT 168
Retail STORE 306 PERSONNEL 682 COLLECTION 1191
HR HR 129 PERSONNEL 637 SERVICES 230

Table 2: Typology of the three main aspect categories and occurrences per domain.

Banking Retail HR
cat pol cat pol cat pol

Annot 1 94 94 92 94 94 96
Annot 2 86 98 97 97 93 97

Table 3: IAA, expressed in accuracy (%).

3 Methodology

A pipeline was developed in order to perform the
three incremental ABSA subtasks relying on su-
pervised machine learning techniques. For the ac-
tual experiments, all datasets were split in a 90%
train and a 10% held-out test set.

3.1 Aspect Term Extraction

Approaching the task of aspect term extraction as
a sequential IOB labeling task has proven most
successful (Liu, 2012). The two systems achiev-
ing top performance on English reviews for Se-
mEval 2015 were a classifier using Conditional
Random Fields (CRF) (Toh and Su, 2015) and a
designated Named Entity Recognizer (San Vicente
et al., 2015). Both systems implemented typical
named entity features, such as word bigrams, tri-
grams, token shape, capitalization, name lists, etc.
For SemEval 2016, subsequent work by Toh and
Su (2016) found that using the output of a Recur-
rent Neural Network as additional features is ben-
eficial for the labeling tasks.

We relied on a sequential IOB labeling ap-
proach using CRF as implemented in CRF-
Suite (Okazaki, 2007). For each token, and its
two neighbouring tokens, the following features
were extracted: (1) token shape features, based
on whether the token contains capitalization, dig-
its, or exclusively alphanumeric characters, as well
as the final two and three characters as an ap-
proximate suffix; (2) lemma, (3) CGN part-of-
speech (PoS) tag, (4) syntactic chunk, and (5)
Named Entity label as provided by the LeTs pre-
processing toolkit (Van de Kauter et al., 2013).
Both full labels and coarse super-category for PoS,
chunk, and NE labels were included as features.

For the experiments, CRF models with the
LBFGS (Nocedal, 1980) optimization function
were first trained on each domain separately and,
next, all training data was combined, leading to
four models in total. Hyper-parameters were opti-
mized by randomized search with 500 iterations
in 10-fold cross-validation. The models with
winning hyper-parameters as determined by flat
F1-score (weighted macro-averaging) were sub-
sequently tested on the held-out test sets in three
setups: in-domain (e.g. trained on banking and
tested on banking), cross-domain (e.g. trained
on banking and tested on retail) and all domain
(e.g. trained on all training data and tested on
banking).

To evaluate, we calculated flat (i.e. non-
sequence) precision, recall, and F1-scores.

3.2 Aspect Category Classification

The aspect category classification subtask requires
a system able to label a large variety of classes,
in our case 22, 24 and 23 categories. The two
systems achieving the best results for SemEval
2015 both used a classification approach (Toh and
Su, 2015; Saias, 2015). Furthermore, especially
lexical features in the form of bag-of-words have
proven successful. The best system (Toh and Su,
2015) also incorporated lexical-semantic features
in the form of clusters learned from a large cor-
pus of reference review data, whereas the second-
best (Saias, 2015) applied filtering heuristics on
the classification output and thus solely relied on
lexical information for the classification. For Se-
mEval 2016 Toh and Su (2016) discovered that
when the probability output of a Deep Convo-
lutional Neural Network (Severyn and Moschitti,
2015) was added as additional features, the per-
formance increased.

For the experiments presented here, classifiers
were built using LibSVM (Chang and Lin, 2011).
Our feature space includes lexical information by
relying on bag-of-word features in the form of to-
ken unigrams. Because for Dutch no large ref-
erence review datasets are available in the var-
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Train
Test

Banking Retail HR

Prec Rec F-1 Prec Rec F-1 Prec Rec F-1
Banking 94.8 95.1 94.9 89.6 90.9 89.2 95.2 95.4 95.0
Retail 93.0 93.9 93.2 95.6 95.5 95.6 94.9 95.1 94.4
HR 93.4 94.2 93.4 91.0 91.4 89.7 96.5 96.8 96.4
All training 95.1 95.4 95.2 95.8 95.8 95.8 95.9 96.2 95.9

Table 4: Precision, recall, and F-1 scores for aspect term extraction on held-out test sets.

ious domains, we were inspired by the work
of De Clercq and Hoste (2016) to also include lex-
ical semantic features derived from Dutch Word-
Net information, viz. Cornetto (Vossen et al.,
2013) and DBpedia (Lehmann et al., 2013) for the
aspect terms available in the training data for each
of the domains.

After training our models, these are tested on
the held-out test set. Important to note is that for
this setup we do not work with gold standard as-
pect terms, but rely on the output from the aspect
term extraction step. Since each verbatim can be
labeled with zero, one or more categories that are
not mutually exclusive, we decided to use Ham-
ming score, a multi-label evaluation metric that di-
vides the number of correct labels by the union of
predicted and true labels.

3.3 Aspect Polarity Classification

Machine learning approaches to sentiment analy-
sis make use of classification algorithms, such as
Naı̈ve Bayes or Support Vector Machines trained
on a labeled dataset (Pang and Lee, 2008). Current
state-of-the-art approaches model a variety of con-
textual, lexical and syntactic features (Caro and
Grella, 2013), allowing them to capture context
and the relations between the individual words.
Though deep learning techniques have also been
applied to this subtask, mainly in the form of word
embeddings (Mikolov et al., 2013), for SemEval
2016 the best performing system relied solely on
(advanced) linguistic features (Brun et al., 2016).

We followed a supervised approach and built
SVM classifiers using LibSVM. As we conceived
ABSA as an integrated task, the input for the po-
larity classification includes the detected aspect
term (result of step 1) and category (result of
step 2), together with the preprocessed sentence
in which the aspect term occurs. As a result, er-
ror percolation between the different steps impacts
the performance of the polarity classification sys-

tem. As information sources, we implemented the
following features: (1) bag-of-words: binary to-
ken unigram features, (2) lexicon lookup features
based on domain-specific lexicons extracted from
the training data, as well as existing sentiment lex-
icons for Dutch, i.e. Pattern (De Smedt and Daele-
mans, 2012) and Duoman (Jijkoun and Hofmann,
2009), (3) negator: flips the value of negated lexi-
con matches and (4) the predicted category of the
aspect term. For these experiments, we also envis-
aged the three different setups: in-domain, cross-
domain, and all domain. It is important to mention
that for sentiment prediction, the entire sentence is
considered for the construction of the features. As
a result, conflicting sentiments will be ruled out.
In future work, we intend to limit the context win-
dow of the detected aspect term. As the polarity
detection takes into account the output of the pre-
vious two steps, this task was also evaluated by
means of the hamming score metric (cfr. 4.3).

4 Results

4.1 Aspect Term Extraction
In Table 4 the results are presented for the differ-
ent experiments training on in-domain data (un-
derlined scores), cross-domain data, and a combi-
nation of all training data. We observe good re-
sults for aspect term extraction for all three do-
mains. In-domain scores are slightly better than
cross-domain scores, except for retail. This might
be explained by the fact that retail has very dif-
ferent aspect targets than the other two domains,
which are both more services-oriented. In addi-
tion, the target extraction scores show that training
on all data improves scores slightly for the bank-
ing and the retail domain, but decreases for HR.

4.2 Aspect Category Classification
To evaluate, we report hamming scores for (i) a
classifier taking the in-domain predictions for as-
pect terms as input (In-domain) and (ii) the pre-
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dictions of the classifier trained on all training data
from the various domains for the aspect term ex-
traction (All training).

In-domain All training
Banking 58.1 57.4
Retail 67.0 68.5
HR 46.6 46.8

Table 5: Aspect category classification results.

As can be seen in Table 5, the score difference
between both setups is small. Overall, we ob-
serve that predicting the correct aspect categories
is much more challenging for HR than for the
other two domains. A qualitative analysis revealed
that a lot of errors are caused by error percolation
from the previous step. For HR more in partic-
ular, there is a lot of confusion between closely-
related categories such as PERSONNEL service
and PERSONNEL availability.

4.3 Aspect Polarity Classification

We report hamming scores for the classifiers tak-
ing the aspect terms derived from the aspects terms
that were extracted in the All training setup3.

Train
Test

Banking Retail HR

Banking 84.5 83.3 67.1
Retail 86.8 88.9 86.7
HR 86.0 86.1 86.1
All 84.5 86.8 85.4

Table 6: Aspect polarity classification results.

Table 6 shows satisfactory results for polarity
classification based on automatically predicted as-
pect terms. The results show that training polar-
ity classifiers on all domains results in lower clas-
sification scores than in-domain training, which
confirms the intuition that sentiment expressions
are often ambiguous and domain-dependent. Al-
though the HR data set is rather limited (1000
verbatims), cross-domain training on HR also re-
sults in consistently good polarity prediction for
the other domains. Training on banking, however,
results in bad polarity prediction for the HR as-
pect terms. A qualitative analysis revealed that the
HR polarity classification relies on more general

3Experiments revealed no difference in performance
when relying on the in-domain aspect terms.

sentiment expressions also occurring in other do-
mains (e.g. vriendelijk (EN: friendly), super (EN:
excellent)), but also on very HR-specific sentiment
words (e.g. nauwkeurig (EN: accurate), doeltref-
fend (EN: effective)). Remarkably, retail has the
best cross-domain performance, it even outper-
forms the in-domain results for banking and HR.
This is because the retail model always predicts
the positive class for these two test sets, making
this a hard to beat majority baseline.

5 Conclusion

In this paper we presented an ABSA pipeline that
implements an integrated approach for the three
ABSA subtasks, which have been performed and
evaluated separately in previous research. We col-
lected and annotated qualitative user feedback in
three domains: banking, retail and HR. Especially
the banking and HR data are novel in that they
comprise service-oriented customer feedback.

By performing in-domain and cross-domain ex-
periments we show promising classification re-
sults for all three subtasks. Considering the aspect
term extraction task, it seems that training on all
available training data is beneficial for the bank-
ing and retail domain. The HR domain, however,
benefits most from in-domain training data. For
the aspect category classification, again the HR
domain reveals a different result than the other
domains, in that it is much more harder to clas-
sify. The polarity classification experiments re-
veal that for all domains it is better to train on
small domain-specific datasets instead of combin-
ing training data from different domains. Strik-
ingly, the retail domain generalizes best to the
other domains, though these results should be cor-
roborated on larger datasets.

As we address the ABSA task incrementally, we
observed error percolation in each step. We be-
lieve, however, that only an incremental approach
reflects how ABSA is performed in a real-world
setting. In future work, we will explore the viabil-
ity of domain adaptation for ABSA on larger and
different datasets and with other languages.
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Abstract

As a discipline of Natural Language Pro-
cessing, Sentiment Analysis is used to ex-
tract and analyze subjective information
present in natural language data. The task
of Sentiment Analysis has acquired wide
commercial uses including social media
monitoring tasks, survey responses, re-
view systems, etc. Languages like English
have several resources which aid in the
task of Sentiment Analysis. SentiWord-
Net and Subjectivity WordList are exam-
ples of such tools and resources. With
more data being available in native vernac-
ular, language-specific SentiWordNet(s)
have become essential. For resource poor
languages, creating such SentiWordNet(s)
is a difficult task to achieve. One solu-
tion is to use available resources in En-
glish and translate the final source lexi-
con to target lexicon via machine transla-
tion. Machine translation systems for the
English-Odia language pair have not yet
been developed. In this paper, we discuss a
method to create a SentiWordNet for Odia,
which is resource-poor, by only using re-
sources which are currently available for
Indian languages. The lexicon created,
would serve as a tool for Sentiment Anal-
ysis related task specific to Odia data.

1 Introduction

For resource-poor languages, one popular ap-
proach is to use readily available resources in En-
glish to generate a source lexicon. The source
lexicon is then translated using a Machine Trans-
lation system or a bilingual dictionary to create
the final target lexicon (Bakliwal et al., 2012). In
case of the English-Odia language pair, a good

Machine Translation system is absent. The on-
line bilingual dictionaries for the same have very
few word pairs. Manual translation is expensive
in terms of human resource and time. Another ap-
proach is to use available parallel corpora for the
language pair and use a word-alignment tool in or-
der to get a one-to-one mapping between words.
For this method, a sufficiently large corpus is re-
quired in order to get an appropriate number of
unique word pairs. Such a large corpus is unavail-
able for the English-Odia language pair. In fact,
larger corpora is available for Odia and other In-
dian language pairs. WordNets developed under
the IndoWordNet structure (Bhattacharyya, 2010)
do not map words directly but they match synsets
instead. These WordNets for Indian languages
serve well in translation from source to target lex-
icon. The SentiWordNets present for such Indian
languages helps in assignment of polarity to the
final collection of words.

Odia SentiWordNet is built using WordNets
and SentiWordNets available for other Indian lan-
guages. WordNets include those of Bengali,
Tamil, Telugu and Odia itself. SentiWordNets
used include those of Bengali, Tamil and Telugu.

The paper is divided into various sections. Sec-
tion 2 comprises of previous work and progress
towards building SentiWordNets for Indian lan-
guages. Section 3 describes resources used for cre-
ation of Odia SentiWordNet. Section 4 contains a
detailed explanation of procedure followed for the
same and defines the evaluation scheme for ver-
ification of resource thus created. An insight on
future work and extensibility of the SentiWordNet
is provided in Section 5.

2 Previous Work

Since its introduction in 1961 by IBM, Sentiment
Analysis has been a fast growing area in computer
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science. Research on Sentiment Analysis began in
English. However with increasing demand, sev-
eral researchers have developed various tools and
resources for many other languages. Odia (ISO
639 language code: ori)1, being a resource-poor
language, lacks necessary tools to perform Senti-
ment Analysis.

Since opinion mining has proved extremely use-
ful in online review and survey systems and since
data is more readily available than ever, Sentiment
Analysis serves as an effective method to achieve
automated scoring of products, movies, etc.

Turney worked on classifying customer reviews
(Turney, 2002). They adopt an unsupervised
learning technique to predict the semantic ori-
entation of phrases. Hatzivassiloglou (Hatzivas-
siloglou and R. McKeown, 1997) and Turney (Tur-
ney and Littman, 2003) describe methods of using
a set of words gathered a priori as a seed list to
classify the semantic orientation of phrases. The
former method (Hatzivassiloglou and R. McKe-
own, 1997) was the first to deal with opinion clas-
sification in phrases. The approach mainly uses
adjectives for Sentiment Analysis. However, suf-
ficient pre-processing was carried out using avail-
able tools for English before the phrases were suc-
cessfully classified.

Even though sentiment depends on context, lex-
ical resources have proven to give a good baseline
for further studies. The English language has sev-
eral lexical resources such as the SentiWordNet as
described by Esuli (Esuli and Sebastiani, 2006). It
contains over 3 million tokens assigned with po-
larity and objectivity score. The resource has been
improved over the years as demonstrated in liter-
ature (Baccianella et al., 2010). Another such im-
portant resource is the Subjectivity Lexicon (Wil-
son et al., 2005) which is a part of OpinionFinder2.

Languages which have a scarcity of readily
available data depend on resource rich languages
to build such lexicons. Whalley (Whalley and
Medagoda, 2015) describes how the Sinhalese
sentiment lexicon was created using the English
SentiWordNet 3.0. The SentiWordNet in En-
glish was mapped to a Sinhalese dictionary and
the scores were copied from one language to an-
other. Another way to achieve this is by linking
the WordNets of the source and target language.
Joshi proposed a method to create a SentiWordNet

1http://www-01.sil.org/iso639-3/codes.asp
2http://mpqa.cs.pitt.edu/opinionfinder/

for Hindi by linking the English and Hindi Word-
Nets and assigning scores to the synsets in Hindi
WordNet (Joshi et al., 2010). Dipankar Das sug-
gested a method to develop WordNet affect lists
in Bengali using affect wordlists already available
in English. (Das and B, 2010). The method uses
a bilingual dictionary to translate words from En-
glish to Bengali. Amitava Das (Das and Bandy-
opadhyay, 2010) (Das and Gambäck, 2012) (Das
and Bandyopadhyay, 2011) proposes several ways
to generate such lexical resources for other In-
dian languages. One approach suggests the usage
of both English SentiWordNet 3.0 and Subjectiv-
ity Lexicon and adopting a translation based ap-
proach in order to build the lexicon in three In-
dian languages (Das and Bandyopadhyay, 2010).
A SentiWordNet for Tamil has also been devel-
oped using a similar translation based approach for
currently available resources in English (Kannan
et al., 2016). Due to lack of a sufficiently large par-
allel corpus or a bilingual dictionary, direct trans-
lation techniques from English to Odia could not
be applied in-order to build the SentiWordNet in
Odia.

3 Prerequisites

For creating Odia SentiWordNet, SentiWordNets
of three Indian languages, namely Bengali, Tamil
and Telugu are used. Polarity of words for these
resources has proved to be reliable (Das and
Bandyopadhyay, 2010). Multiple SentiWordNets
are used for a better estimate of sentiment for each
word and reduction of ambiguities while building
the resource. For creation of lexicon for Odia,
WordNets for Odia and the other three Indian lan-
guages are used. These WordNets have synsets
linked via a common synset identification number
(ID), without direct word-to-word mapping. The
resources used are described below.

3.1 SentiWordNets for Indian Languages

SentiWordNet is a lexical resource explicitly de-
vised for supporting sentiment classification and
opinion mining applications. According to Bac-
cianella, SentiWordNet is the result of the auto-
matic annotation of all the synsets of WordNet
towards the notions of positivity, negativity, and
neutrality (Baccianella et al., 2010). Each synset
is associated with three numerical scores : pos(s),
neg(s), and obj(s) which indicate positive, nega-
tive, and objective i.e., neutral respectively. Senti-
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WordNets for Bengali, Telugu and Tamil were cre-
ated using Das’s approach (Das and Bandyopad-
hyay, 2010). Each of these comprises of four lists
under the categories of ”Positive”, ”Negative”,
”Neutral” and ”Ambiguous” which contain words
of positive, negative, neutral polarity and ambigu-
ous words, respectively. The Parts-of-Speech tag
information for each word is also provided. Ta-
ble 1 gives detailed statistics for each of the Senti-
WordNets used.

Language POS NEG NEU AMB
Bengali 1779 3714 359 648
Telugu 2136 4076 359 1093
Tamil 2225 4447 361 1168

Table 1: Statistics for SentiWordNets

3.2 WordNets for Indian Languages

”Wordnets are lexical structures composed of
synsets and semantic relations” (Fellbaum, 1998).
A synset comprises a set of synonyms. They are
linked by semantic relations like hypernymy (is-
a), meronymy (part-of), troponymy (manner-of),
etc. WordNets for four different languages are
used for building the lexicon for Odia SentiWord-
Net. These WordNets are linked across languages
through common synset IDs. They are part of
the linked IndoWordNet structure (Bhattacharyya,
2010). WordNets for Bengali, Tamil and Telugu
were used for creating the source lexicon. Odia
WordNet was used for generating the target lexi-
con. Table 2 describes the statistics of the num-
ber of tokens present in every Part-Of-Speech cat-
egory for each language.

LANG Odia Bengali Telugu Tamil
NOUN 27216 27281 12078 16312
VERB 2418 2804 2795 2803
ADJ 5273 5815 5776 5827
RB 377 445 442 477
Total 35284 36346 21091 25419

Table 2: IndoWordNet Statistics.

4 Procedure

A step-by-step procedure to be followed is
illustrated in Figure 1. This procedure can be
adopted for a different target language, as long
as the target language has a WordNet which is

linked with other Indian language WordNets. The
procedure is divided into three parts:

1. Creating Source Lexicon: SentiWordNets
from Indian languages are used to assign a
polarity to corresponding WordNet synsets.
A final list of synsets IDs with the corre-
sponding polarity serves as a source list.

2. Generating Target Lexicon: For every
synset ID from source, the corresponding
words from the target language WordNet are
assigned the same polarity as that of the
synset ID.

3. Evaluation of Final Resource: The created
target lexicon needs to be evaluated for er-
rors. This paper adopts manual evaluation by
language specific annotators and reports an-
notator agreement score.

4.1 Creating Source Lexicon
Source Lexicon acquisition begins with Senti-
WordNets available for the three aforementioned
Indian languages. In order to create a reliable
baseline for Odia, only words with positive and
negative polarity are considered. Currently, am-
biguous words or those having neutral polarity are
not considered for the creation of source lexicon.
For each language, words with positive and nega-
tive polarity are extracted from their correspond-
ing SentiWordNets.

The corresponding synset ID of each word is
then found from that language’s WordNet. This is
attained by using a hash-map created over all the
words in WordNet for that language. The synset
ID for the identified word serves as a key to a dic-
tionary δ. The corresponding value is a list with
the polarity of the word as an item. In case δ
already has a synset ID as a key, the polarity of
the word is appended to the existing list for that
key in δ. Such a case would occur when word
and its synonym (both part of the same synset)
are both present in the SentiWordNet for that lan-
guage. Such a case can also occur when a word
from a different language’s WordNet has a synset
ID which is already a key in δ. The final dictionary
comprises of several synset IDs as key. A total of
6203 synset IDs were identified. For each key the
value in δ is a list of polarities (positive or nega-
tive) which are observed for words in the sysnet
across languages.
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Figure 1: Flow of Design for Odia SentiWordNet

A word and its synonyms should commonly
have the same polarity. This should also be true
across languages, in an ideal scenario. However, it
was observed that in many cases the list of polar-
ities for a given key is not homogeneous. This is
because a word with a particular sentiment in one
language may not necessarily have the same sen-
timent in another language. Infact, it was also ob-
served that, in very few cases, a word with a given
sentiment in one language sometimes did not have
the same sentiment for some of its synonyms in the
same language. Every synset ID which exists as a
key in δ is to be assigned a single polarity. Any
of the synset IDs which have contradicting polari-
ties to a certain degree should be ignored as these
will affect the reliability of the Odia SentiWord-
Net. For a given key (synset ID), the polarity in its
list in δ which holds a majority greater than 65%
is considered the final polarity for that synset ID.
This results in a list of synset IDs with an assigned
major polarity. The list serves as the ”Source” to
map to synsets in Odia WordNet. The source list
comprises of 5661 synset IDs along with their ma-
jor polarity.

4.2 Generating Target Lexicon

In order to create the Target Lexicon, Odia Word-
Net is used. The Odia WordNet is linked to the

other three aforementioned WordNets through a
common synset ID. A total 5407 synset IDs from
the Source List were found to exist in Odia Word-
Net. For each synset ID in Source list, the corre-
sponding words are extracted from Odia WordNet.
Each of these words is assigned the major polarity
(positive or negative) corresponding to that synset
ID in the Source list. A total of 13917 tokens
were assigned polarity. Table 3 provides details
on the total tokens extracted from Odia WordNet.
Only adjectives and adverbs are added to the final
Target Lexicon. Nouns and verbs were not added
to the Target Lexicon because the polarity asso-
ciated with these words is usually context depen-
dent. These are added to a separate list for future
inspection.

No. of observed OWN synsets 5661
Adjectives and Adverbs 4747
Nouns and Verbs 9170
Total number of tokens 13917

Table 3: Target Lexicon Statistics

The final Target Lexicon comprises of words
along with their sentiment polarity, Part-of-Speech
tag and synset ID corresponding to the language’s
WordNet. The final lexicon contained 1839 pos-
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Figure 2: Odia words with polarity

itive entries and 2908 negative entries. Figure 2
shows a few examples of Odia words with their
corresponding assigned polarity.

4.3 Resource Evaluation

In order to assess the reliability of the Odia Senti-
WordNet, a random sampling of 2500 words was
created from the Target Lexicon. In order to main-
tain a balanced sample set, 1250 words were ran-
domly picked from each polarity list. This sample
set was provided to three manual annotators to be
independently annotated as positive or negative.
The manual annotators were native Odia speak-
ers and spoke the language on a daily basis. Each
of the three annotators were asked to annotate ev-
ery token of the sample set with the polarity they
deemed appropriate. No annotator had prior infor-
mation about the assigned polarity to a token. This
ensured unbiased annotation of tokens.

In order to capture inter-annotator agreement,
Fleiss Kappa3 score for the annotated sample set
was also calculated. Fleiss Kappa is calculated us-
ing the following formula:

κ =
P̄ − P̄e

1− P̄e
(1)

P̄ represents the sum of observed agreement. The
sum of agreement by chance is denoted by P̄e .
Fleiss Kappa score is calculated using three raters
for two categories (positive/negative). A substan-
tial agreement score of κ = 0.76 is reported for
Odia SentiWordNet.

3https://en.wikipedia.org/wiki/Fleiss’˙kappa

In order to further improve upon the Target Lex-
icon, words with sentiment which none of the an-
notators agreed to, were removed. This was done
only for the sample of 2500 words. Table 4 gives
metrics for the Odia SentiWordNet thus created.
A total of 98 words with incorrect polarity were
removed.

Initial Positive Tokens 1839
Initial Negative Tokens 2908
Final Positive Tokens 1803
Final Negative Tokens 2846
Inter-Annotator Agreement (Fleiss Kappa)

0.76

Table 4: Evaluation Details

5 Conclusion and Future Work

Odia SentiWordNet will serve as a useful resource
for Sentiment Analysis on Odia data. The method
adopted is generic and can be used to create sim-
ilar sentiment lexicons for other Indian languages
which are part of the IndoWordNet structure. In
order to find the accuracy of the created resource,
it needs to be tested on actual user generated data.
Odia data is readily available online. Currently, a
set of 1000 Odia sentences is being manually an-
notated. The annotated set would serve as gold
data. These sentences are taken from online news-
paper articles4. Odia SentiWordNet will be tested
on these 1000 sentences in order to predict the sen-
timent associated with each sentence. Comparison
with results of manual annotation should give a
more accurate insight on how reliable the resource
is. The resource serves as a baseline and can be
improved in the future. Several resource expan-
sion strategies can be used to enrich Odia Senti-
WordNet. One particular method involves usage
of antonym relations. Antonyms of a word, which
are not already present in the resource can be as-
signed opposite polarity. Antonym creation rules,
specific to the language, can be applied to gen-
erate antonyms of many words in the resource as
suggested previously in literature (Das and Bandy-
opadhyay, 2010). If a sufficiently large corpus
becomes available, SentiWordNet can be used to
capture language-specific nuances. The raw cor-
pus can be trained on a word embedding tool
(e.g Word2Vec) to create word clusters of similar

4http://thesamaja.in/
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words based on the prior and subsequent neigh-
bours of a word in the corpus. Such clusters can
be further used to expand the lexicon.

Acknowledgments

The authors would like to thank Pruthwik Mishra,
Shastri V. Mohapatra and Ranjita Mohanty for
their help in manual annotation and checking the
reliability of Odia SentiWordNet. The SentiWord-
Nets for Tamil, Bengali and Telugu were acquired
from Amitava Das’ website5. The IndoWordNet
was accessed from CLIFT IIT Bombay website6.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: An enhanced lexi-
cal resource for sentiment analysis and opinion min-
ing. In Proceedings of the Seventh conference on
International Language Resources and Evaluation
(LREC’10). European Languages Resources Asso-
ciation (ELRA). http://aclweb.org/anthology/L10-
1531.

Akshat Bakliwal, Piyush Arora, and Vasudeva Varma.
2012. Hindi subjective lexicon: A lexical re-
source for hindi adjective polarity classification. In
Nicoletta Calzolari, Khalid Choukri, Thierry De-
clerck, Mehmet Ugur Dogan, Bente Maegaard,
Joseph Mariani, Jan Odijk, and Stelios Piperidis, ed-
itors, LREC. European Language Resources Asso-
ciation (ELRA), pages 1189–1196. http://dblp.uni-
trier.de/db/conf/lrec/lrec2012.htmlBakliwalAV12.

Pushpak Bhattacharyya. 2010. Indowordnet. In Nico-
letta Calzolari, Khalid Choukri, Bente Maegaard,
Joseph Mariani, Jan Odijk, Stelios Piperidis, Mike
Rosner, and Daniel Tapias, editors, LREC. European
Language Resources Association. http://dblp.uni-
trier.de/db/conf/lrec/lrec2010.htmlBhattacharyya10.

Amitava Das and Sivaji Bandyopadhyay. 2010.
Sentiwordnet for indian languages. In Pro-
ceedings of the Eighth Workshop on Asian
Language Resouces. Coling 2010 Organiz-
ing Committee, Beijing, China, pages 56–63.
http://www.aclweb.org/anthology/W10-3208.

Amitava Das and Sivaji Bandyopadhyay. 2011.
Dr sentiment knows everything! In Proceed-
ings of the ACL-HLT 2011 System Demon-
strations. Association for Computational
Linguistics, Portland, Oregon, pages 50–55.
http://www.aclweb.org/anthology/P11-4009.

Amitava Das and Björn Gambäck. 2012. Sentiman-
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Abstract

With the advent of word embeddings, lex-
icons are no longer fully utilized for sen-
timent analysis although they still provide
important features in the traditional setting.
This paper introduces a novel approach to
sentiment analysis that integrates lexicon
embeddings and an attention mechanism
into Convolutional Neural Networks. Our
approach performs separate convolutions
for word and lexicon embeddings and pro-
vides a global view of the document using
attention. Our models are experimented
on both the SemEval’16 Task 4 dataset
and the Stanford Sentiment Treebank and
show comparative or better results against
the existing state-of-the-art systems. Our
analysis shows that lexicon embeddings al-
low building high-performing models with
much smaller word embeddings, and the
attention mechanism effectively dims out
noisy words for sentiment analysis.

1 Introduction

Sentiment analysis is a task of identifying senti-
ment polarities expressed in documents, typically
positive, neutral, or negative. Although the task of
sentiment analysis has been well-explored (Mullen
and Collier, 2004; Pang and Lee, 2005; Wilson
et al., 2005), it is still very challenging due to the
complexity of extracting human emotion from raw
text. The recent advance of deep learning has defi-
nitely elevated the performance of this task (Socher
et al., 2013; Kim, 2014; Yin and Schütze, 2015)
although there is much more room to improve.

In the traditional setting where statistical models
are based on sparse features, lexicons consisting
of words and their sentiment scores are shown to
be highly effective for sentiment analysis because

they provide features that may not be captured from
training data (Hu and Liu, 2004; Kim and Hovy,
2004; Ding et al., 2008; Taboada et al., 2011). How-
ever, since the appearance of word embeddings, the
use of lexicons is getting faded away because word
embeddings are believed to capture the sentiment
aspects of those words. This brought us two impor-
tant questions:

• Can lexicons be still useful for sentiment anal-
ysis when coupled with word embeddings?

• If yes, what is the most effective way of incor-
porating lexicons with word embeddings?

To answer these questions, we first construct lexi-
con embeddings that are specifically designed for
sentiment analysis and integrate them into the exist-
ing Convolutional Neural Network (CNN) model
similar to Kim (2014). Three ways of lexicon in-
tegration to the CNN model are proposed, which
show distinctive characteristics for different gen-
res (Section 3.2). We then incorporate an efficient
attention mechanism to our CNN models, which
provides a global view of the document by em-
phasizing (or de-emphasizing) important words
and lexicons (Section 3.3). Our models using lexi-
con embeddings are evaluated on two well-known
datasets, the SemEval’16 dataset and the Stanford
Sentiment Treebank, and show state-of-the-art re-
sults on both datasets (Section 4). To the best of
our knowledge, this is the first time that lexicon
embeddings are introduced for sentiment analysis.

2 Related Work

The first attempt of sentiment analysis on text was
initiated by Pang et al. (2002) who pioneered this
field by using bag-of-word features. This work
mostly hinged on feature engineering; since then,
many kinds of feature learning methods had been
introduced to increase the performance (Pang and
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Lee, 2008; Liu, 2012; Gimpel et al., 2011; Feld-
man, 2013; Mohammad et al., 2013b). Aside from
pure machine learning approaches, lexicon based
approaches had been another trend, which relied
on the manual or algorithmic creation of word sen-
timent scores (Hu and Liu, 2004; Kim and Hovy,
2004; Ding et al., 2008; Taboada et al., 2011).

Since the emergence of the Convolutional Neu-
ral Networks (CNN; Collobert et al. (2011)), con-
ventional methods have become gradually obso-
lete because of the outstanding performance from
the CNN variants. CNN based models are distin-
guished from earlier methods because they do not
rely on laborious feature engineering. The first
success of CNN in sentiment analysis was trig-
gered by document classification research (Kim,
2014), where CNN showed state-of-the-art results
in numerous document classification datasets. This
success has engendered an upsurge in deep neural
network research for sentiment analysis. Various
modified models have been proposed in the litera-
ture. One of the famous deep learning methods that
models a document is the generalized phrase pro-
posed by Yin and Schütze (2014), which represents
a sentence using element-wise addition, multiplica-
tion, or recursive auto-encoder.

Endeavors to capture n-gram information bore
fruits with CNN, max pooling, and softmax (Col-
lobert et al., 2011; Kim, 2014), which is regarded as
the standard methods of the document classification
problem these days. Kalchbrenner et al. (2014a)
extended this standard CNN model with dynamic
k-max pooling, which served as an input layer to
another stacked convolution layer. Multichannel
CNN methods (Kim, 2014; Yin and Schütze, 2015)
are another branch of CNN, where assorted embed-
dings are considered together when convolving the
input. Unlike Kim (2014)’s model that relies on a
single type of embedding with different mutability
characteristics of the weights of embedding layer,
Yin and Schütze (2015) incorporates diverse sort
of embedding types using multichannel CNN.

Two notable pioneers in using lexicon for senti-
ment analysis are Mohammad et al. (2013a); Kalch-
brenner et al. (2014b) generated scores with other
manually generated sentiment lexicon scores to
achieved the state-of-the-art result in SemEval-
2013 Twitter sentiment analysis task. In general
domain, Hu and Liu (2004) generated a user review
lexicon that showed promising result in capturing
sentiment in customer product reviews.

Attention based methods have been successful in
many application domains, such as image classifi-
cation (Stollenga et al., 2014), image caption gen-
eration (Xu et al., 2015), machine translation (Cho
et al., 2014; Bahdanau et al., 2014; Luong et al.,
2015), and question answering (Shih et al., 2016;
Chen et al., 2015; Yang et al., 2016). However,
in the field of sentiment analysis, the attention is
applied to only aspect-based sentiment classifica-
tion (Yanase et al., 2016). To the best knowledge
of ours, there is no attention-based model for a
general sentiment analysis task.

3 Approach

The models proposed here are based on a convo-
lutional architecture and use naive concatenation
(Section 3.2.1), multichannel (Section 3.2.2), sep-
arate convolution (Section 3.2.3), and embedding
attention (Section 3.3) for the integration of lexicon
embeddings to CNN.

3.1 Baseline

Our baseline approach is a one-layer CNN model
using pre-trained word embeddings, which is a
reimplementation of the CNN model introduced by
Kim (2014). Let s ∈ Rn×d be a matrix represent-
ing the input document, where n is the number of
words, d is the dimension of the word embeddings,
and each row corresponds to the word embedding,
wi ∈ Rd, where wi indicates the i’th word in the
document. This document matrix s is fed into the
convolutional layer and convolved by the weights
c ∈ Rl×d, where l is the length of the filter.

The convolutional layer can take m-number of
filters of the length l. Each convolution produces a
vector vc ∈ Rn−l+1, where elements in vc convey
the l-gram features across the document. The max
pooling layer selects the most salient features from
each of the m vectors produced by the filters. As a
result, the output of this max pooling layer is a vec-
tor vm ∈ R(n−l+1)×m. The selected features are
passed onto the softmax layer, which is optimized
for the score of each sentiment class label.

3.2 Lexicon Integration

Lexicon embeddings are derived by taking scores
from multiple sources of lexicon datasets. Each
lexicon dataset consists of key-value pairs, where
the key is a word and the value is a list of sentiment
scores for that word (e.g., probabilities of the word
in positive, neutral, and negative contexts). These
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scores range between −1 and 1, where −1 and 1
being the most negative and positive, respectively.
However, some lexicons contain non-probabilistic
scores (e.g., frequency counts of the word in senti-
mental contexts), which are normalized to [−1, 1].

(a) Naive concatenation (Section 3.2.1). The lexicon
embeddings (on the right) are concatenated to the word
embeddings (on the left).

(b) Multichannel (Section 3.2.2). The lexicon embed-
dings are added to the second channel whereas the word
embeddings are added to the first channel.

(c) Separate convolution (Section 3.2.3). The lexicon
embeddings are processed by a separate convolution (on
the right) from the word embeddings (on the left).

Figure 1: Lexicon integration to the CNN model.

For each word w ∈ W , where W is the union of
all words in the lexicon datasets, a lexicon embed-
ding is constructed by concatenating all the scores
among the datasets with respect to w. If w does
not appear in certain datasets, 0 values are assigned
in place. The resulting embedding is in the form
of a vector v ∈ Re, where e is the total number of
scores across all lexicon datasets. The following
subsections propose three methods for lexicon inte-
gration to the baseline CNN model (Section 3.1),
which depict different characteristics depending on
the peculiarities of each domain.

3.2.1 Naive Concatenation
The simplest way of blending a lexicon embedding
into its corresponding word embedding is to append

it to the end of the word embedding (Figure 1(a)).
In a formal notation, the document matrix becomes
s ∈ Rn×(d+e). The subsequent process is the same
as the baseline approach.

3.2.2 Multichannel
Inspired by Yin and Schütze (2015) who integrated
several kinds of word embeddings using multichan-
nel CNN, lexicon embeddings in this approach are
represented in another channel along with the word
embedding channel where both channels are con-
volved together (Figure 1(b)). Since the dimension
of lexicon embeddings is considerably smaller than
that of word embeddings (i.e., d � e), zeros are
padded to the lexicon embeddings so their dimen-
sions match (i.e., d = e). The identical shape of
these two channels allows multichannel convolu-
tion to the input document.

3.2.3 Separate Convolution
Another way of adding lexicon embeddings to the
CNN model is to process a separate convolution for
them (Figure 1(c)). In this case, two individual con-
volutions are applied to word embeddings and lexi-
con embeddings. The max pooled output features
from each convolution are then merged together to
form an input vector to the softmax layer. Formally,
let lw, lx be the filter lengths for word embeddings
and lexicon embeddings, respectively. Let mw and
mx be the numbers of filters for word embeddings
and lexicon embeddings, respectively. The result-
ing penultimate layer includes max pooled features
from word embeddings and lexicon embeddings of
size [(n− lw + 1)×mw] + [(n− lx + 1)×mx].

3.3 Embedding Attention

Section 3.2 describes how lexicon embeddings can
be incorporated into the CNN model in Section 3.1.
Each CNN model uses several filters with different
lengths; given the filter length l, the convolution
considers l-gram features. However, these l-gram
features account only for local views, not the global
view of the document, which is necessary for sev-
eral transitional cases such as negation in sentiment
analysis (Socher et al., 2012). To ameliorate this
issue, we introduce the embedding attention vector
(EAV), which transforms the document matrix in
each embedding space into a vector. For example,
the EAV in the word embedding space is calculated
as a weighted sum of each column in the document
matrix s ∈ Rn×d, which yields a vector v ∈ Rd.
For each document, two EAVs can be derived, one
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from the document matrix consisting of word em-
beddings and the other from the one consisting of
lexicon embeddings. All embeddings in the doc-
ument matrix are used to create the EAV through
multiple convolutions and max pooling as follows:

1. Apply m-number of convolutions with the fil-
ter length 1 to the document matrix s ∈ Rn×d.
For lexicon embeddings, the document matrix
has a dimension of Rn×e.

2. Aggregate all convolution outputs to form an
attention matrix sa ∈ Rn×m, where n is the
number of words in the document, and m is
the number of filters whose length is 1.

3. Execute max pooling for each row of the atten-
tion matrix sa, which generates the attention
vector va ∈ Rn (Figure 2(a)).

4. Transpose the document matrix s such that
sT ∈ Rd×n, and multiply it with the attention
vector va ∈ Rn, which generates the embed-
ding attention vector ve ∈ Rd (Figure 2(b)).

Document
Matrix

Attention Matrix
(Filter Lenth=1)

Attention
Vector
(MaxPool)

(a) Given a document matrix, the attention matrix is first
created by performing multiple convolutions. The atten-
tion vector is then created by performing max pooling on
each row of the attention matrix.

Document
Matrix 

(Transposed)

Attention
Vector

Embedding
Attention
Vector

(b) The embedding attention vector is created by multiplying
the transposed document matrix to the attention vector.

Figure 2: Construction of the embedding attention
vector from a document matrix.

The resulting EAVs are appended to the penulti-
mate layer to serve as additional information for
the softmax layer. For our experiments, EAVs are

generated from both word and lexicon embedding
spaces for all of the three lexicon integration meth-
ods in Section 3.2.

4 Experiments

4.1 Corpora
4.1.1 SemEval-2016 Task 4
All models are evaluated on the micro-blog dataset
distributed by the SemEval’16 Task 4a (Nakov
et al., 2016). The dataset is gleaned from tweets
with annotation of three sentiment classes: posi-
tive, neutral, and negative. The available dataset
contains only tweet IDs and their sentiment polari-
ties; the actual tweet texts are not included in this
dataset due to the copyright restrictions. Although
the download script provided by SemEval’16 gives
a way of accessing the actual texts on the web, a
portion of tweets is no longer accessible. To com-
pensate this loss, the dataset also includes tweet
instances from the SemEval’13 task.

+ 0 - All
TRN 6,480 6,577 2,328 15,385
DEV 786 548 254 1,588
TST 7,059 10,342 3,231 20,632

Table 1: Statistics of the SemEval’16 Task 4 dataset.
+/0/-: positive/neutral/negative, TRN/DEV/TST:
training, development, evaluation sets.

The classification results are evaluated by averag-
ing the F1-scores of positive and negative senti-
ments as suggested by the SemEval’16 Task 4a.

4.1.2 Stanford Sentiment Treebank
Another dataset consisting of movie reviews from
Rotten Tomatoes is used for evaluating the robust-
ness of our models across different genres. This
dataset, called the Stanford Sentiment Treebank,
was originally collected by Pang and Lee (2005)
and later extended by Socher et al. (2013). The
sentiment annotation in this dataset is categorized
into five classes: very positive, positive, neutral,
negative, and very negative. Following the previ-
ous work (Kim, 2014), the results are evaluated by
the conventional classification accuracy.

++ + 0 - – All
TRN 1288 2322 1624 2218 1092 8,544
DEV 165 279 229 289 139 1,101
TST 399 510 389 633 279 2,210

Table 2: Statistics of the Stanford Sentiment Tree-
bank dataset. ++/+/0/-/–: very positive/positive/
neutral/negative/very negative.
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4.2 Embedding Construction
4.2.1 Word Embeddings
To best capture the word semantics in each genre,
different corpora are used to train word embed-
dings for the SemEval’16 (S16) and the Stanford
Sentiment Treebank (SST) datasets. For S16, word
embeddings are trained on tweets collected by the
Archive Team,1 consisting of 3.67M word types.
For SST, word embeddings are trained on the Ama-
zon Review dataset,2 containing 2.67M word types.

All documents are pre-tokenized by the open-
source toolkit, NLP4J.3 The word embeddings are
trained by the original implementation of word2vec
from Google using skip-gram and negative sam-
pling.4 No explicit hyper-parameter tuning is per-
formed. For each genre, four sets of embeddings
with different dimensions (50, 100, 200, 400) are
trained to observe the impact of the embedding size
on each approach.

4.2.2 Lexicon Embeddings
Six types of sentiment lexicons are used to build
lexicon embeddings. All lexicons include senti-
ment scores; some lexicons contain information
about the frequency of positive and negative senti-
ment polarity associated with each word:

• National Research Council Canada (NRC)
Hashtag Affirmative and Negated Context
Sentiment Lexicon (Kiritchenko et al., 2014).

• NRC Hashtag Sentiment Lexicon
(Mohammad et al., 2013a).

• NRC Sentiment140 Lexicon
(Kiritchenko et al., 2014).

• Sentiment140 Lexicon
(Mohammad et al., 2013a).

• MaxDiff Twitter Sentiment Lexicon
(Kiritchenko et al., 2014).

• Bing Liu Opinion Lexicon
(Hu and Liu, 2004).

When creating lexicon embeddings, the narrow cov-
erage of vocabulary in lexicons often raises missing
scores. If a given word is missing in a specific lexi-
con, neutral scores of 0 are substituted.
1archive.org/details/twitterstream
2snap.stanford.edu/data/web-Amazon.html
3github.com/emorynlp/nlp4j
4code.google.com/p/word2vec

Table 3 shows the word type coverage of our word
and lexicon embeddings for each dataset. The lex-
icon embeddings show relatively poor coverage;
nevertheless, our experiments show that these lex-
icon embeddings help sentiment classification in
various ways (Section 4.3).

Word Emb Lexicon Emb
S16 SST S16 SST

TRN 70.12 97.66 11.53 9.20
DEV 81.90 98.91 3.29 3.32
TST 68.57 98.58 12.40 4.98

Table 3: The percentage of word types covered by
our word and lexicon embeddings for each dataset.

4.3 Evaluation
Seven models are evaluated to show the effective-
ness of lexicon embeddings to sentiment analysis:
baseline (Section 3.1), naive concatenation (NC;
Section 3.2.1), multichannel (MC; Section 3.2.2),
separate convolution (SC; Section 3.2.3), and the
three integration approaches with embedding atten-
tion (∗-EAV; Section 3.3). The comparisons of our
proposed models to the previous state-of-the-art
approaches are outlined in Table 4. For all experi-
ments, the fixed random seed of 1 is used to avoid
performance boost from different randomness (see
Section 4.4.1 for more discussions). The following
configuration are used for all models:

• Filter size = (2, 3, 4, 5) for both word and
lexicon embeddings.

• Number of filters = (64 and 9) for word and
lexicon embeddings, respectively.

• Number of filters = (50 and 20) for construct-
ing embedding attention vectors in word and
lexicon embedding spaces, respectively.

It is worth mentioning that the performance of our
baseline models improved quite a bit when the train-
ing corpora for word embeddings and sentiment
analysis were tokenized coherently. Unlike sev-
eral other work, we used the identical tokenization
tool, NLP4J, to preprocess all corpora, which gave
considerable boost in performance. Comparing the
baseline to SC, lexicon embeddings significantly
improved accuracy for S16, about 2%, surpassing
the previous state-of-the-art result achieved by De-
riu et al. (2016). However, SC did not show much
improvement for SST where the baseline was al-
ready performing well.
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Model S16 (Avg F1 Score) SST (Accuracy)
Baseline 61.6 47.5

NC 63.4 46.8
MC 61.8 47.0
SC 63.6 47.5

NC-EAV 63.4 48.8
MC-EAV 62.1 47.3
SC-EAV 63.8 48.8

Deriu et al. (2016) 63.3 -
Rouvier and Favre (2016) 63.0 -

Kim (2014) - 48.0
Kalchbrenner et al. (2014b) - 48.5

Le and Mikolov (2014) - 48.7
Yin and Schütze (2015)∗ - 49.6

Table 4: Evaluation set results (random seed is fixed to 1) of the proposed models in comparison to
the state-of-the-art approaches. Deriu et al. (2016): the first place for the SemEval’16 task 4a using
an ensemble of two CNN models. Rouvier and Favre (2016): the second place for the SemEval’16
task 4a using various embeddings in CNN. Kim (2014): the state of the art single layer CNN model.
Kalchbrenner et al. (2014b): dynamic CNN with k-max pooling. Le and Mikolov (2014): logistic
regression on top of paragraph vectors. Yin and Schütze (2015): the state-of-the-art dual layer CNN with
five channel embeddings.

Comparing these lexicon integrated models with
the ones with embedding attention vectors (∗-EAV),
EAV did not help much for S16 but significantly
improved the performance for SST, achieving the
state-of-the-art result of 48.8% for a single-layer
CNN model. The accuracy achieved by our best
model is still 0.8% lower than the state-of-the-art
result achieved by Yin and Schütze (2015); how-
ever, considering their model uses five embedding
channels and dual-layer convolutions whereas our
model uses a single channel and a single-layer con-
volution, in other words, our model is much more
compact, this is very promising. These results sug-
gest that lexicon embeddings coupled with the em-
bedding attention vectors allow to build robust sen-
timent analysis models.

Figure 3 illustrates the robustness of our lexicon
integrated models with respect to the size of word
embeddings. Our baseline produces inconsistent
and unstable results as different sizes of word em-
beddings are used. Furthermore, a larger size of
word embeddings tends to significantly outperform
a smaller size of word embeddings. Such tendency
is reduced with the incorporation of lexicon em-
beddings. While the standard deviations for the
accuracies achieved by the baseline using different
sizes of word embeddings are 0.8491 and 1.1909
for S16 and SST, respectively, they are reduced
to 0.4208 and 0.5764 respectively for lexicon inte-
grated models. Furthermore, the accuracy achieved
by the lexicon integrated model using the word em-
bedding size 50 is higher or equal to the highest

accuracy achieved by the baseline using the word
embedding size 200, which implies that it is pos-
sible to build more compact models using lexicon
embeddings without compromising accuracy.

(a) SemEval Task

(b) SST Task
Figure 3: Performance changes across various di-
mensions of word embeddings.
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4.4 Analysis

4.4.1 Randomness in Deep Learning
Different random seeds when training the CNN
models could possibly change the behavior of mod-
els, sometimes by more than 1%. This is due to the
randomness in deep learning, such as the random
shuffling the datasets, initialization of the weights
and drop-out rate of a tensor. To reduce the im-
pact of random seed on our result and capture the
general characteristic of the model, we performed
a group analysis by training each model with 10
different random seeds (Figure 4).

(a) SemEval Task: The baseline model has a higher variance
than the proposed models. Adding lexicon information im-
proves the baseline model to be more accurate. In addition,
EAV marginally pushes the performance.

(b) SST Task: The baseline model itself is stable because the
vocabulary of the word embedding covers approximately all
words in SST, as shown in Table 3. Although adding lexicon
information destabilize the model lightly, lexicon information
enhance the accuracy. EAV is advantageous in general. This
effect is visually shown in this figure, when comparing naive
concatenation (NC; (Section 3.2.1) with NC-EAV.

Figure 4: Generalized performance evaluation of
the models. Each model is trained 10 times with
different random seeds and the results are summa-
rized as a bar plot. In this plot, the central red line
indicates the median, and the bottom and top edges
of the box indicate the 25th and 75th percentiles,
respectively. the ’+’ symbol represents outliers.

4.4.2 S16: SemEval’16 Task 4
For S16, the lexicon integration tends to reduce
the variances, and the introducing embedding at-
tention vectors pushes the accuracy even higher
than the models without it across different ran-
dom seeds. Another notable observation for S16 is
that although multichannel method underperforms
when the random seed is fixed to a specific num-
ber as seen in Table 4, it produces a competitive
output in the group analysis setting. Such low per-
formance with a fixed random seed is probably at-
tributed to the well known problem of optimization,
trapping in local optima.

4.4.3 SST: Stanford Sentiment Treebank
The problem conditions for SST are different in
terms of vocabulary coverage. This difference is
caused by the source of the lexicon embeddings,
where all of them were constructed from Twitter
dataset. Since most of the lexical words are from
Twitter, it shows less vocabulary coverage on SST
than that of S16 as shown in the right columns
of Table 3. Because of this poor relatedness be-
tween lexicons and datasets, we hypothesized that
adding a lexicon might be less effective on the per-
formance of SST task. However, our models seems
to successfully adopt exogenous features enough
to push the accuracy marginally higher than the
models without lexicons.

On the contrary, the coverage of word embed-
dings on SST is notably high at around 98%, while
only around 70% for S16 (left columns of Table 3).
These conditions are well reflected in the group
analysis of the model in SST. Since word embed-
dings themselves are sufficient enough to cover
majority of words, the model variance of the base-
line is relatively small compared to S16.

4.4.4 Attention
Embedding attention vectors allow to visualize the
importance of each word and lexicon for sentiment
analysis through a heatmap. In Figure 5, all neg-
ative words get higher weights (reds), while non-
sentimental words do not (greens and light blues) in
EAV. This visualization is especially useful for neu-
ral models because it provides an compelling ex-
planatory information about how the models work.

4.4.5 Learning Speed
Another advantage of the proposed model, SC-EAV,
is that it accelerates the learning speed (Figure 6).
High F1 score can be achieved in the earlier step,
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Figure 5: Five selected negative tweets with the attention heatmap. Examples are from the set where the
baseline gives wrong answers but SC-EAV predicts correctly. Intensity of each word roughly ranges from
-1 to 1. This weights (intensities) are the values of the attention vector of the word embeddings in the
SC-EAV model. While negative words get more attention (reds), non-sentimental words such as stop
words get less attention (greens and light blues).

if lexicon information is incorporated along with
EAV. This statement is general behavior because
the learning curves in Figure Figure 6 are the result
of averaging ten different learning attempts with
different random seeds.

Figure 6: Lexicon information and EAV accelerate
the learning speed. High F1 score can be achieved
in the earlier step, if lexicon information is incor-
porated along with EAV.

5 Conclusion

This paper proposes several approaches that effec-
tively integrate lexicon embeddings and an atten-
tion mechanism to a well-explored deep learning
framework, Convolutional Neural Networks, for
sentiment analysis. Our experiments show that lexi-
con integration can improve accuracy, stability, and
efficiency of the traditional CNN model. Multiple
training results with different random seeds show
the generalization of the effectiveness of using lex-
icon embeddings and embedding attention vectors.
The training curve comparison further shows an-
other benefit of this integration for more robust
learning. The attention heatmap analysis confirms
that embedding attention vectors endow CNN mod-
els with explanatory features, which gives good
understanding of how the CNN models work.

Much more future work is left. The proposed at-
tention models are applied to each single word.
However, focusing on multiple words could give
more promising information. Application of the
attention mechanism to multiple words at the same
time is a possible direction. Majority of the lex-
icons in this work are from tweet dataset. More
lexicon dataset from general could be used to im-
prove the coverage of our system. We focused on a
simple and yet well performing system. In order to
maximize the score, ensemble of multi layer CNN
models could be applied.5
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Abstract

Recently, a technique called Layer-wise
Relevance Propagation (LRP) was shown
to deliver insightful explanations in the
form of input space relevances for un-
derstanding feed-forward neural network
classification decisions. In the present
work, we extend the usage of LRP to
recurrent neural networks. We propose
a specific propagation rule applicable to
multiplicative connections as they arise
in recurrent network architectures such
as LSTMs and GRUs. We apply our
technique to a word-based bi-directional
LSTM model on a five-class sentiment
prediction task, and evaluate the result-
ing LRP relevances both qualitatively and
quantitatively, obtaining better results than
a gradient-based related method which
was used in previous work.

1 Introduction

Semantic composition plays an important role in
sentiment analysis of phrases and sentences. This
includes detecting the scope and impact of nega-
tion in reversing a sentiment’s polarity, as well as
quantifying the influence of modifiers, such as de-
gree adverbs and intensifiers, in rescaling the sen-
timent’s intensity (Mohammad, 2017).

Recently, a trend emerged for tackling these
challenges via deep learning models such as con-
volutional and recurrent neural networks, as ob-
served e.g. on the SemEval-2016 Task for Senti-
ment Analysis in Twitter (Nakov et al., 2016).

As these models become increasingly predic-
tive, one also needs to make sure that they work
as intended, in particular, their decisions should
be made as transparent as possible.

Some forms of transparency are readily ob-
tained from the structure of the model, e.g. re-
cursive nets (Socher et al., 2013), where sentiment
can be probed at each node of a parsing tree.

Another type of analysis seeks to determine
what input features were important for reaching
the final top-layer prediction. Recent work in
this direction has focused on bringing measures of
feature importance to state-of-the-art models such
as deep convolutional neural networks for vision
(Simonyan et al., 2014; Zeiler and Fergus, 2014;
Bach et al., 2015; Ribeiro et al., 2016), or to gen-
eral deep neural networks for text (Denil et al.,
2014; Li et al., 2016a; Arras et al., 2016a; Li et al.,
2016b; Murdoch and Szlam, 2017).

Some of these techniques are based on the
model’s local gradient information while other
methods seek to redistribute the function’s value
on the input variables, typically by reverse prop-
agation in the neural network graph (Landecker
et al., 2013; Bach et al., 2015; Montavon et al.,
2017a). We refer the reader to (Montavon et al.,
2017b) for an overview on methods for under-
standing and interpreting deep neural network pre-
dictions.

Bach et al. (2015) proposed specific propaga-
tion rules for neural networks (LRP rules). These
rules were shown to produce better explanations
than e.g. gradient-based techniques (Samek et al.,
2017), and were also successfully transferred to
neural networks for text data (Arras et al., 2016b).

In this paper, we extend LRP with a rule that
handles multiplicative interactions in the LSTM
model, a particularly suitable model for modeling
long-range interactions in texts such as those oc-
curring in sentiment analysis.

We then apply the extended LRP method to a bi-
directional LSTM trained on a five-class sentiment
prediction task. It allows us to produce reliable
explanations of which words are responsible for
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attributing sentiment in individual texts, compared
to the explanations obtained by using a gradient-
based approach.

2 Methods

Given a trained neural network that models a
scalar-valued prediction function fc (also com-
monly referred to as a prediction score) for each
class c of a classification problem, and given an
input vector x, we are interested in computing for
each input dimension d of x a relevance score Rd
quantifying the relevance of xd w.r.t to a consid-
ered target class of interest c. In others words,
we want to analyze which features of x are impor-
tant for the classifier’s decision toward or against
a class c.

In order to estimate the relevance of a pool of
input space dimensions or variables (e.g. in NLP,
when using distributed word embeddings as input,
we would like to compute the relevance of a word,
and not just of its single vector dimensions), we
simply sum up the relevance scores Rd of its con-
stituting dimensions d.

In this described framework, there are two alter-
native methods to obtain the single input variable’s
relevance in the first place, which we detail in the
following subsections.

2.1 Gradient-based Sensitivity Analysis (SA)
The relevances can be obtained by computing
squared partial derivatives:

Rd =
( ∂fc
∂xd

(x)
)2
.

For a neural network classifier, these derivatives
can be obtained by standard gradient backprop-
agation (Rumelhart et al., 1986), and are made
available by most neural network toolboxes. We
refer to the above definition of relevance as Sen-
sitivity Analysis (SA) (Dimopoulos et al., 1995;
Gevrey et al., 2003). A similar technique was
previously used in computer vision by (Simonyan
et al., 2014), and in NLP by (Li et al., 2016a).

Note that if we sum up the relevances of all in-
put space dimensions d, we obtain the quantity
‖∇x fc(x)‖22, thus SA can be interpreted as a de-
composition of the squared gradient norm.

2.2 Layer-wise Relevance Propagation (LRP)
Another technique to compute relevances was pro-
posed in (Bach et al., 2015) as the Layer-wise Rel-
evance Propagation (LRP) algorithm. It is based

on a layer-wise relevance conservation principle,
and, for a given input x, it redistributes the quan-
tity fc(x), starting from the output layer of the net-
work and backpropagating this quantity up to the
input layer. The LRP relevance propagation proce-
dure can be described layer-by-layer for each type
of layer occurring in a deep convolutional neu-
ral network (weighted linear connections follow-
ing non-linear activation, pooling, normalization),
and consists in defining rules for attributing rele-
vance to lower-layer neurons given the relevances
of upper-layer neurons. Hereby each intermediate
layer neuron gets attributed a relevance score, up
to the input layer neurons.

In the case of recurrent neural network architec-
tures such as LSTMs (Hochreiter and Schmidhu-
ber, 1997) and GRUs (Cho et al., 2014), there are
two types of neural connections involved: many-
to-one weighted linear connections, and two-to-
one multiplicative interactions. Hence, we restrict
our definition of the LRP procedure to these types
of connections. Note that, for simplification, we
refrain from explicitly introducing a notation for
non-linear activation functions; if such an activa-
tion is present at a neuron, we always take into
account the activated lower-layer neuron’s value
in the subsequent formulas.

In order to compute the input space relevances,
we start by setting the relevance of the output layer
neuron corresponding to the target class of interest
c to the value fc(x), and simply ignore the other
output layer neurons (or equivalently set their rele-
vance to zero). Then, we compute layer-by-layer a
relevance score for each intermediate lower-layer
neuron accordingly to one of the subsequent for-
mulas, depending on the type of connection in-
volved.

Weighted Connections. Let zj be an upper-layer
neuron, whose value in the forward pass is com-
puted as zj =

∑
i zi · wij + bj , where zi are the

lower-layer neurons, and wij , bj are the connec-
tion weights and biases.

Given the relevances Rj of the upper-layer neu-
rons zj , the goal is to compute the lower-layer
relevances Ri of the neurons zi. (In the partic-
ular case of the output layer, we have a single
upper-layer neuron zj , whose relevance is set to
its value, more precisely we set Rj = fc(x) to
start the LRP procedure.) The relevance redistri-
bution onto lower-layer neurons is performed in
two steps. First, by computing relevance messages
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Ri←j going from upper-layer neurons zj to lower-
layer neurons zi. Then, by summing up incoming
messages for each lower-layer neuron zi to obtain
the relevance Ri. The messages Ri←j are com-
puted as a fraction of the relevanceRj accordingly
to the following rule:

Ri←j =
zi · wij + ε·sign(zj) + δ·bj

N

zj + ε · sign(zj)
·Rj

where N is the total number of lower-layer neu-
rons to which zj is connected, ε is a small posi-
tive number which serves as a stabilizer (we use
ε = 0.001 in our experiments), and sign(zj) =
(1zj≥0 − 1zj<0) is defined as the sign of zj . The
relevance Ri is subsequently computed as Ri =∑

j Ri←j . Moreover, δ is a multiplicative factor
that is either set to 1.0, in which case the total
relevance of all neurons in the same layer is con-
served, or else it is set to 0.0, which implies that a
part of the total relevance is “absorbed” by the bi-
ases and that the relevance propagation rule is ap-
proximately conservative. Per default we use the
last variant with δ = 0.0 when we refer to LRP,
and denote explicitly by LRPcons our results when
we use δ = 1.0 in our experiments.
Multiplicative Interactions. Another type of
connection is a two-way multiplicative interaction
between lower-layer neurons. Let zj be an upper-
layer neuron, whose value in the forward pass is
computed as the multiplication of the two lower-
layer neuron values zg and zs, i.e. zj = zg · zs.
In such multiplicative interactions, as they occur
e.g. in LSTMs and GRUs, there is always one
of the two lower-layer neurons that constitutes a
gate, and whose value ranges between [0, 1] as the
output of a sigmoid activation function (or in the
particular case of GRUs, can also be equal to one
minus a sigmoid activated value), we call it the
gate neuron zg, and refer to the remaining one as
the source neuron zs.

Given such a configuration, and denoting by Rj
the relevance of the upper-layer neuron zj , we pro-
pose to redistribute the relevance onto lower-layer
neurons in the following way: we set Rg = 0 and
Rs = Rj . The intuition behind this reallocation
rule, is that the gate neuron decides already in the
forward pass how much of the information con-
tained in the source neuron should be retained to
make the overall classification decision. Thereby
the value zg controls how much relevance will be
attributed to zj from upper-layer neurons. Thus,

even if our local propagation rule seems to ignore
the respective values of zg and zs to redistribute
the relevance, these are indeed taken into account
when computing the value Rj from the relevances
of the next upper-layer neurons to which zj is con-
nected via weighted connections.

3 Recurrent Model and Data

As a recurrent neural network model we em-
ploy a one hidden-layer bi-directional LSTM (bi-
LSTM), trained on five-class sentiment prediction
of phrases and sentences on the Stanford Sen-
timent Treebank movie reviews dataset (Socher
et al., 2013), as was used in previous work on
neural network interpretability (Li et al., 2016a)
and made available by the authors1. This model
takes as input a sequence of words x1, x2, ..., xT
(as well as this sequence in reversed order), where
each word is represented by a word embedding of
dimension 60, and has a hidden layer size of 60.
A thorough model description can be found in the
Appendix, and for details on the training we refer
to (Li et al., 2016a).

In our experiments, we use as input the 2210 to-
kenized sentences of the Stanford Sentiment Tree-
bank test set (Socher et al., 2013), preprocessing
them by lowercasing as was done in (Li et al.,
2016a). On five-class sentiment prediction of full
sentences (very negative, negative, neutral, posi-
tive, very positive) the model achieves 46.3% ac-
curacy, and for binary classification (positive vs.
negative, ignoring neutral sentences) the test ac-
curacy is 82.9%.

Using this trained bi-LSTM, we compare two
relevance decomposition methods: sensitivity
analysis (SA) and Layer-wise Relevance Propa-
gation (LRP). The former is similar to the “First-
Derivative Saliency” used in (Li et al., 2016a), be-
sides that in their work the authors do not aggre-
gate the relevance of single input variables to ob-
tain a word-level relevance value (i.e. they only
visualize relevance distributed over word embed-
ding dimensions); moreover they employ the abso-
lute value of partial derivatives (instead of squared
partial derivatives as we do) to compute the rele-
vance of single input variables.

In order to enable reproducibility and for en-
couraging further research, we make our imple-

1https://github.com/jiweil/
Visualizing-and-Understanding-Neural-
Models-in-NLP
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mentation of both relevance decomposition meth-
ods available2 (see also (Lapuschkin et al., 2016)).

4 Results

In this Section, we present qualitative as well as
quantitative results we obtained by performing SA
and LRP on test set sentences. As an outcome
of the relevance decomposition for a chosen tar-
get class, we first get for each word embedding xt
in an input sentence, a vector of relevance values.
In order to obtain a scalar word-level relevance,
we remind that we simply sum up the relevances
contained in that vector. Also note that, per def-
inition, the SA relevances are positive while LRP
relevances are signed.

4.1 Decomposing Sentiment onto Words

In order to illustrate the differences between SA
and LRP, we provide in Fig. 1 and 2 heatmaps
of exemplary test set sentences. These heatmaps
were obtained by mapping positive word-level rel-
evance values to red, and negative relevances to
blue. The exemplary sentences belong either to
the class “very negative” or to the class “very pos-
itive”, and the target class for relevance decom-
position is always the true class. On the left of
the Figures, we indicate the true sentence class,
as well as the bi-LSTM’s predicted class, whereby
the upper examples are correctly classified while
the bottom examples are falsely classified.

From the inspection of the heatmaps, we no-
tice that SA does not clearly distinguish between
words speaking for or against the target class. In-
deed it sometimes attributes a comparatively high
relevance to words expressing a positive apprecia-
tion like thrilling (example 5), master (example 6)
or must-see (example 11), while the target class is
“very negative”; or to the word difficult (example
19) expressing a negative judgment, while the tar-
get class is “very positive”. On the contrary, LRP
can discern more reliably between words address-
ing a negative sentiment, such as waste (1), horri-
ble (3), disaster (6), repetitive (9) (highlighted in
red), or difficult (19) (highlighted in blue), from
words indicating a positive opinion, like funny (2),
suspenseful (2), romantic (5), thrilling (5) (high-
lighted in blue), or worthy (19), entertaining (20)
(highlighted in red).

2https://github.com/ArrasL/LRP_for_
LSTM

Furthermore, LRP explains well the two sen-
tences that are mistakenly classified as “very pos-
itive” and “positive” (examples 11 and 17), by ac-
centuating the negative relevance (blue colored) of
terms speaking against the target class, i.e. the
class “very negative”, such as must-see list, re-
member and future, whereas such understanding is
not provided by the SA heatmaps. The same holds
for the misclassified “very positive” sentence (ex-
ample 21), where the word fails gets attributed a
deep negatively signed relevance (blue colored).
A similar limitation of gradient-based relevance
visualization for explaining predictions of recur-
rent models was also observed in previous work
(Li et al., 2016a).

Moreover, an interesting property we observe
with LRP, is that the sentiment of negation is mod-
ulated by the sentiment of the subsequent words in
the sentence. Hence, e.g. in the heatmaps for the
target class “very negative”, when negators like n’t
or not are followed by words indicating a nega-
tive sentiment like waste (1) or horrible (3), they
are marked by a negatively signed relevance (blue
colored), while when the subsequent words ex-
press a positive impression like worth (12), sur-
prises (14), funny (16) or good (18), they get a
positively signed relevance (red colored).

Thereby, the heatmap visualizations provide
some insights on how the sentiment of single
words is composed by the bi-LSTM model, and
indicate that the sentiment attributed to words is
not static, but depends on their context in the sen-
tence. Nevertheless, we would like to point out
that the explanations delivered by relevance de-
composition highly depend on the quality of the
underlying classifier, and can only be “as good”
as the neural network itself, hence a more care-
fully tuned model might deliver even better expla-
nations.

4.2 Representative Words for a Sentiment

Another qualitative analysis we conduct is dataset-
wide, and consists in building a list of the most
resp. the least relevant words for a class. To this
end, we first perform SA and LRP on all test set
sentences for one specific target class, as an exam-
ple we take the class “very positive”. Secondly,
we order all words appearing in the test sentences
in decreasing resp. in increasing order of their rel-
evance value, and retrieve in Table 1 the ten most
and least relevant words we obtain. From the SA
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true predicted N° Notation: -- very negative, - negative, 0 neutral, + positive, ++ very positive

--

--

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

do n't waste your money . 

neither funny nor suspenseful nor particularly well-drawn . 

it 's not horrible , just horribly mediocre . 

... too slow , too boring , and occasionally annoying . 

it 's neither as romantic nor as thrilling as it should be . 

the master of disaster - it 's a piece of dreck disguised as comedy . 

so stupid , so ill-conceived , so badly drawn , it created whole new levels of ugly .

a film so tedious that it is impossible to care whether that boast is true or not . 

choppy editing and too many repetitive scenes spoil what could have been an important
documentary about stand-up comedy . 

this idea has lost its originality ... and neither star appears very excited at 
rehashing what was basically a one-joke picture . 

++

-

-

-

-

-

+

-

11.

12.

13.

14.

15.

16.

17.

18.

ecks this one off your must-see list . 

this is n't a `` friday '' worth waiting for . 

there is not an ounce of honesty in the entire production . 

do n't expect any surprises in this checklist of teamwork cliches ... 

he has not learnt that storytelling is what the movies are about .  

but here 's the real damn : it is n't funny , either .  

these are names to remember , in order to avoid them in the future . 

the cartoon that is n't really good enough to be on afternoon tv is now a movie that 
is n't really good enough to be in theaters . 

++
++

19.

20.

a worthy entry into a very difficult genre .

it 's a good film -- not a classic , but odd , entertaining and authentic .

-- 21. it never fails to engage us .

Figure 1: SA heatmaps of exemplary test sentences, using as target class the true sentence class. All
relevances are positive and mapped to red, the color intensity is normalized to the maximum relevance
per sentence. The true sentence class, and the classifier’s predicted class, are indicated on the left.

true predicted N° Notation: -- very negative, - negative, 0 neutral, + positive, ++ very positive

--

--

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

do n't waste your money . 

neither funny nor suspenseful nor particularly well-drawn . 

it 's not horrible , just horribly mediocre . 

... too slow , too boring , and occasionally annoying . 

it 's neither as romantic nor as thrilling as it should be . 

the master of disaster - it 's a piece of dreck disguised as comedy . 

so stupid , so ill-conceived , so badly drawn , it created whole new levels of ugly .

a film so tedious that it is impossible to care whether that boast is true or not . 

choppy editing and too many repetitive scenes spoil what could have been an important
documentary about stand-up comedy . 

this idea has lost its originality ... and neither star appears very excited at 
rehashing what was basically a one-joke picture . 

++

-

-

-

-

-

+

-

11.

12.

13.

14.

15.

16.

17.

18.

ecks this one off your must-see list . 

this is n't a `` friday '' worth waiting for . 

there is not an ounce of honesty in the entire production . 

do n't expect any surprises in this checklist of teamwork cliches ... 

he has not learnt that storytelling is what the movies are about .  

but here 's the real damn : it is n't funny , either .  

these are names to remember , in order to avoid them in the future . 

the cartoon that is n't really good enough to be on afternoon tv is now a movie that 
is n't really good enough to be in theaters . 

++
++

19.

20.

a worthy entry into a very difficult genre .

it 's a good film -- not a classic , but odd , entertaining and authentic .

-- 21. it never fails to engage us .

Figure 2: LRP heatmaps of exemplary test sentences, using as target class the true sentence class. Pos-
itive relevance is mapped to red, negative to blue, and the color intensity is normalized to the maximum
absolute relevance per sentence. The true sentence class, and the classifier’s predicted class, are indicated
on the left.
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SA LRP
most relevant least relevant most relevant least relevant
broken-down into funnier wrong
wall what charm n’t
execution that polished forgettable
lackadaisical a gorgeous shame
milestone do excellent little
unreality of screen predictable
soldier all honest overblown
mournfully ca wall trying
insight in confidence lacking
disorienting ’s perfectly nonsense

Table 1: Ten most resp. least relevant words iden-
tified by SA and LRP over all 2210 test sentences,
using as relevance target class the class “very pos-
itive”.

word lists, we observe that the highest SA rele-
vances mainly point to words with a strong se-
mantic meaning, but not necessarily expressing a
positive sentiment, see e.g. broken-down, lack-
adaisical and mournfully, while the lowest SA rel-
evances correspond to stop words. On the con-
trary, the extremal LRP relevances are more re-
liable: the highest relevances indicate words ex-
pressing a positive sentiment, while the lowest rel-
evances are attributed to words defining a negative
sentiment, hence both extremal relevances are re-
lated in a meaningful way to the target class of
interest, i.e. the class “very positive”.

4.3 Validation of Word Relevance

In order to quantitatively validate the word-level
relevances obtained with SA and LRP, we perform
two word deleting experiments. For these experi-
ments we consider only test set sentences with a
length greater or equal to 10 words (this amounts
to retain 1849 test sentences), and we delete from
each sentence up to 5 words accordingly to their
SA resp. LRP relevance value (for deleting a word
we simply set its word embedding to zero in the
input sentence representation), and re-predict via
the bi-LSTM the sentiment of the sentence with
“missing” words, to track the impact of these dele-
tions on the classifier’s decision. The idea behind
this experiment is that the relevance decomposi-
tion method that most pertinently reveals words
that are important to the classifier’s decision, will
impact the most this decision when deleting words
accordingly to their relevance value. Prior to the
deletions, we first compute the SA resp. LRP
word-level relevances on the original sentences
(with no word deleted), using the true sentence

sentiment as target class for the relevance decom-
position. Then, we conduct two types of dele-
tions. On initially correctly classified sentences
we delete words in decreasing order of their rel-
evance value, and on initially falsely classified
sentences we delete words in increasing order of
their relevance. We additionally perform a random
word deletion as an uninformative variant for com-
parison. Our results in terms of tracking the clas-
sification accuracy over the number of word dele-
tions per sentence are reported in Fig. 3. These
results show that, in both considered cases, delet-
ing words in decreasing or increasing order of their
LRP relevance has the most pertinent effect, sug-
gesting that this relevance decomposition method
is the most appropriate for detecting words speak-
ing for or against a classifier’s decision. While the
LRP variant with relevance conservation LRPcons
performs almost as good as standard LRP, the lat-
ter yields slightly superior results and thus should
be preferred. Finally, when deleting words in
increasing order of their relevance value starting
with initially falsely classified sentences (Fig. 3
right), we observe that SA performs even worse
than random deletion. This indicates that the low-
est SA relevances point essentially to words that
have no influence on the classifier’s decision at all,
rather that signalizing words that are “inhibiting”
it’s decision and speaking against the true class,
as LRP is indeed able to identify. Similar conclu-
sions were drawn when comparing SA and LRP
on a convolutional network for document classifi-
cation (Arras et al., 2016a).

4.4 Relevance Distribution over Sentence
Length

To get an idea of which words over the sentence
length get attributed the most relevance, we com-
pute a word relevance statistic by performing SA
and LRP on all test sentences having a length
greater or equal to 19 words (this amounts to
50.0% of the test set). Then, we divide each sen-
tence length into 10 equal intervals, and sum up
the word relevances in each interval (when a word
is not entirely in an interval, the relevance portion
falling into that interval is considered). For LRP,
we use the absolute value of the word-level rel-
evance values (to avoid that negative relevances
cancel out positive relevances). Finally, to get a
distribution, we normalize the results to sum up
to one. We compute this statistic by considering
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Figure 3: Impact of word deleting on initially cor-
rectly (left) and falsely (right) classified test sen-
tences, using either SA or LRP as relevance de-
composition method (LRPcons is a variant of LRP
with relevance conservation). The relevance tar-
get class is the true sentence class, and words are
deleted in decreasing (left) and increasing (right)
order of their relevance. Random deletion is aver-
aged over 10 runs (std < 0.016). A steep decline
(left) and incline (right) indicate informative word
relevance.

either the total word relevance obtained via the
bi-LSTM model, or by considering only the part
of the relevance that comes from one of the two
unidirectional model constituents, i.e. the rele-
vance contributed by the LSTM which takes as in-
put the sentence words in their original order (we
call it left encoder), or the one contributed by the
LSTM which takes as input the sentence words in
reversed order (we call it right encoder). The re-
sulting distributions, for different relevance target
classes, are reported in Fig. 4. Interestingly, the
relevance distributions are not symmetric w.r.t. to
the sentence middle, and the major part of the rel-
evance is attributed to the second half of the sen-
tences, except for the target class “neutral”, where
the most relevance is attributed to the last com-
putational time steps of the left or the right en-
coder, resulting in an almost symmetric distribu-
tion of the total relevance for that class. This can
maybe be explained by the fact that, at least for
longer movie reviews, strong judgments on the
movie’s quality tend to appear at the end of the
sentences, while the beginning of the sentences
serves as an introduction to the review’s topic, de-
scribing e.g. the movie’s subject or genre. Another

particularity of the relevance distribution we no-
tice, is that the relevances of the left encoder tend
to be more smooth than those of the right encoder,
which is a surprising result, as one might expect
that both unidirectional model constituents behave
similarly, and that there is no mechanism in the
model to make a distinction between the text read
in original and in reversed order.

5 Conclusion

In this work we have introduced a simple yet
effective strategy for extending the LRP proce-
dure to recurrent architectures, such as LSTMs,
by proposing a rule to backpropagate the rele-
vance through multiplicative interactions. We ap-
plied the extended LRP version to a bi-directional
LSTM model for the sentiment prediction of sen-
tences, demonstrating that the resulting word rel-
evances trustworthy reveal words supporting the
classifier’s decision for or against a specific class,
and perform better than those obtained by a
gradient-based decomposition.

Our technique helps understanding and verify-
ing the correct behavior of recurrent classifiers,
and can detect important patterns in text datasets.
Compared to other non-gradient based explana-
tion methods, which rely e.g. on random sampling
or on iterative representation occlusion, our tech-
nique is deterministic, and can be computed in one
pass through the network. Moreover, our method
is self-contained, in that it does not require to train
an external classifier to deliver the explanations,
these are obtained directly via the original classi-
fier.

Future work would include applying the pro-
posed technique to other recurrent architectures
such as character-level models or GRUs, as well as
to extractive summarization. Besides, our method
is not restricted to the NLP domain, and might also
be useful to other applications relying on recurrent
architectures.
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Figure 4: Word relevance distribution over the sentence length (divided into 10 intervals), per relevance
target class (indicated on the top), obtained by performing SA and LRP on all test sentences having a
length greater or equal to 19 words (1104 sentences). For LRP, the absolute value of the word-level
relevances is used to compute these statistics. The first row corresponds to the total relevance, the second
resp. third row only contain the relevance from the bi-LSTM’s left and right encoder.
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Appendix

Long-Short Term Memory Network (LSTM)
We define in the following the LSTM recurrence
equations (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000) of the model we used in our ex-
periments:

it = sigm
(
Wi ht−1 + Ui xt + bi

)
ft = sigm

(
Wf ht−1 + Uf xt + bf

)
ot = sigm

(
Wo ht−1 + Uo xt + bo

)
gt = tanh

(
Wg ht−1 + Ug xt + bg

)
ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

Here above the activation functions sigm and
tanh are applied element-wise, and � is an
element-wise multiplication.

As an input, the LSTM gets fed with a sequence
of vectors x = (x1, x2, ..., xT ) representing the
word embeddings of the input sentence’s words.
The matrices W ’s, U ’s, and vectors b’s are con-
nection weights and biases, and the initial states
h0 and c0 are set to zero.

The last hidden state hT is eventually attached
to a fully-connected linear layer yielding a predic-
tion score vector f(x), with one entry fc(x) per
class, which is used for sentiment prediction.
Bi-directional LSTM The bi-directional LSTM
(Schuster and Paliwal, 1997) we use in the present
work, is a concatenation of two separate LSTM
models as described above, each of them taking a
different sequence of word embeddings as input.

One LSTM takes as input the words in their
original order, as they appear in the input sentence.
The second LSTM takes as input the same words
but in reversed order.

Each of these LSTMs yields a final hidden state
vector, say h→T and h←T . The concatenation of
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these two vectors is eventually fed to a fully-
connected linear layer, retrieving one prediction
score fc(x) per class.
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Abstract

The WASSA 2017 EmoInt shared task has
the goal to predict emotion intensity val-
ues of tweet messages. Given the text of
a tweet and its emotion category (anger,
joy, fear, and sadness), the participants
were asked to build a system that assigns
emotion intensity values. Emotion inten-
sity estimation is a challenging problem
given the short length of the tweets, the
noisy structure of the text and the lack
of annotated data. To solve this problem,
we developed an ensemble of two neural
models, processing input on the charac-
ter. and word-level with a lexicon-driven
system. The correlation scores across all
four emotions are averaged to determine
the bottom-line competition metric, and
our system ranks place forth in full inten-
sity range and third in 0.5-1 range of in-
tensity among 23 systems at the time of
writing (June 2017).

1 Introduction

Sentiment analysis of a text reveals information
on the degree of positiveness or negativeness of
the opinion expressed by the writer. Such infor-
mation can be useful for providing better services
for users (Kang and Park, 2014) or preventing po-
tentially dangerous situations (O’Dea et al., 2015).
Traditionally the most popular way of sentiment
representation is either binary (positive, negative)
or multi-class (for example 5 classes: very neg-
ative, negative, neutral, positive, very positive).
While being simple, such a scheme looses inter-
pretability and a continuous intensity scale might
be preferred. Twitter sentiment and emotion in-
tensity detection are still challenging tasks and re-

∗equal contribution

main active areas of research. These difficulties
have several reasons: extensive usage of hash-
tags, slang, abbreviations, and emoticons. Also,
tweets are usually typed on mobile devices which
can lead to a substantial amount of typos. As tra-
ditional NLP tools are usually trained on datasets
containing clean text, which makes it difficult to
use them for tweet analysis.

Existing approaches for modeling emotion in-
tensity rely heavily on manually constructed lex-
icons, which contain information about inten-
sity weights for each available word (Moham-
mad and Bravo-Marquez, 2017a; Neviarouskaya
et al., 2007). The intensity for the whole sen-
tence can be inferred by combining individual
scores of words. While being easily interpretable,
such models have several limitations. Ignoring
word order and compositionality of the language
is the first issue, which is critical for modeling se-
quences. Constructing such lexicons is a labour-
intensive process, which needs to be carried out
continuously due to the constant development of
language. Data-driven approaches like deep neu-
ral networks can overcome such limitations, and
they have been behind many recent advances in
text processing tasks, such as language modeling,
machine translation, POS tagging, and classifica-
tion (Irsoy and Cardie, 2014; Socher et al., 2013).
The appealing property of such models is their
ability to combine feature extraction and classifi-
cation stages given a sufficient amount of training
data.

In this paper, we augment traditional lexicon-
based models with two neural network-based
models: one with character and one with word in-
put. Character-level deep neural networks recently
showed outstanding results on text understanding
tasks such as machine translation (Kalchbrenner
et al., 2016) and text classification (Zhang et al.,
2015). In a domain-specific task such as predict-
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Figure 1: Overall model architecture. It combines a lexicon-based AffectiveTweets model with two
neural models: a character and a word-level model via averaging scores with weights tuned on the
provided validation set.

ing the emotion intensity of tweets, a character-
level model can theoretically capture the notion
of hashtags, emoticons, or character repetitions,
which all are unique to social media. The intu-
ition is that a character-level model captures com-
mon writing patterns such as punctuations and sig-
naling characters. A word-level recurrent neural
model can incorporate the order of information us-
ing distributed representations of words trained on
a large amount of text.

Our final model is a weighted average of the
scores provided by the baseline, our character- and
word-level model. Our ensemble model achieved
forth position in the 0-1 emotion intensity range
task and third position in the 0.5-1.0 range task
on the public leaderboard (GradAscent team) on
CodaLab1 at the time of writing this paper (June
2017).

2 Approach

Our system is an ensemble of the provided base-
line system and two neural network-based models;
processing character and word input respectively.
Combining the word and character representations
we can deal with noisiness of the tweet messages
as well as capturing the semantics of the text by
using distributed word representations.

2.1 Data pre-processing

We perform only a few preprocessing steps,
like striping URLs, user mentions (@user-
name) and leave only the following characters:

1https://competitions.codalab.org/competitions/16380

a-zA-Z@-!:(),;?.#’0-9*. We always con-
vert a message to lowercase before feeding it to the
models.

Table 1: WASSA 2017 Emotion Intensity Shared
task dataset statistics.

Split Joy Anger Fear Sadness Sum
Train 823 856 1147 786 3612
Dev 78 83 109 73 343
Test 714 760 995 673 3142

2.2 Baseline model
The baseline system is a WEKA-based model
called AffectiveTweets (Mohammad and Bravo-
Marquez, 2017a). This system combines features
derived from several lexicons like MPQA (Wil-
son et al., 2005), Bing Liu (Hu and Liu, 2004),
AFINN (Nielsen, 2011), Sentiment 140 (Kir-
itchenko et al.), NRC Hashtag sentiment lexicon,
NRC Word-Emotion Association Lexicon (Mo-
hammad and Turney, 2013), NRC-10 Expanded
(Bravo-Marquez et al., 2016), NRC Hashtag Emo-
tion Association (Saif and Kiritchenko, 2015), and
SentiWordNet (Baccianella et al., 2010) with tra-
ditional NLP features like word- and character n-
grams, POS tags (Gimpel et al., 2011), and pro-
cessing of negations. In addition to those features,
AffectiveTweets incorporates SentiStrength values
(Thelwall et al., 2012), Brown clusters (Brown
et al., 1992) trained on ∼53 million tweets2, com-
bining them with averaged and concatenated first

2http://www.cs.cmu.edu/˜ark/TweetNLP/
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k word embeddings of the tweet. Finally, a sup-
port Vector Machine model is used as a regression
model for predicting emotion intensity values.

2.3 Character-level RNN model

We extracted character-level sentence represen-
tations by encoding the whole tweet text with
the pre-trained recurrent neural network model3.
This model contains a single multiplicative LSTM
(Krause et al., 2016) layer with 4,096 hidden
units, trained on ∼80 million Amazon product re-
views as a character-based language model (Rad-
ford et al., 2017). We extracted the hidden vec-
tor corresponding to the last character of a tweet
and also averaged the representations of all hid-
den vectors. Concatenation of the two vectors is
used as a tweet representation. In our experiments,
we observed that adding averaged character repre-
sentations improves the overall performance, es-
pecially when evaluating high-intensity tweets.

In addition to the pre-trained character-level
language model, we investigate a model trained
specifically for tweets. Our observation was that
the tweets have a different language structure than
product reviews, which might affect the transfer-
ability of features between domains. For instance,
the extensive use of emoticons, character repeti-
tion, and hashtags, which are common for tweet
messages, however, significantly different from
product reviews which are often longer and gram-
matically correct.

We trained the character-based language model
on the Sentiment 140 corpus comprised of 1.6
million tweets (Go et al., 2009). A single-layer
LSTM (Hochreiter and Schmidhuber, 1997) with
1024 hidden units was trained with Adam opti-
mizer (Kingma and Ba, 2014) with 0.0005 learn-
ing rate and clipping gradients at norm 1. We used
the Support Vector Regressor (SVR) algorithm to
classify tweets represented as a fixed-length vector
with a character-based recurrent neural network.
Results of different setups are reported in Table 2.

2.4 Word-level model

We used distributed representations to model the
words in a tweet. We carried out several exper-
iments where we used random initialization for
word embeddings and two pre-trained versions
of GloVe embeddings (Pennington et al., 2014)

3https://github.com/openai/
generating-reviews-discovering-sentiment

Table 2: Effect of different character-level recur-
rent neural network representations: last cell vec-
tor of the pre-trained model (PT, last) and Twitter-
specific character LM (Twit, last). Also, in addi-
tion, we tested a concatenation of the last cell vec-
tor with the average of all cell vectors for the pre-
trained model (PT, last+avg) and Twitter model
(Twit, last+avg). Results are reported on the test
set, where avg p corresponds to Pearson coeffi-
cient and avg s to Spearman.

Range (0.0-1.0) (0.5-1.0)
Model avg p avg s avg p avg s
PT, last 0.470 0.468 0.412 0.404
PT, last+avg 0.474 0.472 0.419 0.413
Twit, last 0.312 0.307 0.296 0.288
Twit, last+avg 0.319 0.310 0.298 0.301

Table 3: Effect of different word embedding
initializations for the word-level model: ran-
domly initialized, pre-trained GloVe embeddings
on Twitter and Wikipedia.

Range (0.0-1.0) (0.5-1.0)
Model avg p avg s avg p avg s
Random emb. 0.291 0.276 0.250 0.227
GloVe (Twitter) 0.300 0.293 0.231 0.220
GloVe (Wiki) 0.326 0.323 0.259 0.252

trained on Wikipedia and Twitter4, to test if Twit-
ter specific word representations are more suitable
to solve the problem. Out-of-vocabulary words
were replaced with a special word ’OOV’ and ini-
tialized as a random vector, which was tuned dur-
ing the training. We used a 50-dimensional em-
bedding representation in all our experiments.

A bidirectional gated recurrent unit (GRU) net-
work (Chung et al., 2014) with a 32-dimension cell
size was used for modeling the tweet as a hidden
memory vector. The vector corresponding to the
last word was fed to a dense layer with 1 neuron
predicting emotion intensity. We used GRUs as
they tackle the common vanishing gradient prob-
lem of RNNs during the training and they contain
fewer parameters than LSTM units. The word-
level model is trained on the given EmoInt corpus
with Adam optimizer using different embedding
setups, the results are presented in Table 3.

4https://nlp.stanford.edu/projects/
glove/
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Table 4: Pearson and Spearman correlation coefficients of baseline, character and word-level models and
its ensemble for fear, anger, joy and sadness emotions and also average values. Results are calculated on
the provided test set labels.

Model avg p avg s anger p anger s fear p fear s joy p joy s sad p sad s
Test set results (Intensity range: 0-1)

Baseline 0.655 0.652 0.631 0.623 0.631 0.622 0.645 0.654 0.712 0.711
Char LM 0.474 0.472 0.415 0.400 0.575 0.551 0.278 0.299 0.629 0.638

Word Level 0.326 0.323 0.253 0.258 0.337 0.332 0.201 0.194 0.435 0.395
Char LM +
Word Level

0.659 0.656 0.580 0.572 0.658 0.638 0.708 0.714 0.688 0.701

Baseline +
Char LM +
Word Level

0.721 0.717 0.678 0.665 0.698 0.686 0.744 0.750 0.763 0.767

Test set results (Intensity range: 0.5-1)
Baseline 0.475 0.449 0.495 0.464 0.476 0.432 0.370 0.363 0.558 0.537
Char LM 0.419 0.413 0.316 0.327 0.488 0.435 0.416 0.423 0.457 0.467

Word Level 0.259 0.252 0.237 0.257 0.220 0.226 0.211 0.201 0.451 0.408
Char LM +
Word Level

0.471 0.467 0.389 0.406 0.488 0.435 0.536 0.547 0.470 0.481

Baseline +
Char LM +
Word Level

0.562 0.543 0.565 0.545 0.531 0.494 0.528 0.531 0.624 0.601

3 Experiment

The dataset for the WASSA-2017 competition
(Mohammad and Bravo-Marquez, 2017b) is
comprised of 7097 annotated tweets, classified
into 4 categories: joy, anger, fear, and sadness
(dataset statistics are presented in Table 1). For
each annotated tweet there is an ID, full text,
emotion category, and emotion intensity value.
Emotion intensity is a real value in the range from
0 to 1, where higher value correspond to a higher
intensity of the emotion conveyed. A sample from
the EmoInt corpus:
30112 LOVE LOVE LOVE #smile
#fun #relaxationiskey joy 0.740,
where 30112 is the ID of a tweet, which is labeled
as ”joy” with an intensity of 0.740.

3.1 Ensembling of the models
Ensembling of several models is a widely used
method to improve the performance of the over-
all system by combining predictions of several
classifiers. Several ensembling techniques have
been proposed recently: mixing experts (Jacobs
et al., 1991), model stacking, bagging and boost-
ing (Breiman, 1996) and a simple weighted aver-
age of the scores of individual models, which we
used in this work. The main reason for our choice

was the limited size of the training data, and using
more complex approach like stacking could lead to
overfitting. In this work, we output emotion inten-
sity values as a linear combination of individual
predictions of three systems: baseline, character
and word-level models.

emotionintensity = wb ∗ baselineemotion

+ ww ∗ w rnnemotion + wc ∗ c rnnemotion,

wb + ww + wc = 1 (1)

where baselineemotion, w rnnemotion and
c rnnemotion are intensities of the baseline,
character and word-level models correspondingly
for the emotion (joy, anger, fear or sadness).
Ensembling coefficients wb, wc and ww were
tuned on the development set to maximize the
average Pearson correlation coefficient using
grid-search.

4 Results & Conclusion

We report Pearson and Spearman correlation for
each emotion class on the provided test data,
shown in Table 4. The correlation rank coeffi-
cients assess how relevant and similar the two sets
of ranking are. The character and word-level neu-
ral models achieve lower correlation values than
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the baseline, which is an indicator that models
containing much of external knowledge perform
better than end-to-end models on the tasks with a
handful amount of samples; however, they bring
additional value to the ensemble. Pearson and
Spearman correlation coefficients are improved by
0.066 and 0.065 for the intensities in the full range
of 0-1, achieving #4 position on the leaderboard.
Additionally, the systems were evaluated on the
sample with moderate or high emotional inten-
sities with values from 0.5 to 1. Our ensemble
model places rank #4 and shows 0.087 (∼ 18.5%
relative) improvement on both correlation coeffi-
cients.

Surprisingly, tweet representations obtained
with the character-level model show competitive
or even better results for fear and joy emotion cat-
egories for samples with high-intensity emotions,
and overall the Char LM model shows similar re-
sults to the AffectiveTweet baseline model. Given
the fact that the Char LM model did not have any
external knowledge or supervision other than the
provided data, this demonstrates the effectiveness
of the character-level modeling of noisy and short
texts.
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Abstract

This paper describes the entry NUIG in
the WASSA 20171 shared task on emo-
tion recognition. The NUIG system used
an SVR (SVM regression) and BiLSTM
ensemble, utilizing primarily n-grams (for
SVR features) and tweet word embeddings
(for BiLSTM features). Experiments were
carried out on several other candidate fea-
tures, some of which were added to the
SVR model. Parameter selection for the
SVR model was run as a grid search whilst
parameters for the BiLSTM model were
selected through a non-exhaustive ad-hoc
search.

1 Introduction

The WASSA 2017 shared task on emotion in-
tensity (EmoInt) is a competition intended to
stimulate research into emotion recognition from
text (Mohammad and Bravo-Marquez, 2017). The
task provides a corpus of 3960 English language
tweets annotated with a continuous intensity score
for each of four basic emotions: anger, fear, joy
and sadness. This is a subset of the set of ba-
sic emotions proposed by Ekman (Ekman, 1992),
which has been widely used as an emotion rep-
resentation scheme in emotion recognition re-
search (Mohammad, 2016; Poria et al., 2017). An
additional 3142 tweets were used for evaluation
of competition entries, with annotations withheld
during the competition.

The NUIG entry to the task consisted of an en-
semble of two supervised models: an SVR (Sup-
port Vector Machine Regression2) with n-gram

18th Workshop on Computational Approaches to Subjec-
tivity, Sentiment & Social Media Analysis

2http://scikit-learn.org/

and several custom features and a BiLSTM (Bidi-
rectional Long-Short Term Memory3) model util-
ising tweet word embeddings. The models are ac-
cessible on DockerHub, GitHub and as a Rest API
service (see Section 6).

In Section 2 we briefly overview related work.
In Section 3 we discuss the data cleaning and pre-
processing steps taken. In Section 4 we describe
the model architectures and parameter choices. In
Section 5 we discuss some observed issues with
the models.

2 Related Research

In this section we briefly describe related work that
has attempted to model emotions using machine
learning based regressors and classifiers.

Wu et al. (Wu et al., 2006) use a hybrid of key-
word search and Artificial Neural Networks (when
no emotional keywords are present) to tackle the
problem of detecting multiple emotions (anger,
fear, hope, sadness, happiness, love and thank)
achieving an average test accuracy for all emo-
tions of 57.75 %. In the speech recognition do-
main, Wllmer et al. (Wöllmer et al., 2008) have
applied Long Short Memory Networks (LSTMs)
to detect emotions from speech using spectral fea-
tures and measurements of voice quality, in an at-
tempt to continuously represent emotions as op-
posed to using discrete classes of valence, arousal
and dominance. Schuller et al. (Schuller et al.,
2008) in 2008 combined both acoustic models of
speech, phonetics and word features on the EMO-
DB database4 which demonstrated the importance
of incorporating word models for such emotion
recognition tasks.

3keras+theano: https://keras.io/
4see here: http://emodb.bilderbar.info/
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3 Preprocessing

Tokenisation for both models was based on the
regular expressions and rules provided with Stan-
ford’s Glove Twitter Word Vectors (Pennington
et al., 2014) with some custom additions and mod-
ifications. Notable changes included the removal
of hash symbols from tags, and extra emoticon de-
tection patterns.

Removal of hash symbols had noticeable impact
on the training accuracy for the BiLSTM model
(for SVR it did not have significant impact). One
possible explanation is the presence of hash tags
in the training data for which the corresponding
word is present in the word embedding, but not the
tag itself. A concrete example is “#firbromyalgia”.
Note that stop words were not removed.

The preprocessing steps were as follows:

1. URL’s, @mentions are replaced by standard tokens:
“<url>” and “<user>”

2. emoticons were replaced by a small set of stan-
dard tokens: “<smile>”, “<lolface>”, “<sadface>”,
“<neutralface>”, “<heart>”

3. hash symbols are removed from #hashtags
4. repeated full stops, question marks and exclamation

marks are replaced with a single instance with a spe-
cial token “<repeat>” added

5. characters repeated 3 times or more are replaced with
one instance and a special token “<elong>” is added

6. a special token “<allcaps>” is added for each word in
all capitals

7. remaining punctuation characters are treated as individ-
ual tokens

8. apostrophes are removed from negative contractions
(e.g. “don’t” is changed to “dont”)5

9. other contractions are split into two tokens (e.g.: “it’s”
is changed to “it” and “’s”)

10. tokens are converted to lower case

4 Model Architecture and Training

The overall model is a simple ensemble of an Sup-
port Vector Regression (SVR — see Section 4.1)
and Bidirectional Long-Short Term Memory neu-
ral network (BiLSTM — see Section 4.2). The
ensemble is described in Section 4.3.

The BiLSTM model was chosen due to it’s re-
cent excellent performance across numerous NLP
tasks. The SVR model chosen as a baseline imple-
mentation, but found to contribute to the overall
performance. Standard Long-Short Term Mem-
ory (LSTM) models were also attempted, however
were outperformed by our BiLSTM (results not re-
ported here).

5This transformation was evident from analysis of the
word embedding dictionary

Emotion C gamma epsilon tol
anger 1.0 0.01 0.001 1e-04
fear 1.0 0.01 0.001 1e-04
joy 1.0 0.01 0.001 1e-05
sadness 1.0 0.001 0.001 1e-05

Table 1: Parameters for SVR models

4.1 Support Vector Machine Regression

The core features for the SVR model are a bag
of 1,2,3 and 4-grams. N-grams with corpus fre-
quency less than 2 or document frequency greater
than 100 were removed. Experiments includ-
ing words with document frequency up to 1000
showed similar performance, so the more stringent
criterion resulting in a much smaller vocabulary
was chosen. Note that this will also remove most
words commonly considered stop words.

The following extra features were added. Av-
erage, min and max word vectors for each token
are taken as features due to variation in sentence
length6. Proportion of Capital symbols and pro-
portion of words with first capital are considered.
Finally, average, standard deviation, min and max
of cosine similarities between the vector for each
emotion name (e.g. “fear”) and word vectors of all
words in a tweet are added to the experiment.

An RBF (Radial Basis Function) kernel was
chosen in preference to a Linear kernel as the clas-
sifier’s training time is prompt due to the small
dataset size. This kernel provided marginally bet-
ter results.

A grid search of model parameters C, gamma,
tolerance and epsilon was applied to find the opti-
mal set parameters. The best combination is stored
for each emotion model separately (see Table 1).
Other model parameters were left at their default
values in the sklearn.svm.SVR implementa-
tion as those values performed better than alterna-
tives.

4.2 Bidirectional LSTM

Preprocessed and tokenized sentences are con-
verted to 100-dimensional twitter Glove word vec-
tors. We considered also 200–dimensional vec-
tors7, however performance was slightly worse
and memory requirements substantially increased.

Embedding vectors were fed into a BiL-
STM network followed by a layer trained with
dropout (Srivastava et al., 2014) to reduce over-

6Length calculated before removing rare words/n-grams
7100d and 200d Glove Twitter 27B word vectors
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fitting issues. The output of the dropout layer was
inputted to a 2-hidden layer network before a fi-
nal activation layer.Experiments were carried out
on the 2-hidden layers where the number of neu-
rons were varied between 20–60 in the first hid-
den layer and in the range of 10–20 in the second
layer. For the sake of brevity, we only focus on the
best performing architecture which is 100–50–25–
1 (See Figure 1). Smaller layer sizes are not suffi-
cient to catch the shape of the data and excessively
big layer sizes lead to over-fitting and exponential
growth of training time.

Figure 1: BiLSTM model architecture

For the loss function in training, Mean Abso-
lute Error (MAE) is used in preference to Mean
Squared Error (MSE) as it assigns equal weight to
the data points and thus emphasizes the extremes.
The “Softsign” activation function is found the
best for the problem. Spearman and Pearson corre-
lations are used as the main evaluation of network
structures and parameter settings, however we also
considered R2 scores, as in some cases Spearman
and Pearson scores remained the same over train-
ing epochs while the R2 score improved.o

To avoid over-fitting, the number of training
epochs is chosen through evaluating models after
each epoch. The number of epochs at which train-
ing did not significantly improve Spearman corre-
lation ρ is chosen for the final model (see Table 2).
It is evident that fear takes considerably longer to
train, 4 times longer than joy for example.

Emotion anger joy fear sadness
Training Epochs 12 8 36 18

Table 2: Number of BiLSTM training epochs.

Emotion Estimator R2 Pearson Spearman
svr 0.34 0.60 0.57

anger lstm 0.36 0.63 0.61
averaged 0.42 0.66 0.63

svr 0.44 0.67 0.63
fear lstm 0.45 0.68 0.66

averaged 0.49 0.71 0.68
svr 0.36 0.62 0.63

joy lstm 0.35 0.59 0.59
averaged 0.41 0.65 0.65

svr 0.43 0.68 0.69
sadness lstm 0.45 0.70 0.69

averaged 0.49 0.73 0.72
average averaged 0.45 0.68 0.67

Table 3: Performance comparison of individual
and ensemble models evaluated on the WASSA
test set.

4.3 Ensemble
With the limited time available, we attempted
three simple approaches: taking the maximum,
minimum and average of the predicted intensity
between the two models. The best performance
was obtained by averaging the LSTM and SVR
outputs (see Table 3).

We believe that further investigation of the char-
acteristics that led to a better ensemble model
would likely lead to improvements in model de-
sign both in the BiLSTM itself and in alternative
ensemble strategies.

5 Discussion

Overall, we see that performance in the develop-
ment data set, used to select model parameters,
did not differ substantially from performance on
the test set, indicating that overfitting did not occur
(see Table 4). Interestingly the difference between
development and test set performance varies in
line with the number of epochs. Concretely, fear
and especially sadness see a strong performance
gain on the test set, whereas the joy model de-
graded in performance, which was trained for the
lowest number of epochs for all emotions. Given
that our performance relative to the best perform-
ing entry also followed this pattern and that a
dropout layer was used, which has been shown
to control overfitting (Srivastava et al., 2014), it
seems likely that choosing a larger number of
epochs would have resulted in better models.

Analysis of model prediction errors on test data
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Emotion eval data R2 Pearson Spearman

anger
dev 0.50 0.71 0.67
test 0.42 0.66 0.63

fear
dev 0.45 0.62 0.65
test 0.49 0.71 0.68

joy
dev 0.53 0.73 0.73
test 0.41 0.65 0.65

sadness
dev 0.26 0.52 0.56
test 0.49 0.73 0.72

average
dev 0.43 0.64 0.65
test 0.45 0.68 0.67

Table 4: Performance comparison between devel-
opment and test sets.

revealed that extreme values were not modelled
well for both SVR and BiLSTM models, with
the SVR model performing marginally better, as
seen for anger in Figure 2 (other emotions were
similar). In the case of the BiLSTM model, we
attribute this to the choice of L1 error as the
loss function, which does not penalise large errors
strongly. Overall performance with this loss func-
tion was, however, better on the provided data.

We also attempted to use the Emotion Hashtag
Corpus (Mohammad, 2012) as training data for the
BiLSTM model. This corpus only has category la-
bels, so a model was built providing class proba-
bilities, which were used as a proxy for intensity of
the emotion classes. The performance was worse
than random however, with an average R2 score
of -3.63 (correlation 0.28), and this approach was
abandoned. We believe this is due to two main
factors: the intrinsic noise associated with emo-
tion hash tags as emotion labels and that emotion
probability is not a good analogue for emotion in-
tensity. It would be interesting to experiment in the
future with adding a binary feature for each emo-
tion provided by a model trained on the hashtag
corpus to our models.

6 Conclusion

The English language datasets provided for the
WASSA competition are relatively clean but
small, and the annotated labels for four emotions
are precise and valuable. We performed experi-
ments on the provided data drawing on our expe-
rience in emotion detection. The best built mod-
els are developed further and put together as an
accessible service / software. The service is now
available as part of the MixedEmotions platform8

as well as the DockerHub as a docker image, on

8http://mixedemotions.insight-centre.org/

Figure 2: Model Predictions for anger. Other
emotions follow a similar pattern.
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GitHub9 DockerHub10.
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Abstract

Aspect Term Extraction (ATE) identifies
opinionated aspect terms in texts and is
one of the tasks in the SemEval As-
pect Based Sentiment Analysis (ABSA)
contest. The small amount of avail-
able datasets for supervised ATE and the
costly human annotation for aspect term
labelling give rise to the need for unsu-
pervised ATE. In this paper, we introduce
an architecture that achieves top-ranking
performance for supervised ATE. More-
over, it can be used efficiently as fea-
ture extractor and classifier for unsuper-
vised ATE. Our second contribution is a
method to automatically construct datasets
for ATE. We train a classifier on our auto-
matically labelled datasets and evaluate it
on the human annotated SemEval ABSA
test sets. Compared to a strong rule-based
baseline, we obtain a dramatically higher
F-score and attain precision values above
80%. Our unsupervised method beats the
supervised ABSA baseline from SemEval,
while preserving high precision scores.

1 Introduction

For many years now, companies are offering users
the possibility of adding reviews in the form of
sentences or small paragraphs. Reviews can be
beneficial for both customers and companies. On
the one hand, people can make better decisions by
getting insights about available products and so-
lutions. One the other hand, companies are inter-
ested in understanding how and what customers
think about their products, which helps in employ-
ing marketing solutions and correction strategies.
To this end, performing an automated analysis of
the user opinions becomes a crucial issue.

Performing sentiment analysis to detect the over-
all polarity of a sentence or paragraph comes with
two major disadvantages. First, sentiment analy-
sis on sentence (or paragraph) level does not fulfill
the purpose of getting more accurate and precise
information. The polarity refers to a broader con-
text, instead of pinpointing specific targets. Sec-
ondly, many sentences or paragraphs contain op-
posing polarities towards distinct targets, making
it impossible to assign an accurate overall polar-
ity.
The need for identifying aspect terms and their
respective polarity gave rise to the Aspect Based
Sentiment Analysis (ABSA), where the task is first
to extract aspects or features of an entity (i.e. As-
pect Term Extraction or ATE1) from a given text,
and second to determine the sentiment polarity
(SP), if any, towards each aspect of that entity.
The importance of ABSA led to the creation of the
ABSA task in the SemEval2 contest in 2014 (Pon-
tiki et al., 2014).
Supervised ATE using human annotated datasets
leads to high performance for aspect term detec-
tion on unseen data, however it has two major
drawbacks. First, the size of the labelled datasets
is quite small, reducing the performance of the
classifiers. Second, human annotation is a very
slow and costly procedure.
The drawbacks of supervised ATE can be tackled
using unsupervised ATE. The size of the datasets
can be significantly increased using targets from
publicly available reviews (e.g. Amazon or Yelp).
Reviews are opinion texts and contain plenty of
opinionated aspect terms, which makes them per-
fect candidates for constructing new datasets for
ATE. With respect to the second drawback, an au-

1Also known as Opinion Term Extraction (OTE).
2The SemEval (Semantic Evaluation) contest is an ongo-

ing series of evaluations of computational semantic analysis
systems.
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tomated data labelling process with high precision
can replace the slow and error-prone human anno-
tation procedure.
We innovate by performing ATE starting from
opinion texts (e.g. reviews). This is a completely
unsupervised task since there are no labels to ex-
plicitly pinpoint that certain tokens of the text are
aspect terms. Reviews may contain labels (e.g.
number of stars in a 1-5 star rating system) which
are related to their overall polarity. However, such
labels are not useful for ATE.
In this work, we present a classifier, which can be
used for feature extraction and aspect term detec-
tion for both unsupervised and supervised ATE.
We validate its suitability for ATE by achieving
top-ranking results for supervised ATE using the
SemEval-2014 ABSA task datasets3. Then, we
use it for unsupervised ATE.
Moreover, we contribute by introducing a new,
completely automated, unsupervised and domain
independent method for annotating raw opin-
ion texts. Then, we use our classifier to per-
form unsupervised ATE by training it on the au-
tomatically labelled datasets obtained with our
method. Against all expectations, our unsuper-
vised method beats the supervised ABSA baseline
from SemEval-2014, while achieving high preci-
sion scores. The latter is very important for unsu-
pervised techniques since we wish to extract non-
noisy aspect terms, i.e. minimize the number of
false positives.
The rest of this paper is organized as follows. Sec-
tion 2 presents the related work for ATE. Our ap-
proach for supervised and unsupervised ATE is de-
scribed in Sections 3 and 4 respectively. Section 5
presents our experiments and results for both su-
pervised and unsupervised ATE. Finally, Section 6
focuses on our conclusions and future work.

2 Related Work

Research in the area of both supervised and un-
supervised ATE has flourished after the creation
of the SemEval ABSA task in 2014. The win-
ners of the SemEval-2014 ABSA contest (Toh and
Wang, 2014) use supervised methods for ATE.
They extract features, similar to those used in
traditional Name Entity Recognition (NER) sys-
tems (Tkachenko and Simanovsky, 2012) using

3The SemEval ABSA datasets contain human annotation
for ATE for both the laptop and the restaurant domains only
in 2014.

the provided training sets. Moreover, they ex-
ploit external sources, such as the WordNet lex-
icographer files (Miller, 1995) and word clus-
ters (e.g. Brown clusters (Turian et al., 2010)
or K-means4). Toh and Su (2015) suggest using
gazetteers (Kazama and Torisawa, 2008) and word
embeddings (Mikolov et al., 2013) for ATE. Toh
and Su (2016) use the probability output of an Re-
current Neural Network (RNN) to further enrich
the feature space.
Independently of the feature extraction tech-
niques, supervised ATE is treated as a sequen-
tial labelling task. Top-ranking participants in the
SemEval ABSA contest use Conditional Random
Fields (CRF) or Support Vector Machine (SVM)
as sequential labelling classifiers (Toh and Wang,
2014; Toh and Su, 2015; Chernyshevich, 2014;
Brun et al., 2014).
There is also related work with respect to unsu-
pervised ATE. Liu et al. (2015) exploit syntactic
rules to automatically detect aspect terms. (Garcia-
Pablos et al., 2015; Garcia-Pablos and Rigau,
2014) use a graph representation to describe the
interactions between aspect terms and opinion
words in raw text. Graph nodes are ranked using
PageRank and high-ranked nodes are used to cre-
ate a set of aspect terms. Then, they use this set to
annotate unseen data by simply performing exact
or lemma matching.
Systems similar to (Hercig et al., 2016; Yin
et al., 2016; Soujanya et al., 2016) perform semi-
supervised ATE since they use human annotated
datasets for training but enrich their feature space
using features extracted by exploiting large un-
labelled corpora. Pavlopoulos and Androutsopou-
los (2015) present a method for constructing new
datasets for ATE, however they use non-standard
evaluation metrics. Finally, systems like (Garcia-
Pablos et al., 2017) focus on classifying the aspect
terms into categories. We do not compare against
such systems, since they do not perform the same
task and are not equivalent to ours.
In all but one5 aforementioned cases, the evalua-
tion of the model is performed using the F-score,
as defined in (Pontiki et al., 2014). In case of unsu-
pervised ATE, achieving higher precision is more
important than higher recall as highlighted in (Liu
et al., 2015).

4https://en.wikipedia.org/wiki/
K-means_clustering

5Pavlopoulos and Androutsopoulos (2015) use a non-
standard definition of precision and recall.
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We perform both supervised and unsupervised
ATE using a model that utilizes continuous word
representations and performs feature extraction
and sequential labelling simultaneously while
training. In case of supervised ATE, the training
datasets are those of the SemEval ABSA task (hu-
man annotated). In case of unsupervised ATE, we
annotate raw opinion texts (e.g. reviews) with a
completely automated and unsupervised process,
which we introduce. To the best of our knowledge,
we are the first to train a classifier using an auto-
matically labelled dataset and perform evaluation
on human annotated datasets.

3 Supervised Aspect Term Extraction

The ATE task can be modelled as a token-based
classification task, where labels are assigned to the
tokens of a sequence, depending on whether they
are aspect terms or not. For supervised ATE, we
apply a classification pipeline that consists of 3
steps: (i) data preprocessing, (ii) model training
and (iii) model evaluation.
The feature extraction is performed from a two-
layer bidirectional long short-term memory (B-
LSTM) network while the model is training, sim-
ilar to the way a Convolutional Neural Network
(CNN) extracts features while performing image
classification. Therefore, we do not explicitly in-
clude this step in the aforementioned pipeline.

3.1 Data Preprocessing

We break down each sentence into tokens using
the spaCy parser6 and follow the traditional IOB
format (short for Inside, Outside, Beginning) for
sequential labelling. Tokens that represent the as-
pect terms of the sentence are labelled with B. In
case an aspect term consists of multiple tokens, the
first token receives the B label and the rest receive
the I label. Tokens that are not aspect terms are
labelled with O. Given the sentence ”The internal
speakers are amazing.” with target ”internal speak-
ers”, the labelling would be as follows: (The|O)
(internal|B) (speakers|I) (are|O) (amazing|O)
(.|O).

3.2 Classifier Architecture

We employ a two-layer B-LSTM to extract fea-
tures for each token, which are used by a CRF for
token-based classification. Features are created by
exploiting the word morphology and the structure

6https://spacy.io/docs/

of the sentence. The architecture is depicted in
Fig. 1 and is inspired by the NER system presented
in (Yang et al., 2016). However, we employ LSTM
cells and use word embeddings from fastText7.
First B-LSTM layer: Randomly initialized char-
acter embeddings of each token are given as input
into the first B-LSTM layer, which aims at learn-
ing new word embeddings. The first and second
directions (left → right and left ← right) of the
first B-LSTM layer are responsible for learning
word embeddings by exploiting the prefix and the
suffix of each token respectively.
Second B-LSTM layer: For each token of a sen-
tence, we create a feature vector by combining
(i) the extracted word embeddings from the first
B-LSTM layer and (ii) pre-trained word embed-
dings using fastText. These feature vectors are
given as input to the second B-LSTM layer, which
extracts a feature vector for each token by exploit-
ing the structure of the sentence. Similar to the
first B-LSTM layer, the first and second directions
are responsible for extracting features using the
previous and the next tokens of each word.
CRF layer: The final layer uses the extracted
feature vectors in order to perform sequential la-
belling.

4 Unsupervised Aspect Term Extraction

The human annotation process — required to iden-
tify aspect terms in small sentences and construct
datasets for supervised ATE — comes at a high
cost, mainly for two reasons:

1. Human annotated datasets typically consist
of a few thousand sentences8 extracted from
large corpora of domain-specific reviews.
The small amount of data reduces the per-
formance of classifiers.

2. Human annotation is very slow, costly and
risky. Annotators may introduce noise in the
datasets by labelling words incorrectly, ei-
ther because they are sloppy workers or be-
cause they do not know exactly what aspect
terms are. For example, given the sentence
”Works well, and I am extremely happy to
be back to an apple OS.”, human annotators
may consider the word ”works” as a target9.
However, aspect terms are nouns and noun

7https://github.com/facebookresearch/fastText
8The datasets of the SemEval ABSA task consist of ap-

proximately 3000 sentences for English.
9Example taken from the golden annotated dataset for lap-

top reviews of the SemEval-2014 ABSA task.
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Figure 1: Sequential labelling using B-LSTM & CRF classifier.

phrases (Liu et al., 2015), therefore the verb
”works” should not be considered as a target.

We employ unsupervised ATE in order to over-
come both problems. We tackle the first problem
by using large datasets of opinion texts (e.g. re-
views). Such datasets are ideal for ATE since they
contain a plethora of opinionated aspect terms.
In order to tackle the second problem, we in-
troduce and use an automated and unsupervised
method for labelling the tokens of the aforemen-
tioned datasets using the IOB format. We consider
only noun and noun phrases as candidate aspect
terms and focus on token labelling with high pre-
cision in order to reduce falsely annotated aspect
terms. In that way, we minimize the cost, the time
and the mistakes introduced by the human annota-
tion process.
We use the publicly available datasets of Amazon
and Yelp for laptop and restaurant reviews respec-
tively and perform some data cleaning such as re-
moving URLs from the reviews.

4.1 Automated Data Labelling

Using raw opinion texts (e.g. reviews) for ATE
is a completely unsupervised task since there are
no labels to explicitly pinpoint that certain tokens
of the text are aspect terms. Reviews frequently
contain labels (e.g. number of stars in a 1-5 star
rating system) related to their overall polarity but
these are not useful for ATE.
Our goal is to label each token of the unlabelled
opinion texts in an automated way using the IOB
format with unsupervised methods. While la-
belling aspect terms, we focus on high precision, a
property that guarantees that the resulting datasets
will contain as little noisy aspect terms as possi-
ble. The importance of high precision is also high-

lighted in (Liu et al., 2015), where authors con-
struct syntactic rules primarily by focusing on this
criterion.
Algorithm 1 describes the automated data la-
belling method. First, we create a list of qual-
ity phrases and prune it using a desired threshold
value. Then, we iterate through all sentences and
annotate tokens that obey certain syntactic rules as
aspect terms. We repeat this procedure for multi-
word aspect terms and finally label the tokens us-
ing the IOB format.

Algorithm 1 Automated Data Labelling
1: qual phrases = run autophrase(corpus)
2: candidates = prune(qual phrases, qth)
3: for sentence in corpus do
4: labels = []
5: for token in sentence do
6: if token in candidates then
7: l = get label(token, rules, lexicon)
8: labels.append(l)
9: assign iob tags(sentence, labels)

4.1.1 Quality Phrase List
We start by building a sorted list of the form
(quality phrase, q), where q ∈ [0, 1] represents
the quality value of each phrase. The quality
phrases — which we use as candidate aspect
terms — are n-grams that appear in the raw review
corpora and exceed a minimum support thresh-
old10. The list of quality phrases is built by apply-
ing the AutoPhrase algorithm (Shang et al., 2017)
on the review datasets for laptops and restaurants.
The quality of each phrase is determined via a

10Support is an indication of how frequently the n-gram
appears in the dataset.
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classification task with decision trees that takes
into account a list of high quality phrases using
Wikipedia. The values of the features (e.g. tf-idf )
used in the decision trees to predict the quality of
each phrase are more informative when the pro-
vided corpora are domain dependent. Therefore,
we apply AutoPhrase on each dataset separately,
rather than combining the two datasets.
The extracted quality phrases, together with a set
of syntactic rules, contribute in the automated data
labelling process, which is based on 3 pillars:

1. a sentiment lexicon
2. a pruned list of quality phrases
3. syntactic rules able to capture aspect terms

Existing ATE systems (Garcia-Pablos et al., 2015),
although unsupervised, exploit also syntactic rules
derived from supervised tools (e.g. parsers).
Moreover, they require domain-dependent hu-
man input (e.g. seed words) to perform double-
propagation. We avoid that by using a sentiment
lexicon.

4.1.2 Sentiment Lexicon
In many cases, aspect terms have modifiers (e.g.
”This is a great screen”) or are objects of verbs
(e.g. ”I love the screen of this laptop”) that ex-
press a sentiment. Therefore, we make use of a
sentiment lexicon11, which is necessary in order to
perform a look-up on whether modifiers and verbs
express a sentiment or not.

4.1.3 Pruned Quality Phrases
We prune our quality phrases since they contain
both true and noisy aspect term candidates. More
concretely, we filter the list of quality phrases in
order to keep n-grams with a quality above a cer-
tain threshold.
We present an example to show the value of the
pruning step. The list of quality phrases ex-
tracted using the Amazon review dataset on lap-
tops contains the 1-gram ”couch” and the 2-gram
”touch pad” with quality 0.67 and 0.95 respec-
tively. However, the presence of the word ”couch”
as an aspect term in laptop reviews is completely
arbitrary. Therefore, we prune the list of qual-
ity phrases using an empirical quality threshold of
qth = 0.7 and qth = 0.6 for the laptop and restau-
rant domain respectively. We set these thresh-
olds manually after inspecting the lists of qual-

11We use the sentiment lexicon of Bing Liu:
https://www.cs.uic.edu/˜liub/FBS/
sentiment-analysis.html

ity phrases and detecting the quality value under
which a lot of domain-irrelevant candidate aspect
terms appear.
While the pruning step removes irrelevant phrases,
as shown above, it also means that n-grams such
as ”set up”, which are true aspect term candi-
dates are removed from the list due to low quality
(qset up = 0.32). However, reducing noisy aspect
term candidates (e.g. ”couch” with q = 0.67) is
more important than keeping all aspect term candi-
dates since we wish to annotate aspect terms with
high precision.
We can make the data labelling method com-
pletely automated by setting a fixed quality thresh-
old qth for pruning the list of quality phrases. We
highlight that a fixed threshold of qth = 0.7 leads
to a good — but not optimal — trade-off between
high precision values and good F-score for ATE.

4.1.4 Syntactic Rules for ATE
The pruned quality phrases and the sentiment lex-
icon are combined with syntactic rules in order to
extract aspect terms from sentences. Before ap-
plying any syntactic rule, we validate if a token
is a potential aspect term by checking if it (i) is
not a stopword, (ii) is present in the pruned qual-
ity phrases and (iii) has a POS tag that is present
in [NOUN, PRON, PROPN, ADJ, ADP, CONJ].
Table 1 tabulates all rules used for ATE and gives
examples of reviews with the respective extracted
aspect terms. For simplicity, we adopt a syntactic
rule notation similar to the one used in (Liu et al.,
2015). The functions used in Table 1 have the fol-
lowing interpretation:
• depends(d, ti, tj) is true if the syntactic de-

pendency between the tokens ti and tj is d.
• opinion word(ti) is true if the token ti is in

the sentiment lexicon.
• mark target(ti) means that we mark the to-

ken ti as aspect term.
• is aspect(ti) is true if the token ti is already

marked as aspect term.

4.1.5 Language and Domain Adaptation
The automated data labelling method requires
adaptation in order to be used in different lan-
guages. More concretely, we need to adapt (i) the
syntactic rules of Table 1, (ii) the sentiment lex-
icon and (iii) the tools required from Autophrase
(e.g. part-of-speech tagger) to the target language.
We can use the automated data labelling method
for ATE dataset construction in a completely
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Rules Example Extracted Targets
depends(dobj, ti, tj) and opinion word(tj)
then mark target(ti)

I like the screen screen

depends(nsubj, ti, tj) and depends(acomp, tk, tj)
and opinion word(tk) then mark target(ti)

The internal speakers are amazing internal speakers

depends(nsubj, ti, tj) and depends(advmod, tj , tj)
and opinion word(tk) then mark target(ti)

The touchpad works perfectly touchpad

depends(pobj or dobj, ti, tj) and depends(amod, tk, ti)
and opinion word(tk) then mark target(ti)

This laptop has great price price

depends(cc or conj, ti, tj) and is aspect(tj)
then mark target(ti)

Screen and speakers are awful
screen

speakers
depends(compound, ti, tj) and is aspect(tj)
then mark target(ti)

The wifi card is not good wifi card

Table 1: Syntactic rules for aspect term extraction.

domain-independent fashion. To do so, we only
need to set the pruning threshold qth of the qual-
ity phrase list to a fixed value (Section 4.1.3). Our
experiments reveal that setting qth = 0.7 results
in a good trade-off between high precision and F-
score, independently of the laptop or the restaurant
domain.

4.2 Model Training and Evaluation

We train a B-LSTM & CRF classifier to perform
unsupervised ATE for both domains using the au-
tomatically labelled datasets constructed in Sec-
tion 4.1. The classifier is evaluated on the hu-
man annotated test datasets of the SemEval-2014
ABSA contest.

5 Experiments and Results

We perform experiments for supervised and un-
supervised ATE in the laptop and the restau-
rant domain and evaluate our classifier using the
CoNLL12 F-score. Compared to other super-
vised learning methods, we reach the performance
of SemEval-2014 ABSA winners in the restau-
rant domain. For laptops, our supervised sys-
tem exceeds the best F-score of the SemEval-2014
ABSA contest by approximately 3%. With re-
spect to unsupervised ATE, our technique achieves
(i) very high precision and (ii) an F-score that
exceeds the supervised baseline of the SemEval
ABSA.

5.1 Experiments for Supervised ATE

For supervised learning, we perform experiments
using the human annotated training and test sets
provided by the SemEval-2014 ABSA contest for

12http://www.cnts.ua.ac.be/conll2003/

Figure 2: Results for supervised ATE using the B-
LSTM & CRF architecture. We compare against
the winners of the SemEval-2014 ABSA contest.

the laptop and restaurant domain. Our classifier
uses the B-LSTM & CRF architecture presented
in Fig. 1 and its implementation is based on (Der-
noncourt et al., 2017).
We use a random 80-20% split on the original
training set of SemEval-2014 ABSA contest in or-
der to create a new train and validation set. We
keep the test set for our final evaluation. For
most of the parameters, we use the default values
of (Dernoncourt et al., 2017). However, we use the
adam optimizer with learning rate α = 0.01 and a
batch size of 64. Moreover, we use the pre-trained
word embeddings of fastText.
We train the classifier using the reduced train-
ing set for a maximum number of 100 epochs.
After each epoch, we evaluate our model using
the CoNLL F-score on the validation set. More-
over, we use early stopping with a patience of 20
epochs. This means that the experiment terminates
earlier if the CoNLL F-score of the validation set
does not improve for 20 consecutive epochs. At
the end of each experiment we choose the model
of the epoch that gives the best performance on the
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validation set and make predictions on the test set.
We repeat the aforementioned procedure for 50 ex-
periments and present the experimental results for
both domains in Fig 2.
The F-score of the SemEval-2014 ABSA winners
is 74.55 and 84.01 for the laptop and the restaurant
domain respectively. The B-LSTM & CRF classi-
fier achieves an F-score of 77.96 ± 0.38 for lap-
tops and an F-score of 84.12 ± 0.2 for restaurants
with a confidence interval of 95%. With our per-
formance, we would have surely won in the lap-
top domain and probably also in the restaurant do-
main.

5.2 Experiments for Unsupervised ATE

We also perform experiments for ATE with unsu-
pervised learning. For training, we use the auto-
matically labelled datasets (hereafter denoted as
ALD) obtained using the methodology described
in Section 4.1 with qth = 0.7 and qth = 0.6 for
the laptop and the restaurant domain respectively.
For testing, we use the human labelled datasets
(hereafter denoted as HLD) of the SemEval-2014
ABSA task.
Our main goal is to evaluate our unsupervised
technique on human annotated datasets. To the
best of our knowledge, the largest available human
annotated datasets for ATE are provided by the Se-
mEval ABSA task and contain laptop and restau-
rant reviews. Therefore, our analysis focuses only
on these two domains.
We start by creating a rule-based baseline model to
make predictions for the HLD simply by applying
techniques presented in Section 4.1. This baseline
(presented in the following section) does not rely
on any machine learning techniques for the anno-
tation procedure.
We aim at beating the rule-based baseline by using
machine learning. To this end, we use the ALD
to train our classifier. For unsupervised ATE, we
run two types of experiments. The first one uses
the traditional IOB labelling format and is stricter.
The second one is more relaxed and uses only B
and O labels (i.e. I labels are converted to B). The
intuition is that aspect terms can be identified by
separating B and I labels from O. Therefore, I and
B labels are treated equally against O.

Rule-based Baseline Model
The methodology described in Section 4.1 is used
in order to make predictions on the HLD for lap-
tops and restaurants, i.e. the rule-based baseline

Labels: IOB Labels: OB
P F1 P F1

Rule-based 65.13 24.35 76.65 23.76

L
ap

to
psSVM 61.64 37.94 72.02 43.29

B-LSTM
& CRF

66.67 42.09 74.51 44.37

SemEval 35.64
Rule-based 84.26 28.74 96.67 27.37

R
es

ta
ur

an
ts

SVM 67.28 48.08 80.83 57.36
B-LSTM
& CRF

74.03 53.93 83.19 63.09

SemEval 47.15

Table 2: Experiments for unsupervised ATE. We
compare B-LSTM & CRF classifier against the
rule-based baseline, an SVM classifier and the
baseline of the SemEval-2014 ABSA contest.

model does not use any machine learning algo-
rithm. During the annotation process, a token of
the HLD is labelled as a target if (i) it belongs in
the pruned quality phrases list and (ii) satisfies at
least one of the rules in Table 1. A comparison be-
tween the predicted and the golden labels of the
HLD gives a quality estimation of the syntactic
rules we create and acts as a baseline.

SVM

We train a linear SVM classifier13 in order to cre-
ate a second baseline model that uses machine
learning. For SVM, we use the baseline features
presented in (Stratos and Collins, 2015) and build
1-0 feature vectors by exploiting the word mor-
phology and the sentence structure (i.e. adjacent
words of each token). The training and the evalua-
tion are done using the ALD and the HLD respec-
tively.
In addition, we wish to show the trade-off between
precision and recall for different values of qth. We
perform experiments for different values of qth
and validate that the higher qth the higher the pre-
cision and the lower the recall. For example, an
SVM classifier trained on an ALD with qth = 0.7
achieves an F1 = 39.63 and P = 71.54 (Table 2
shows results for qth = 0.6 for restaurants). We
choose to keep qth = 0.6 for the restaurant domain
because we are interested in a good combination
of high precision and F-score.

13We use the implementation of LIBLINEAR (Fan et al.,
2008).
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B-LSTM & CRF
We employ the B-LSTM & CRF classifier using
the ALD as training set and the HLD as test set, i.e.
the evaluation is performed on the human anno-
tated datasets of SemEval-2014 ABSA task. In ad-
dition, we use the ABSA training sets of SemEval-
2014 as validation sets.
The maximum number of epochs and the patience
are set to 20 and 5 respectively. As stopping cri-
terion, we simply choose the epoch that achieves
the best F-score on the validation set. In all our
experiments, we compare the performance of the
B-LSTM & CRF classifier with the respective per-
formance of the rule-based baseline and the SVM
model. We do not report any confidence inter-
vals for the B-LSTM & CRF classifier because the
training time increases dramatically in the case of
unsupervised ATE due to the increased size of the
dataset. Conducting one experiment usually takes
more than 15h, which means that a round of at
least 20 experiments, that would allow for defin-
ing confidence intervals, would be computation-
ally intensive. For this reason, we leave the report
of confidence intervals for unsupervised ATE for
future work. However, we repeat up to 3 exper-
iments for each case and verify that the CoNLL
F-score and the precision are always higher com-
pared to SVM. Results for the laptop domain can
be visualized in Fig. 3. We do not present any fig-
ures for the restaurant domain since the learning
curves are very similar to the ones of the laptop
domain.
We draw several conclusions by observing the re-
sults tabulated in Table 2. First, the B-LSTM
& CRF classifier achieves higher F-score for
both domains compared to the rule-based baseline
model and the SVM classifier. The F-score rel-
ative improvement between the rule-based base-
line and the B-LSTM & CRF classifier is 73%
and 88% for the laptop and the restaurant do-
main respectively. At the same time, we preserve
high precision and attain values above 80%. Fi-
nally, our unsupervised method beats the super-
vised baseline F-score from SemEval ABSA.

6 Conclusion and Future Work

We present a B-LSTM & CRF classifier which we
use for feature extraction and aspect term detec-
tion for both supervised and unsupervised ATE.
We validate this classifier by performing super-
vised ATE and achieving top-ranking performance

Figure 3: F-score (top) and precision (bottom)
comparison between B-LSTM & CRF and SVM
for unsupervised ATE in the laptop domain. B, I
and O labels are used.

on the human annotated datasets of the SemEval-
2014 ABSA contest for the laptop and restau-
rant domain. Moreover, we introduce a new, au-
tomated, unsupervised and domain independent
method to label tokens of raw opinion texts as as-
pect terms with high precision. We use the auto-
matically labelled datasets to train the B-LSTM &
CRF classifier, which we evaluate on human an-
notated datasets. Against all odds, our unsuper-
vised method beats the supervised ABSA baseline
F-score from SemEval, while preserving high pre-
cision scores.

As future work, we plan to perform ATE for dif-
ferent domains (e.g. hotels) using our methods.
Moreover, we plan to work towards adapting our
techniques to multilingual datasets (e.g. French,
Spanish, etc.). We would also investigate the idea
of exploiting the available ratings (e.g. 1-5 stars)
of the review datasets in order to construct new
datasets for ATE. This would allow us to perform
ATE with distant supervision.
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Abstract

Linguistic Inquiry and Word Count
(LIWC) is a rich dictionary that map
words into several psychological cat-
egories such as Affective, Social,
Cognitive, Perceptual and Biological
processes. In this work, we have used
LIWC psycholinguistic categories to train
regression models and predict emotion
intensity in tweets for the EmoInt-2017
task. Results show that LIWC features
may boost emotion intensity prediction on
the basis of a low dimension set.

1 Introduction

In Natural Language Processing tasks many tech-
niques rely on statistical methods to classify texts
based on word distribution. Sentiment analysis
also takes advantage of this kind of approach to
detect emotion or polarity in sentences (Liu and
Zhang, 2012). Twitter became the main source
of data to extract sentiment information in social
media because of its data characteristics: huge
amount of small sentences distributed in a time-
line, which are easily gathered.

In Twitter, sentiment classification intends to
extract polarity or emotion with regards to a spe-
cific subject. The polarity defines a positive or
negative valency and the emotion usually is mod-
eled over Ekman’s six basic emotions: joy, anger,
sadness, happiness, surprise, fear and disgust (Ek-
man, 1992).

This work intends to score tweets for emotion
intensities, by giving a real value for each tweet
(Mohammad and Bravo-Marquez, 2017a), as part
of the EmoInt-2017 task. The goal of the task is,
given a tweet, to predict the intensity of a specific
emotion expressed in it (Mohammad and Bravo-
Marquez, 2017b). The intensity score is a real-

valued score between 0 and 1. The minimum pos-
sible score 0 stands for feeling the least amount of
emotion and the maximum possible score 1 stands
for feeling the maximum amount of emotion. This
shared task analyze the emotion: anger, fear, joy
and sadness. We show an approach that can score
emotions based on psycholinguistic features.

The rest of this paper is organized as follows. In
Section 2 we describe LIWC, the well-known psy-
cholinguistic dictionary used in our experiments,
Section 3 covers some previous work that use psy-
cholinguistic features to classify text. Section 4
presents the proposed techniques and their evalua-
tion. In Section 5 we discuss the most informative
LIWC categories for each emotion set and finally,
we conclude in Section 6 with future work.

2 LIWC Categories

Linguistic inquiry and word count (LIWC), be-
sides being a software, is a psycholinguistic lexi-
con created by psychologists with focus on study-
ing the various emotional, cognitive, and struc-
tural components present in individuals’ verbal
and written speech samples (Pennebaker et al.,
2015). This resource allows non-specialists to re-
trieve psychological statistics in text, and to search
for patterns that are able to detect differences in
group of documents.

The first LIWC version was developed as part
of an exploratory study of language and disclosure
(Pennebaker, 1993). The second (LIWC2001) and
third (LIWC2007) versions updated the original
with an expanded dictionary and a modern soft-
ware design (Pennebaker et al., 2001, 2007).The
most recent evolution, LIWC2015 (Pennebaker
et al., 2015), has significantly altered both the dic-
tionary and software options. LIWC 2007 has
been available as a open source dictionary.

LIWC dictionary classifies words in a variety
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Category Examples
Affective happy, cried, love, hurt
Social mate, talk, they, dad
Cognitive cause, know, ought, think
Perceptual look, heard, feeling, view
Biological eat, blood, pain, hand

Table 1: LIWC psychological process examples

of psychological categories based on psycholo-
gists studies and observations (Tausczik and Pen-
nebaker, 2010). LIWC assigns words into one
of four high-level categories: linguistic processes,
psychological processes, personal concerns, and
spoken categories. These are further subdivided
into a three-level hierarchy. The taxonomy ranges
across topics (e.g., health and money), emotional
responses (e.g., negative emotion) and processes
not captured by either, such as cognition (e.g., dis-
crepancy and certainty). The words carry rich
information about the author’s personality, senti-
ments, style, topics, and social relationships.

The main categories in LIWC dictionary are the
following:

• Linguistic Dimensions and Other Grammar

• Affective, Social, Cognitive, Perceptual and
Biological processes

• Drives, Time orientations and Relativity

• Personal concerns and Informal language

These categories are then specialized in other
sub-categories, as in Affective processes sub-
categorized as Positive and Negative Emotions,
Anxiety, Anger and Sadness.

Some examples of words in such categories
can be found in Table 1. These categories were
translated to other languages (Balage Filho et al.,
2013), and have been used to compare writing
styles between languages and countries (Afroz
et al., 2012). In this paper we use this dictionary
for emotion prediction.

3 Related Work

There has been a lot of research seeking text clas-
sification in the scope of social media. Here we
focus on the works that use LIWC psycholinguis-
tic features to solve some of those problems.

Nguyen et al. (2013) use the LIWC psycho-
logical lexicon to distinguish blog posts of the

autism community from others. They analyze the
frequency distribution differences in psychologi-
cal processes between those communities and are
able to detect them with 79% of accuracy using
machine learning. Mohtasseb and Ahmed (2009)
use psychological features to find online diaries
in blogs. Iyyer et al. (2014) classifies political
ideology between liberal and conservatives in so-
cial media. Santos et al. (2017) took advantage of
LIWC dictionary to analyze and detect personal
stories posts in Brazilian blogs with 81% of preci-
sion over thousands of posts.

LIWC Psycholinguistic features are also used to
define the writer personality, as Poria et al. (2013)
shown in their work. Besides, it can be used to
identify mental issues in online forum communi-
ties (Cohan et al., 2016).

There is a great potential for psychologically
oriented dictionaries and here we use it to score
emotions values in tweets together with Support
Vector Machines algorithms.

4 Psycholinguistic Features

For evaluating the prediction property of psy-
cholinguistic categories, each tweet is converted
to a vector of 64 positions, one for each LIWC
category, explained previously. Each LIWC cate-
gory represents the frequency distribution of this
category appearance in the specific tweet. Each
word could fit multiples categories, e.g. the word
”admits” belongs to categories: Common verbs,
Present tense, Social processes, Cognitive pro-
cesses and Insight.

For our experiments we use Python library
Scikit-Learn (Pedregosa et al., 2011) machine
learning algorithms. We ran cross-fold validation
with 10 folds.

We use Support Vector Regression (SVR) tun-
ning the RBF, Linear, Linear SVR and Sigmoid
kernel parameters C (the penalty parameter) and γ
(the kernel width hyperparameter) performing full
grid search over the 800 combinations of expo-
nentially spaced parameter pairs (C, γ) following
(Hsu et al., 2003). For Gradient Boosting Regres-
sion we run a simple grid search. Only the best re-
sults of each algorithm, using Spearman rank cor-
relation, are shown in Table 2.

The best results were obtained using Gradient
Boosting Regression, Linear SVR and SVR with
linear kernel, all with default parameters. All
three algorithms are highlighted in Table 2 be-
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Algorithm joy anger sadness fear Avg Score
SVR k=Linear 0.431 0.502 0.557 0.441 0.483
Linear SVR 0.428 0.504 0.556 0.443 0.482
Gradient Boosting 0.420 0.519 0.565 0.420 0.481
SVR k=RBF 0.399 0.445 0.517 0.407 0.442
SVR k=Sigmoid -0.016 -0.085 -0.108 0.069 -0.035

Table 2: Spearman Score running each algorithm over emotions sets

Joy Anger Sadness Fear
Total function words Auxiliary verbs 1st pers singular Anxiety
Negations Present tense Social processes Sadness
Cognitive processes Negations Sadness Feel
Discrepancy Swear words See Ingestion
Tentative Humans Ingestion Space
Exclusive Relativity Leisure Death

Positive emotion
Negative emotion

Affective processes
Anger

Table 3: Top 10 LIWC most informative features

cause there is no statistical difference in the Spear-
man rank correlation.

In Scikit-learn library, SVR with linear ker-
nel differs from Linear SVR because the last use
liblinear rather than libsvm. The processing time
and prediction score is better using liblinear then
the generic SVM library, as we see in Table 2.

After defining the regression algorithm and the
best parameters, we built the model for each emo-
tion dataset, based on the training set. Then we run
each model for the test set and generate the output
for evaluation. The LIWC resource, test dataset
and scripts can be accessed in author’s Github
project page 1.

5 Most Informative Features

Using univariate linear regression tests, we tested
the effect of a single regressor and listed the most
informative LIWC features for each emotion tweet
set. In Table 3 we show the top 10 features.

LIWC sub-categories such as Positive and Neg-
ative Emotion, Affective and, Anger are features
with good prediction level for every emotion set.
Sadness sub-category, as expect, is a good pre-
dictor for Sadness emotion intensity. Positive and
Negative Emotion are categories that range a vari-
ety of words in LIWC dictionary, so, for a emotion

1https://github.com/heukirne/EmoInt

regression task, is expect that they have a good re-
gression information. It is important to state that
Anger is a subcategory of Negative Emotion.

Another interesting confirmation is death, sad-
ness and anxiety categories as good predictors for
Fear emotion set. Anger category appears as an
informative feature for Joy emotion set, we will
look further in the details of that to see whether it
is informative due to a low feature value or some-
thing else. Also, we want to look further to ex-
plain Negations LIWC category as good predictor
in Joy emotion set.

6 Conclusion and Further Work

Psycholinguistic features have been used to clas-
sify texts and sentences for a variety of tasks. Here
we presented our system that makes use of such
categories for emotion intensity prediction. Each
word was mapped to several psychological cate-
gories and used as a feature vector.

In future work, we intend to study these cate-
gories with other well-known good predictors like
Affective Tweets classifier (Bravo-Marquez et al.,
2016). Also, psychological categories could im-
prove the semantic information of word embed-
ding vectors.
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Abstract

This paper describes our approach to the
Emotion Intensity shared task. A parallel
architecture of Convolutional Neural Net-
work (CNN) and Long short term mem-
ory networks (LSTM) alongwith two sets
of features are extracted which aid the net-
work in judging emotion intensity. Experi-
ments on different models and various fea-
tures sets are described and analysis on re-
sults has also been presented.

1 Introduction

Sentiment analysis is an area of active research in
the field of natural language processing. It aims
to identify the sentiment expressed by the author
of some form of textual data. Apart from the en-
tities available in text, identification of opinion,
sentiment, nuances, sarcasm etc., provide impor-
tant contextual clues that help in natural language
understanding and more complex information ex-
traction tasks. The strength of the emotions ex-
pressed in text help quantify and compare sub-
jective expressions and can be used downstream
as well. Traditional fact-based approaches are
rule based and prove insufficient for modern-day
NLP requirements especially with large amounts
of polarized short, noisy text from social media
platforms such as Twitter. Twitter has become a
rich source of user opinions and spread of infor-
mation on this social site has far reaching con-
sequences. Emotion Intensity task in WASSA-
2016 aims to explore various approaches of deter-
mining the intensity of certain emotions expressed
by a speaker via a tweet (Mohammad and Bravo-
Marquez, 2017). Our approach is to explore the
use of a Deep Learning framework for the same.

A significant amount of research in Natural
Language Processing focuses on identifying the

sentiment polarity of a given text, rather than the
degree to which a given emotion is present in a
text. A similar task was proposed in SemEval
2016 Task 7, and on a smaller scale in SemEval-
2015 Task 10 ’Sentiment Analysis in Twitter’ Sub-
task E (Rosenthal et al., 2015).

The data for this task consists of tweets across
various domains, classified into four emotions :
joy, sadness, anger and fear. The training data
additionally carries a real-valued score between 0
and 1 per tweet, indicating the degree of the emo-
tion (that the tweet is classified as) the present in
the tweet.

2 Related Work

In SemEval 2016 Task 7 the objective was to at-
tribute an intensity score to English and Arabic
phrases (Kiritchenko et al., 2016). Mostly super-
vised methods were used, with a variety of fea-
tures, including different sentiment lexicons, word
embeddings, point wise mutual information (PMI)
scores between terms (single words and multi-
word phrases), lists of words which express nega-
tion, modifiers etc. Team ECNU (Wang et al.,
2016) approached it as a ranking task, using Ran-
dom Forest algorithm. UWB, iLab-Edinburgh and
NileTMRG all treated the task as a regression
problem, and had supervised approaches. UWB
used Gaussian Regression (Hercig et al., 2016),
while iLab-Edinburgh went in for linear regres-
sion (Refaee and Rieser, 2016). Team LSIS (Htait
et al., 2016) had a completely unsupervised ap-
proach, using sentiment lexicons and PMI scores.

Similar approaches, that is, usage of sentiment
lexicons in a supervised setup, word embeddings,
etc. were also seen in the proposed systems of Se-
mEval 2015 Task 10 (Subtask E) (Rosenthal et al.,
2015).
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3 Methodology

3.1 Preprocessing

Text from tweets are inherently noisy. They con-
tain twitter specific words along with hashtags and
username mentions. Cleaning the text before fur-
ther processing helps to generate better features
and semantics. We employ the following prepro-
cessing steps.

• Hashtags are important markers for deter-
mining sentiment or user intent. The ”#”
symbol is removed and the word itself is re-
tained.

• Username mentions, i.e.words starting with
”@”, generally provide no information in
terms of sentiment. Hence such terms are re-
moved completely from the tweet. If how-
ever, the text contains multiple tweets as part
of a single conversation, the user mentions
would have been an important aspect.

• Emoticons (for example, ’:(’,’:)’, ’:P’ etc)
are removed during embedding generation al-
though they are retained while feature extrac-
tion.

• Extra spaces are removed.

3.2 Feature Generation

For extracting Lexicon Features, we follow the
procedure as per the baseline system provided in
the WASSA Emotion Intensity Task. The knowl-
edge sources that have been used are: MPQA sub-
jective lexicon (Wilson et al., 2005), Bing Liu lex-
icon (Ding et al., 2008), AFINN (Nielsen, 2011),
Sentiment140 (Kiritchenko et al., 2014), NRC
Hashtag Sentiment Lexicon (Mohammad and Kir-
itchenko, 2015), NRC Hashtag Emotion Associ-
ation Lexicon (Mohammad et al., 2013), NRC
Word-Emotion Association Lexicon (Mohammad
and Turney, 2013), NRC-10 Expanded Lexicon
(Bravo-Marquez et al., 2016) and the SentiWord-
Net (Esuli and Sebastiani, 2007). Two more fea-
tures are calculated on the basis of emoticons (ob-
tained from AFINN (Nielsen, 2011)) and nega-
tions present in the text.

Following the baseline system, we generate 45
features for each tweet, which we term as Feature
Set A.

In addition to this, we use the SentiNeuron
model proposed by (Radford et al., 2017) to gen-
erate another feature. It is an unsupervised method

of generating sentiment signals. LSTM based net-
work with 4096 units have been trained on a 82
million large Amazon reviews dataset to predict
next word. Output of 2388th unit, which is senti-
ment signal is used as feature. This feature is then
normalized between 0 to 1, and further referred to
as Feature Set B.

Thus for each tweet, we arrive at 46 features
generated as above. Parallel architecture of CNN
and LSTM layers are used to extract important
words as well as the temporal information con-
tained in the sentence. Details of the parallel ar-
chitecture are presented in subsection 3.6

3.3 Embeddings

The processed text is then converted to word em-
beddings. Converting text into word embeddings
represents each word of the text into a d dimen-
sional vector (Mikolov et al., 2013). We use avail-
able pre-trained embeddings which are trained on
large data set. The following modules were used:

GloVe Word Embeddings - trained on 2 bil-
lion tweets from twitter (Pennington et al., 2014),
vectors of 25, 50, 100 and 200 dimensions are pro-
vided as part of the pre-trained model. For this
work, we use the 200 dimensional vectors. GloVe
embeddings are used for the datasets correspond-
ing to anger, fear and joy emotions.

Edinburgh Embeddings - trained on 10 mil-
lion tweets for sentiment classification, they pro-
vide 400 dimensional vectors (Petrovic et al.,
2010). We use them for sadness emotion.

Each tweet can further be divided in words, and
we assume maximum number of words in any
tweet be 35. This assumption is in line with the
140 characters limit on each tweet. Each tweet is
thus represented as a 〈35 × d〉 matrix, where d is
the output dimension of embeddings of a single
word.

3.4 CNN Model

Convolution Neural Network based models have
been used extensively in extracting textual features
in NLP (Poria et al., 2015) (Kim, 2014). Three
parallel CNN layers are employed to get bigrams,
trigrams and 4-grams (Johnson and Zhang, 2014).
With each of these layers two convolution filters
are used to traverse through entire matrix. The
width of each filter is fixed to d (the dimension
of embeddings for each word), hence one dimen-
sional convolution is used. To get a single value

194



from the outputs of the filters, we use Max Pool-
ing. As mentioned earlier maximum number of
words that tweet contains is assumed to be 35,
max pooling values for bigrams, trigrams and 4-
grams are 34, 33 and 32 respectively. Max pooling
layer selects single value from each filter, there-
fore output of CNN architecture is 6 features for
each tweet. Figure 1 shows the CNN architecture
with an example sentence.

d=200 

Sentence Matrix 
35*200 

3 Region sizes: (2,3,4) 
2 filters for each region 

size 
Total 6 filters 

convolution 

2 feature 
maps for each 

size 

Activation function 

6 univariate 
vectors  

concatenated 

Max pooling (34,33,32)  

MaxLength=35 Output_dim= 6*1 

Dimension red = 34*200 
Dimension green = 33*200 
Dimension yellow= 32*200 

Figure 1: CNN Architecture

3.5 LSTM model

The inherent characteristics of sequence in text
makes extraction of textual features a prime can-
didate for the use of Recurrent Neural Networks.
RNNs are suited for capturing temporal relation-
ships, which, in our case, are exhibited by words.
Long short term memory networks (LSTMs) are a
type of Recurrent Neural Networks which can eas-
ily capture long term dependences in a sequence,
overcoming the common problem of vanishing
gradient (Goldberg, 2016). Figure 2 shows the
LSTM architecture with an example. Similar to
CNN architecture, LSTM also receives a matrix
for a tweet as input. At each step, embeddings of
single word is provided. The number of LSTMs
is a hyper parameter, fixed at 10 for this task. The
model outputs a feature vector of dimension 10.

Sentence Matrix 
35*200 

d=200 

MaxLength=35 

LSTM 

I like this 

LSTM LSTM LSTM 

Units=10 

Output=10*1 

Xt Xt+1 Xt+2 

ht ht+1 ht+2 

Figure 2: LSTM Architecture

3.6 Unified Model

Proposed system architecture is presented in Fig-
ure 3, which integrates convolutional neural net-
work (CNN) and Long short term memory net-
works (LSTM). As shown, output of CNN and
LSTM is merged, along with feature sets A and
B. Before merging output of CNN layer is flat-
ten to match dimension of other features. This is
achieved through the Merge layer as shown. Out-
put of merge layer is then propagated to fully con-
nected neural network layer with 10 hidden units.
Finally, output layer is defined with single hidden
unit.

Embedding Layer 

CNN LSTM 

Merge 

Dense Layer 
(NN layer) 

Output Layer 

Feature Set A & B 

Tweet Pre-Processing 
Feature 

Extraction 

CNN output= 6*1 LSTM output= 10*1 

Merge Output= 62*1 

Figure 3: Merged Architecture

4 Results and Discussion

4.1 Results

Training, development and test sets each had indi-
vidual files for each emotion namely, anger, fear,
joy and sadness. We have trained the model sep-
arately for each emotion. Final submission for
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the test set was done with unified model (CNN
+ LSTM + Features) with joy and anger trained
with Mean Square Error as loss function and fear
and sadness trained with the custom loss function.
This model secured 8th rank in task.

Separate experiments were performed using
CNN and LSTM layers, as well as a combination
of each with features, followed by our proposed
model. Pearson Correlation Coefficient and Spear-
man’s Correlation Coefficient are used as metrics.

• LSTM layer followed by dense layer is
trained with mean square error as loss func-
tion. RMSProp (Hinton et al., 2012) was used
as optimizer as it is effective for Recurrent
Neural Networks (RNNs). Two experiments
done for this, one with features and one with-
out.

• CNN layer followed by dense layer is trained
with mean square error as loss function.
Adam (Kingma and Ba, 2014) is used as the
optimizer. Two experiments done for this,
one with features and one without.

• The unified model, described previously, is
also used in two experiments. In one, it is
trained with mean square error as loss func-
tion, irrespective of emotion, and uses Adam
as optimizer. The second experiment with the
unified model is the proposed system, where
Mean Square Error loss function is used for
joy and anger and custom loss function is
used for fear and sadness.

Results on the development dataset are shown in
Table 1. Along with models defined above base-
line results are also shown.

In order to demonstrate the difference brought
about by the separate feature sets used, Table 3
shows Pearson Score on the development set
with and without different sets.An identical set
of experiments are conducted replacing the mean
square error function with a custom loss function.
Custom loss is defined as

loss = 1− Pearson Correlation

Table 4 compares the results on the development
set for each emotion based on the loss function
used.

Table 3: Pearson Correlation results on Develop-
ment Set

SetA&B SetB SetA None

Anger 0.690 0.567 0.681 0.390
Fear 0.637 0.542 0.628 0.625
Joy 0.764 0.650 0.738 0.670

Sadness 0.556 0.527 0.573 0.372
Avg 0.661 0.571 0.655 0.514

All the above experiments are replicated on the
test set. Figure 5 and Figure 4 shows experiments
with different set of features with mean square er-
ror as loss function and custom loss function re-
spectively. It is evident that trend which was ev-
ident in development set about fear and sadness
emotion performing better does not hold true for
test set.

Table 4: Results on Development Set
Custom Loss MSE

Pearson Spearman Pearson Spearman

Anger 0.563 0.594 0.690 0.626
Fear 0.690 0.689 0.636 0.592
Joy 0.666 0.671 0.764 0.755

Sadness 0.649 0.658 0.556 0.573
Avg 0.642 0.653 0.661 0.636

Table 2 shows the results of different data on
test set. It is observed that LSTM model outper-
form the unified model on test set. This points to
the disparity in test and development data in terms
of words. Although vocabulary was expanded to
include words in test set, the sentiment relatedness
is hard to capture using CNN.

4.2 Analysis

It can be seen that different feature sets play an
important role in guiding the model. In Table 3
feature set A provided a significant improvement
in the results whereas feature set B alone de-
graded the performance of the system, albeit when
merged with feature set A, the results improve. Ta-
ble 4 compares the results on the development set
for each emotion based on the loss function used.
It shows that the custom loss function performs
better in fear and sadness emotions.
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Table 1: Comparison of different approaches on development data

Model Avg
Pearson

Avg
Spearman

Anger Fear Joy Sadness
Per. Spr. Per. Spr. Per. Spr. Per. Spr.

Baseline 0.611 0.601 0.605 0.562 0.574 0.558 0.703 0.689 0.562 0.597

CNN 0.285 0.286
-

0.17
-

0.08
0.278 0.231 0.636 0.628 0.395 0.361

LSTM 0.582 0.565 0.566 0.528 0.567 0.524 0.733 0.736 0.461 0.473
CNN +
Features

0.650 0.641 0.674 0.668 0.539 0.508 0.753 0.728 0.630 0.658

LSTM +
Features

0.671 0.653 0.668 0.612 0.638 0.596 0.77 0.762 0.609 0.642

CNN +
LSTM

+features
0.661 0.637 0.690 0.626 0.637 0.592 0.764 0.755 0.556 0.573

Submitted
Model

0.698 0.674 0.690 0.626 0.69 0.658 0.764 0.755 0.649 0.658

Table 2: Comparison of different approaches on test data

Model Average
Pearson

Average
Spearman

Anger Fear Joy Sadness
Per. Spr. Per. Spr. Per. Spr. Per. Spr.

CNN 0.384 0.382 0.237 0.255 0.364 0.361 0.391 0.396 0.544 0.516
LSTM 0.621 0.609 0.598 0.583 0.677 0.652 0.567 0.571 0.641 0.631
CNN +
Features

0.645 0.630 0.597 0.586 0.651 0.629 0.648 0.639 0.682 0.667

LSTM +
Features

0.703 0.691 0.669 0.652 0.723 0.705 0.71 0.705 0.711 0.702

CNN +
LSTM +
features

0.680 0.668 0.646 0.631 0.702 0.684 0.674 0.668 0.697 0.687

Submitted
Model

0.649 0.638 0.604 0.593 0.663 0.645 0.66 0.658 0.668 0.657

0.564 

0.691 

0.667 

0.65 

0.561 

0.584 

0.607 

0.67 

0.608 

0.7 

0.652 

0.641 

0.569 

0.667 

0.53 

0.628 

Anger Fear Joy Sadness

Feature Set A & B Feature Set B Feature Set A No Features

Figure 4: Results on test data using custom loss
function

0.646 

0.715 

0.674 

0.697 

0.566 

0.608 

0.554 

0.634 

0.645 

0.694 

0.672 

0.695 

0.543 
0.548 

0.535 

0.657 

Anger Fear Joy Sadness

Feature Set A & B Feature Set B Feature Set A No Features

Figure 5: Results on test data using Mean Square
Error function
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5 Conclusion

We have applied a unified deep learning model to
the emotion intensity task on twitter data. Two sets
of features have been extracted using traditional
NLP methods and recent deep learning based fea-
ture generation. LSTM and CNN based models
have been implemented for regression task. A
mixture of LSTM and CNN has been proposed.
Experiments on combination of feature set on
models are presented. Results shows that features
help as indicated by the higher correlation. In ad-
dition to that mixture model performs better on
development set while on test set LSTM model
proves to be more accurate.
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Abstract

The sentiment analysis in this task aim-
s to indicate the sentiment intensity of
the four emotions (e.g. anger, fear, joy,
and sadness) expressed in tweets. Com-
pared to the polarity classification, such
intensity prediction can provide more fine-
grained sentiment analysis. In this paper,
we present a system that uses a convolu-
tional neural network with long short-term
memory (CNN-LSTM) model to complete
the task. The CNN-LSTM model has t-
wo combined parts: CNN extracts local
n-gram features within tweets and LST-
M composes the features to capture long-
distance dependency across tweets. Our
submission ranked tenth among twenty t-
wo teams by average correlation scores on
prediction intensity for all four types of e-
motions.

1 Introduction

Advanced Social Network Services (SNSs) such
as Twitter, Facebook, and Weibo provide an on-
line platform, where people share their personal
interests, activities, thoughts, and emotions. Senti-
ment analysis technology is used to automatically
draw affective information from text. In recent re-
searches, the majority of existing approaches and
works on sentiment analysis aim to complete clas-
sification tasks. In contrast, it is often useful to
know the degree of an emotion expressed in text
for applications such as movies, products, public
sentiments and politics.

Such attractive applications provide the motiva-
tion for the WASSA-2017 shared task on Emo-
tion Intensity (EmoInt) (Mohammad and Bravo-
Marquez, 2017), which is a competition focused
on automatically determining the intensity of emo-

tions in tweets. The task involves one-dimensional
sentiment analysis, which requires a system for
determining the strength (with a real-value score
between 0 and 1) of an emotion expressed in a
tweet. All tweets are divided into four dataset-
s, each of which expresses an emotion including
anger, fear, joy, and sadness. The tweets with
higher scores correspond to a greater degree of e-
motion.

In the relevant research field of sentiment analy-
sis, it has been shown that many models are avail-
able for both categorical approaches and dimen-
sional approaches. A categorical approach focus-
es on sentiment classification, while a dimensional
approach aims to predict the intensity of emotion-
s. Recently, many methods have been successfully
introduced for categorical sentiment analysis, such
as word embedding (Liu et al., 2015), convolu-
tional neural networks (CNN) (Kim, 2014; Jiang
et al., 2016; Ouyang et al., 2015), recurrent neu-
ral networks (RNN) (Liu et al., 2015; Irsoy and
Cardie, 2014), long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997; Li and Qian.,
2016; Sainath et al., 2015), and bi-directional L-
STM (BiLSTM) (Brueckner and Schulter, 2014).
We have aimed to employ those methods for di-
mensional sentiment analysis, and the results show
that our approach is feasible. In general, CNN can
extract local n-gram features within texts but may
fail to capture long-distance dependency. LSTM
can address this problem by sequentially model-
ing texts cross messages (Wang et al., 2016).

In this paper (and for this competition), we pri-
marily introduce a CNN-LSTM model combining
CNN and LSTM. First, we construct word vectors
from pre-trained word vectors using word embed-
ding. The CNN applies convolutional and max-
pooling layers, which are then used to extract n-
gram features. Finally, LSTM composes those
features and outputs the result. By combining CN-
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Figure 1: The architecture of CNN-LSTM model.

N and LSTM, the model can extract both local in-
formation within tweets and long-distance depen-
dency across tweets. Our experiment reveals that
the proposed model has the highest performance
with data for anger and joy, while a simple CNN
performs best for fear and sadness.

The remainder of this paper is organized as fol-
lows. In section 2, we described CNN, LSTM and
their combination. The comparative experimental
results are presented in section 3. Finally, a con-
clusion is drawn in section 4.

2 The CNN-LSTM model for Sentiment
Intensity Prediction

The dimensional sentiment analysis in this task is
intended at producing continues numerical values
according to sentiment intensity. Figure 1 shows
the overall framework of our model. First, a sim-
ple tokenizer is used to transform tweets into an
array of tokens, which are the input of the mod-
el, and are then mapped in a feature matrix or
sentence matrix by an embedding layer. Then,
n-gram features are extracted when the feature
matrix passes through the convolutional and max
pooling layers. LSTM finally composes these use-
ful features to output the final regression results by
linear decoder.

2.1 Convolutional Neural Network
In our model, the CNN outputs are used as the in-
puts for the LSTM. Additionally, a simple CNN
model can be produced for our task by directly us-
ing a linear regression layer as the output layer.
The CNN architecture for the task is described be-
low.
Embedding layer. The embedding layer is the
first layer of the model. In this technique, word-
s are encoded as real-valued vectors in a high di-
mensional space. The layer allows for the initial-
ization of vocabulary words vectors through the

pre-trained word vectors matrix. A tweet used as
an input is transformed into a sequence of numer-
ical word tokens such as t1, t2, ..., tN , where tN
is a number representing a real word and N is the
length of the token vector. To keep the size of the
results identical for tweets with varying lengths,
we limit the maximum value of N to the max-
imum length of the tweet from all tweets. Any
tweet shorter than N will be padded to N using
zero.

Convolutional Layer. In a convolutional layer,
m filters are used to extract local n-gram features
from the matrix of the previous embedding layer.
In a sliding window of width w indicating a w-
gram feature can be extracted, a filter Fl(1 ≤ l ≤
m) learns the feature map yl

i as follows:

yl
i = f(Ti;i+w−1 ◦W l + bl) (1)

Where ◦ denotes a convolution operation, W ∈
Rw×d is the weight matrix from the output of
the previous layer, b is a bias, and Ti:i+w−1 de-
notes the token vectors ti, ti+1, ..., ti+w−1(ifk >
0, tk = 0). The result of filter Fl will be yl ∈ Rd,
where yl

i is the i-th element of yl. Here we use Re-
LU as the activation function for fast calculation.

Max-pooling and Dropout layer. The max-
pooling layer is used to down-sample and con-
solidate the features learned in the previous layer
with a common method that takes the maximum of
the input value from each filter. First, eliminating
non-maximal values can reduce the computation
for upper layers. Second, we choose a maximum
value, because the salient feature is the most dis-
tinguishable trait of a tweet.

CNNs have a habit of overfitting, even with
pooling layers. Thus, we introduce a dropout layer
(Tobergte and Curtis, 2013) after both a convolu-
tion and max-pooling layer.
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Figure 2: Architecture of LSTM cell.

2.2 Long Short-Term Memory
Recurrent Neural Networks (RNN) are a special
type of neural network suitably designed for pro-
cessing sequence problems. However, in a simple
RNN, the gradients can produce very small num-
bers, which is referred to as the vanishing gradient
problem (Bengio et al., 2002). The LSTM network
is trained using back propagation (BP) over time
and can effectively address this problem. Thus, we
consider it to be the second part of our model. In
addition, we could use the output of the word em-
bedding layer as an input to the LSTM to obtain a
simple LSTM model.
LSTM layer. The LSTM has memory blocks
(cells) that contains outputs and gates that man-
age the blocks for the memory updates. In figure
2, we show how a memory block calculates hid-
den states ht and outputs Ct using the following
equations:

• Gate
ft = σ(Wf · [ht−1, xt] + bf )
it = σ(Wi · [ht−1, xt] + bi)
ot = σ(Wo · [ht−1, xt] + bo)

(2)

• Transformation

C̃t = tanh(Wc · [ht−1, xt] + bC) (3)

• State update

Ct = ft ∗ Ct−1 + it ∗ C̃t

ht = ot ∗ tanh(Ct)
(4)

Where xt is the input vector; Ct is the cell state
vector; W and b are cell parameters; ft, it, and ot

are gate vectors; and σ denotes the sigmoid func-
tion.
Output Layer. This layer outputs the final regres-
sion result, which could be a CNN or CNN-LSTM
model. It is a fully connected layer using a linear
decoder. A layer output vector defined as,

Content Example Pattern
User starts with @ @Bob <user>
ULRs http://ie.com <url>
Numbers 12,345 <number>
Hashtags #emotions hashtag

Table 1: The example of pre-processing pattern.

y = h(x) = Wdx+ bd (5)

Where x is the text token vector, y is the predicted
sentiment intensity of the tweet, and Wd and bd
respectively denote the weights and bias.

The model is trained by the mean absolute er-
ror (MAE) between the predicted y and actual
y. Given the training set of token matrix X =
{x1, x2, ..., xn}, and their actual degree of the e-
motion is y = {y1, y2, ..., yn}, so the loss function
is defined as,

L(X, y) =
1
2n

n∑
i=1

‖h(xi)− yi‖2 (6)

3 Experiments and Evaluation

Data pre-processing. The organizers of the com-
petition provided four corpora, each of which cor-
responds to an emotion (anger, fear, joy and sad-
ness). The training datasets contain tweets along
with a real-valued score (between 0 and 1) indi-
cating the degree of the emotion felt by the speak-
er. Dev sets were provided to help us tune the pa-
rameters of the model. Here, we used the Stanford
tokenizer to process tweets into an array of token-
s. Since the tweets in this task primarily contain
English text, all punctuations are ignored and all
non-English letters are treated as unknown words.
A small part of text contains emojis or emoticon-
s, which perfectly match the conditions for emo-
tional intensity. Therefore, these emojis or emoti-
cons are processed into related words with similar
meanings. Patterns are applied to every tweet p-
resented in Table 1. We applied the four patterns
and lowed all words to map the known pre-trained
tokens. Some words that do not exist in the known
tokens are treated as unknown words. In the word
vectors, unknown word vectors randomly generat-
ed from a uniform distribution U(−0.25, 0.25).

In this experiment, we used pre-trained word
vectors including GoogleNews1 trained by the
word2vec toolkit and another one trained by
GloVe2 (Pennington et al., 2014). These programs

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/projects/glove/

202



Model
Metrics

Pearson correlation coefficient (r) Spearman rank coefficient (s)
Anger Fear Joy Sadness Anger Fear Joy Sadness

CNNword2vec 0.628 0.714 0.710 0.630 0.600 0.673 0.716 0.634
CNN-LSTMword2vec 0.591 0.591 0.657 0.551 0.586 0.555 0.662 0.566
LSTMword2vec 0.608 0.554 0.603 0.503 0.569 0.497 0.592 0.498
BiLSTMword2vec 0.544 0.551 0.536 0.500 0.499 0.510 0.511 0.484
CNNGloV e 0.621 0.687 0.721 0.630 0.623 0.686 0.726 0.639
CNN-LSTMGloV e 0.661 0.644 0.797 0.542 0.627 0.607 0.728 0.532
LSTMGloV e 0.642 0.614 0.755 0.539 0.689 0.695 0.772 0.519
BiLSTMGloV e 0.623 0.657 0.731 0.533 0.598 0.625 0.747 0.544

Table 3: The development data experimentation results on WASSA-2017 shard task on Emotion Intensity
(EmoInt).

Parameters Emotions
Anger Fear Joy Sadness

m 64 32 16 32
l 3 3 2 -
n 2 2 2 -
p 0.1 0.8 0.6 0.3
c 2 2 2 -
d 300 100 300 300
b 100 50 60 100
e 30 20 50 30

Table 2: The best-tuned parameters on each
dataset.

were used to initialize the weight of the embed-
ding layer in order to build 300-dimension word
vectors for all tweets. GloVe is an unsupervised
learning algorithm for obtaining vector represen-
tations of words.
Implementation. This experiment used Keras
with a TensorFlow backend. We use two differ-
ent pre-trained word vectors and four differen-
t datasets. We introduce three other models (C-
NN, LSTM and BiLSTM) as baseline algorithm-
s. Details of those three models can respective-
ly be found in (Kim, 2014; Jiang et al., 2016;
Ouyang et al., 2015), (Hochreiter and Schmidhu-
ber, 1997; Li and Qian., 2016; Sainath et al., 2015)
and (Brueckner and Schulter, 2014).

The hyper-parameters were tuned to the perfor-
mance of training and dev data using the sklearn
grid search function (Pedregosa et al., 2012),
which can search all possible parameter combi-
nations to evaluate models and find the best one.
Different models for different data may have their
own optimization parameters. For anger emotion
data, the CNN-LSTMs best-tuned parameters are
as follows. The number of filters (m) is 64; the
length of the filter (l) is 3; the pool length (n) is 2;
the dropout rate (p) is 0.1; the LSTM layer coun-
t (c) is 2, and the dimension of the LSTM hidden
layer (d) is 300. The training runs with a batch size
(b) of 100 and 30 epochs (e). The other three emo-

tions shown in Table 2. The results also reveal that
the models using pre-trained GloVe vectors and an
Adam optimizer achieved the best performance.
Evaluation Metrics. The system is evaluated by
calculating the Pearson correlation coefficient (r)
and Spearman rank coefficient (s) with gold rat-
ings. Higher r and s values indicate better perfor-
mance on model prediction.
Results and Discussion. A total of twenty two
teams took part in the task. Table 3 shows the de-
tailed results of the proposed CNN-LSTM mod-
el against the three baseline models. The aver-
aged r from the four emotions is needed to deter-
mine the bottom-line competition metric by witch
the submissions will be ranked. Therefore, r is
more worth considering for performance than s.
The proposed CNN-LSTM model outperformed
the baseline models for anger and joy data. There-
fore, we chose the CNN-LSTM to create the final
system to complete the subtasks of anger and joy,
and ranked ninth for both r and s on anger da-
ta, eleventh for r, and thirteenth for s on joy data.
In contrary, a simple CNN yielded better perfor-
mance on fear and sadness data from the experi-
mental results. Therefore, for the fear and sadness
subtasks, we used a simple CNN that ranked sev-
enth for r and eighth for s on fear data, and sixth
for both r and s on sadness data.

4 Conclusion

In this paper, we described the system we submit-
ted to WASSA-2017 Shared Task on Emotion In-
tensity (EmoInt). The proposed model combines
CNN and LSTM to extract both local informa-
tion within tweets and long-distance dependency
across tweets in the regression process. Our intro-
duced model showed good performance in the ex-
perimental results. In future work, we will attempt
to introduce attention or memory mechanisms, in
order to draw more useful sentiment information.
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Abstract

The paper describes experiments on esti-
mating emotion intensity in tweets using
a generalized regressor system. The sys-
tem combines lexical, syntactic and pre-
trained word embedding features, trains
them on general regressors and finally
combines the best performing models to
create an ensemble. The proposed sys-
tem stood 3rd out of 22 systems in the
leaderboard of WASSA-2017 Shared Task
on Emotion Intensity.

1 Introduction

Twitter, a micro-blogging and social networking
site has emerged as a platform where people ex-
press themselves and react to events in real-time.
It is estimated that nearly 500 million tweets are
sent per day 1. Twitter data is particularly inter-
esting because of its peculiar nature where people
convey messages in short sentences using hash-
tags, emoticons, emojis etc. In addition, each
tweet has meta data like location and language
used by the sender. It’s challenging to analyze this
data because the tweets might not be grammati-
cally correct and the users tend to use informal and
slang words all the time. Hence, this poses an in-
teresting problem for NLP researchers. Any ad-
vances in using this abundant and diverse data can
help understand and analyze information about a
person, an event, a product, an organization or a
country as a whole. Many notable use cases of the
twitter can be found here2.

Along the similar lines, The Task 1 of WASSA-
2017 (Mohammad and Bravo-Marquez, 2017c)
poses a problem of finding emotion intensity of

1https://en.wikipedia.org/wiki/Twitter
2https://en.wikipedia.org/wiki/

Twitter_usage

Figure 1: System Architecture

four emotions namely anger, fear, joy, sadness
from tweets. In this paper, we describe our ap-
proach and experiments to solve this problem. The
rest of the paper is laid out as follows: Section
2 describes the system architecture, Section 3 re-
ports results and inference from different exper-
iments, while Section 4 points to ways that the
problem can be further explored.

2 System Description

2.1 Preprocessing
The preprocessing step modifies the raw tweets
before they are passed to feature extraction.
Tweets are processed using tweetokenize tool3.
Twitter specific features are replaced as follows:
username handles to USERNAME, phone numbers
to PHONENUMBER, numbers to NUMBER, URLs
to URL and times to TIME. A continuous sequence
of emojis is broken into individual tokens. Finally,
all tokens are converted to lowercase.

2.2 Feature Extraction
Many tasks related to sentiment or emotion anal-
ysis depend upon affect, opinion, sentiment, sense
and emotion lexicons. These lexicons associate
words to corresponding sentiment or emotion met-
rics. On the other hand, the semantic meaning
of words, sentences, and documents are preserved

3https://www.github.com/jaredks/
tweetokenize
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and compactly represented using low dimensional
vectors (Mikolov et al., 2013) instead of one hot
encoding vectors which are sparse and high di-
mensional. Finally, there are traditional NLP fea-
tures like word N-grams, character N-grams, Part-
Of-Speech N-grams and word clusters which are
known to perform well on various tasks.

Based on these observations, the feature ex-
traction step is implemented as a union of differ-
ent independent feature extractors (featurizers) in
a light-weight and easy to use Python program
EmoInt 4. It comprises of all features available
in the baseline model (Mohammad and Bravo-
Marquez, 2017a) 5 along with additional feature
extractors and bi-gram support. Fourteen such fea-
ture extractors have been implemented which can
be clubbed into 3 major categories:

• Lexicon Features
• Word Vectors
• Syntax Features

Lexicon Features: AFINN (Nielsen, 2011)
word list are manually rated for valence with an
integer between -5 (Negative Sentiment) and +5
(Positive Sentiment). Bing Liu (Hu and Liu, 2004)
opinion lexicon extract opinion on customer re-
views. +/-EffectWordNet (Choi and Wiebe, 2014)
by MPQA group are sense level lexicons. The
NRC Affect Intensity (Mohammad, 2017) lexi-
cons provide real valued affect intensity. NRC
Word-Emotion Association Lexicon (Mohammad
and Turney, 2010) contains 8 sense level asso-
ciations (anger, fear, anticipation, trust, surprise,
sadness, joy, and disgust) and 2 sentiment level
associations (negative and positive). Expanded
NRC Word-Emotion Association Lexicon (Bravo-
Marquez et al., 2016) expands the NRC word-
emotion association lexicon for twitter specific
language. NRC Hashtag Emotion Lexicon (Mo-
hammad and Kiritchenko, 2015) contains emotion
word associations computed on emotion labeled
twitter corpus via Hashtags. NRC Hashtag Sen-
timent Lexicon and Sentiment140 Lexicon (Mo-
hammad et al., 2013) contains sentiment word as-
sociations computed on twitter corpus via Hash-
tags and Emoticons. SentiWordNet (Baccianella
et al., 2010) assigns to each synset of WordNet

4To enable replicability, the code is open sourced at
https://github.com/SEERNET/EmoInt.

5https://www.github.com/felipebravom/
AffectiveTweets

three sentiment scores: positivity, negativity, ob-
jectivity. Negation lexicons collections are used to
count the total occurrence of negative words. In
addition to these, SentiStrength (Thelwall et al.,
2010) application which estimates the strength of
positive and negative sentiment from tweets is also
added.

Word Vectors: We focus primarily on the word
vector representations (word embeddings) created
specifically using the twitter dataset. GloVe (Pen-
nington et al., 2014) is an unsupervised learn-
ing algorithm for obtaining vector representations
for words. 200-dimensional GloVe embeddings
trained on 2 Billion tweets are integrated. Edin-
burgh embeddings (Bravo-Marquez et al., 2015)
are obtained by training skip-gram model on Edin-
burgh corpus (Petrovic et al., 2010). Since tweets
are abundant with emojis, Emoji embeddings (Eis-
ner et al., 2016) which are learned from the emoji
descriptions have been used. Embeddings for each
tweet are obtained by summing up individual word
vectors and then dividing by the number of tokens
in the tweet.

Syntactic Features: Syntax specific features
such as Word N-grams, Part-Of-Speech N-grams
(Owoputi et al., 2013), Brown Cluster N-grams
(Brown et al., 1992) obtained using TweetNLP 6

project have been integrated into the system.
The final feature vector is the concatenation of

all the individual features. For example, we con-
catenate average word vectors, sum of NRC Af-
fect Intensities, number of positive and negative
Bing Liu lexicons, number of negation words and
so on to get final feature vector. The scaling of
final features is not required when used with gra-
dient boosted trees. However, scaling steps like
standard scaling (zero mean and unit normal) may
be beneficial for neural networks as the optimizers
work well when the data is centered around origin.

A total of fourteen different feature extractors
have been implemented, all of which can be en-
abled or disabled individually to extract features
from a given tweet.

2.3 Regression

The dev data set (Mohammad and Bravo-
Marquez, 2017b) in the competition was small
hence, the train and dev sets were merged to per-
form 10-fold cross validation. On each fold, a
model was trained and the predictions were col-

6http://www.cs.cmu.edu/˜ark/TweetNLP/
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lected on the remaining dataset. The predictions
are averaged across all the folds to generalize the
solution and prevent over-fitting. As described in
Section 2.2, different combinations of feature ex-
tractors were used. After performing feature ex-
traction, the data was then passed to various re-
gressors Support Vector Regression, AdaBoost,
RandomForestRegressor, and, BaggingRegressor
of sklearn (Pedregosa et al., 2011). Finally, the
chosen top performing models had the least error
on evaluation metrics namely Pearson’s Correla-
tion Coefficient and Spearman’s rank-order corre-
lation.

2.4 Parameter Optimization

In order to find the optimal parameter values
for the EmoInt system, an extensive grid search
was performed through the scikit-Learn frame-
work over all subsets of the training set (shuf-
fled), using stratified 10-fold cross validation and
optimizing the Pearson’s Correlation score. Best
cross-validation results were obtained using Ad-
aBoost meta regressor with base regressor as XG-
Boost (Chen and Guestrin, 2016) with 1000 es-
timators and 0.1 learning rate. Experiments and
analysis of results are presented in the next sec-
tion.

3 Results and Analysis

3.1 Experimental Results

As described in Section 2.2 various syntax features
were used namely, Part-of-Speech tags, brown
clusters of TweetNLP project. However, these
didn’t perform well in cross validation. Hence,
they were dropped from the final system. While
performing grid-search as mentioned in Section
2.4, keeping all the lexicon based features same,
choice of combination of emoji vector and word
vectors are varied to minimize cross validation
metric. Table 1 describes the results for exper-
iments conducted with different combinations of
word vectors. Emoji embeddings (Eisner et al.,
2016) give better results than using plain GloVe
and Edinburgh embeddings. Edinburgh embed-
dings outperform GloVe embeddings in Joy and
Sadness category but lag behind in Anger and
Fear category. The official submission comprised
of the top-performing model for each emotion cat-
egory. This system ranked 3rd for the entire test
dataset and 2nd for the subset of the test data
formed by taking every instance with a gold emo-

tion intensity score greater than or equal to 0.5.
Post competition, experiments were performed on
ensembling diverse models for improving the ac-
curacy. An ensemble obtained by averaging the re-
sults of the top 2 performing models outperforms
all the individual models.

3.2 Feature Importance
The relative feature importance can be assessed
by the relative depth of the feature used as a de-
cision node in the tree. Features used at the top
of the tree contribute to the final prediction deci-
sion of a larger fraction of the input samples. The
expected fraction of the samples they contribute
to can thus be used as an estimate of the relative
importance of the features. By averaging the mea-
sure over several randomized trees, the variance of
the estimate can be reduced and used as a measure
of relative feature importance. In Figure 2 fea-
ture importance graphs are plotted for each emo-
tion to infer which features are playing the major
role in identifying emotional intensity in tweets.
+/-EffectWordNet (Choi and Wiebe, 2014), NRC
Hashtag Sentiment Lexicon, Sentiment140 Lexi-
con (Mohammad et al., 2013) and NRC Hashtag
Emotion Lexicon (Mohammad and Kiritchenko,
2015) are playing the most important role.

3.3 System Limitations
It is important to understand how the model per-
forms in different scenarios. Table 2 analyzes
when the system performs the best and worst for
each emotion. Since the features used are mostly
lexicon based, the system has difficulties in cap-
turing the overall sentiment and it leads to ampli-
fying or vanishing intensity signals. For instance,
in example 4 of fear louder and shaking lexicons
imply fear but overall sentence doesn’t imply fear.
A similar pattern can be found in the 4th exam-
ple of Anger and 3rd example of Joy. The sys-
tem has difficulties in understanding of sarcastic
tweets, for instance, in the 3rd tweet of Anger the
user expressed anger but used lol which is used in
a positive sense most of the times and hence the
system did a bad job at predicting intensity. The
system also fails in predicting sentences having
deeper emotion and sentiment which humans can
understand with a little context. For example, in
sample 4 of sadness, the tweet refers to post travel
blues which humans can understand. But with lit-
tle context, it is difficult for the system to accu-
rately estimate the intensity. The performance is
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Emotion Systems Pearsonr Spearmanr Pearsonr ≥ 0.5 Spearmanr ≥ 0.5
Anger Baseline 0.639583 0.628180 0.510361 0.475215

Em0-Ed1-Gl0 0.659566 0.628835 0.536701 0.508762
Em1-Ed1-Gl0 0.660568 0.631893 0.536244 0.511621
Em0-Ed0-Gl1* 0.675864 0.656034 0.529404 0.512774
Em1-Ed0-Gl1 0.678214 0.658605 0.527375 0.510436

Ensemble 0.678477 0.653964 0.540919 0.518851
Fear Baseline 0.631139 0.622047 0.476480 0.432407

Em0-Ed1-Gl0 0.689571 0.66237 0.539250 0.499864
Em1-Ed1-Gl0 0.695443 0.670438 0.542909 0.500896
Em0-Ed0-Gl1 0.691143 0.667255 0.546867 0.510041
Em1-Ed0-Gl1* 0.697630 0.676379 0.551465 0.510265

Ensemble 0.705260 0.683536 0.55641 0.513398
Joy Baseline 0.645597 0.652505 0.370499 0.363184

Em0-Ed1-Gl0 0.696448 0.66237 0.539250 0.499864
Em1-Ed1-Gl0 0.722115 0.720437 0.519821 0.508484
Em0-Ed0-Gl1 0.689692 0.689883 0.472973 0.470260
Em1-Ed0-Gl1* 0.714850 0.713558 0.551191 0.543565

Ensemble 0.728093 0.727970 0.547213 0.537690
Sadness Baseline 0.711998 0.711745 0.479049 0.452047

Em0-Ed1-Gl0 0.737805 0.733999 0.547871 0.524843
Em1-Ed1-Gl0* 0.744550 0.740893 0.554723 0.533571
Em0-Ed0-Gl1 0.731436 0.724570 0.542910 0.536228
Em1-Ed0-Gl1 0.736081 0.731050 0.553460 0.548944

Ensemble 0.748901 0.743589 0.547213 0.537690
Average Baseline 0.657079 0.653619 0.479049 0.452047

Em0-Ed1-Gl0 0.695847 0.680207 0.51998 0.493755
Em1-Ed1-Gl0 0.705669 0.690915 0.538424 0.513643
Em0-Ed0-Gl1 0.69703 0.684436 0.523038 0.507326
Em1-Ed0-Gl1 0.706694 0.694898 0.545873 0.528303

Official* 0.708267 0.696801 0.546913 0.526018
Ensemble 0.715183 0.702265 0.55209 0.530501

Table 1: Evaluation Metrics for various systems. Systems are abbreviated as following: For example
Em1-Ed0-Gl1 implies Emoji embeddings and GloVe embeddings are included, Edinburgh embeddings
are not included in features keeping other features same. Results marked with * corresponds to official
submission. Results in bold are the best results corresponding to that metric.
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Figure 2: Relative Feature Importance of Various Emotions

poor with very short sentences as there are fewer
indicators to provide a reasonable estimate.

4 Future Work & Conclusion

The paper studies the effectiveness of various af-
fect lexicons word embeddings to estimate emo-
tional intensity in tweets. A light-weight easy to
use affect computing framework (EmoInt) to fa-
cilitate ease of experimenting with various lexicon
features for text tasks is open-sourced. It provides
plug and play access to various feature extractors
and handy scripts for creating ensembles.

Few problems explained in the analysis section
can be resolved with the help of sentence embed-
dings which take the context information into con-
sideration. The features used in the system are
generic enough to use them in other affective com-
puting tasks on social media text, not just tweet
data. Another interesting feature of lexicon-based
systems is their good run-time performance during
prediction, future work to benchmark the perfor-
mance of the system can prove vital for deploying
in a real-world setting.

Acknowledgement

We would like to thank the organizers of the
WASSA-2017 Shared Task on Emotion Intensity,
for providing the data, the guidelines and timely
support.

References
Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-

tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC. volume 10, pages 2200–2204.

Felipe Bravo-Marquez, Eibe Frank, Saif M Moham-
mad, and Bernhard Pfahringer. 2016. Determining
word–emotion associations from tweets by multi-
label classification. In WI’16. IEEE Computer So-
ciety, pages 536–539.

Felipe Bravo-Marquez, Eibe Frank, and Bernhard
Pfahringer. 2015. From unlabelled tweets to twitter-
specific opinion words. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 743–746.

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics 18(4):467–479.

Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A
scalable tree boosting system. In Proceedings of
the 22Nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
pages 785–794.

Yoonjung Choi and Janyce Wiebe. 2014. +/-
effectwordnet: Sense-level lexicon acquisition for
opinion inference. In EMNLP. pages 1181–1191.
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Emotion Tweet Gold Int. Pred. Int.
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@Claymakerbigsi @toghar11 @scott mulligan @BoxingFa-
natic Fucker blocked me 2 years ago over a question lol proper
holds a grudge old Joe

0.625 0.6245

We are raging angry.=1/2 bil $ for 2 pro Liars.(Actors) the most
useless people in america Where is ours for working 100 X
harder? @FoxNews
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bilefails
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Onus is on #Pak to act against #terror groups which find safe
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Ffs dreadful defending 0.479 0.4795
OLD FISH 0.070 0.5028

@MannersAboveAll *laughs louder this time, shaking my head*
That was really cheesy, wasn’t it?

0.083 0.4936
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@headfirst dom I often imagine hoe our moon would feel meet-
ing the jovial moons which are all special
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Your attitude toward your struggles is equally as important as
your actions to work through them.
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Oi @THEWIGGYMESS you’ve absolutely fucking killed me..
30 mins later im still crying with laughter.. Grindah.. Grindah...

hahahahahahaha
0.847 0.3726

@WuffinArts :c You have my most heartfelt condolences. I’m
glad it passed with levity and love in it’s heart.

0.188 0.5872

Sadness

@nytimes media celebrated Don King endorsing #Obama in 08
and 12 now criticize him for endorsing #Trump who wants new
Civil Rights era sad

0.562 0.5623

@AFCGraMaChroi oh, sorry if I’ve discouraged you 0.340 0.3397
oh, btw - after a 6 month depression-free time I got a relapse
now... superb #depression

0.917 0.462

Ibiza blues hitting me hard already wow 0.833 0.4247

Table 2: Sample tweets where our system’s prediction is best and worst.
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Abstract

This paper describes the system that we
submitted as part of our participation
in the shared task on Emotion Inten-
sity (EmoInt-2017). We propose a Long
short term memory (LSTM) based archi-
tecture cascaded with Support Vector Re-
gressor (SVR) for intensity prediction. We
also employ Particle Swarm Optimization
(PSO) based feature selection algorithm
for obtaining an optimized feature set for
training and evaluation. System evaluation
shows interesting results on the four emo-
tion datasets i.e. anger, fear, joy and sad-
ness. In comparison to the other partici-
pating teams our system was ranked 5th in
the competition.

1 Introduction

Emotion analysis (Picard, 1997) deals with auto-
matic extraction of emotion expressed in a user
written text. Basic emotions expressed by a hu-
man being, as categorized by Ekman (1992), are
joy, sadness, surprise, fear, disgust and anger.
With the growing amount of social media gener-
ated text it has become a challenging task to effi-
ciently mine emotions of the user. However, find-
ing only the emotion does not always reflect exact
state of mood of a user. Level or intensity of emo-
tion often differs on a case-to-case basis within
a single emotion. Some emotions are gentle (e.g
‘not good’) while others can be very severe (e.g.
‘terrible’). Finding the intensity level of the ex-
pressed emotion is another non-trivial task that re-
searchers have to face.

The shared task on Emotion Intensity (EmoInt-
2015) (Mohammad and Bravo-Marquez, 2017)
was targeted to build an efficient system for inten-
sity prediction on a continuous scale of 0 (least

intense) to +1 (most intense). There were four
datasets collected from Twitter, each reflecting one
class of emotion i.e. anger, fear, joy and sadness,
respectively.

We propose a Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997)
based neural network architecture cascaded with
Support Vector Regression (SVR) (Smola and
Schölkopf, 2004). We build our system on top
of word embeddings along with the assistance of
an optimized feature set obtained through Particle
Swarm Optimization (PSO) (Kennedy and Eber-
hart, 1995). A major hurdle in obtaining a good
word representation was the noisy and informal
nature of text. Therefore, in the preliminary step,
we perform a series of normalization heuristics in
line with (Akhtar et al., 2015). The word embed-
dings of the resultant normalized text was more
representative than that of the unnormalized text.

The high-dimensionality of feature vector of-
ten contributes to high complexity of the system.
Also, some features have high degree of relevance
towards a particular task/domain than the others.
Careful selection of features for any task often
leads to improved system performance. How-
ever, finding the relevant set of features is cumber-
some and time-consuming task. Motivated by this
we employ a Particle Swarm Optimization (PSO)
based feature selection technique for selecting a
subset of features from a feature pool. By utilizing
the reduced and pruned feature set for training and
evaluation, resultant system often performs con-
siderably well. At the same time complexity of the
system also reduces as it requires fewer parame-
ters to learn. Literature survey shows successful
application of PSO for various tasks and/or do-
mains (Lin et al., 2008; Akhtar et al., 2017; Yadav
et al., 2017).
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2 System Description

This section discusses our proposed approach in
detail. The subsequent subsections present various
components of our system.

2.1 Pre-processing and Normalization

• Mentions, URLs and Punctuations:
In this step we filter out all the user mentions
and URLs as they do not have any emotional
bondings. Secondly, we strip off all the punc-
tuations from the word boundaries to make it
a valid dictionary word, e.g. ‘first//’ to ‘first’.
Improper use of punctuation was one of the
reasons for data sparsity, when working with
distributed word representation. After em-
ploying this step we observed that the number
of out-of-vocabulary (OOV) words are effec-
tively reduced.

• Hashtag Segmentation:
Here the ‘#’ symbol is stripped off from the
hashtags. The resulting token is split into
constituent words. For example, ‘#Spilled-
BeerOnFloor’ is converted to ‘Spilled Beer
On Floor’. This is achieved using the Word-
Segment 1 module for word segmentation
available in python. It is to be noted here
that the segmented words are required only
for obtaining word embeddings. For obtain-
ing lexicon based features (cf. Section 2.3.1 )
the entire token with the ‘#’ is used.

• Elongation:
User tends to express their state of emotion
by elongating a valid word e.g. ‘jooooy’,
‘goooodd’ etc. In this step, all such elongated
words are identified and converted into valid
words by removing the consecutive charac-
ters. For example ‘jooyyyy’ and ‘jooooy’ are
converted to ‘joy’.

• Verb present participle:
In Twitter domain, it is observed that user
tends to omit the character ‘i’ or ‘g’ in words
ending with ‘ing’. For example, ‘going’ is
written as ‘goin’ or ‘gong’. Such errors have
been identified and corrected. We apply this
rule for all the verbs that ends with either ‘ng’
of ‘in’.

1https://github.com/grantjenks/wordsegment

• Frequent noisy term: We compile a dictio-
nary of frequently used slang terms and ab-
breviations along with its normal form that
are commonly in practice in the Twitter do-
main. Every token in a tweet is searched in
this dictionary. If a match is found then it is
replaced with the normal form. The list was
compiled utilizing the datasets of WNUT-
2015 shared task on Twitter Lexical Normal-
ization (Baldwin et al., 2015).

• Expand contractions: Contraction of a
multi-word token is formed by making it
shorter by dropping some characters and
placing an apostrophe between them. For ex-
ample, the contraction of ‘i am’ is ‘iḿ’. We
compile a dictionary of contractions and its
normalized forms employing the datasets of
(Baldwin et al., 2015). We replace every oc-
currence of a contraction in a tweet by its ex-
panded form.

2.2 LSTM based Approach

Long short term memory (Hochreiter and Schmid-
huber, 1997) network is a special kind of recurrent
network that can efficiently learn sequences over a
longer period of time. The proposed method uti-
lizes LSTM network to obtain the sentence em-
bedding vector, which is then fed as an input
to SVR for prediction. The proposed network
comprises of one Bidirectional LSTM (BiLSTM)
(Schuster and Paliwal, 1997) layer followed by
two dense layers. Hidden layer of the LSTMs con-
sists of 100 neurons whereas the dense layers con-
tain 100 and 50 neurons, respectively.

2.2.1 Word Embeddings

Word embedding (or word vector) is a distributed
representation of words that contains syntactic and
semantic information (Mikolov et al., 2013; Pen-
nington et al., 2014). For this task, we use GloVe
(Pennington et al., 2014) pre-trained word embed-
ding trained on common crawl corpus. Each to-
ken in the tweet is represented by 300 dimension
word vector. The choice of common crawl word
embeddings for Twitter datasets is because of the
normalization steps (Section 2.1). We observe that
the application of normalization has a positive ef-
fect on the overall performance of the system.
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2.3 Particle Swarm Optimization based
Feature Selection

Particle swarm optimization (Kennedy and Eber-
hart, 2001) is an optimization technique build over
the social behavior of a flock of birds. Each po-
tential solution, also known as particles, stores its
best position attained so far. The global best so-
lution recorded by any particle in the flock is also
recorded and shared among the particles. In the
search space, each particle moves towards the op-
timal solution based on its own best position and
the global best position. Eventually, particles con-
centrate on a limited search space dictated by the
global best solution found so far. The entire pro-
cess is governed by three operations namely, eval-
uate, compare and imitate. Evaluation step quan-
tifies the goodness of each particle, whereas, the
comparison step obtains the best solution by com-
paring the particles. The imitate step produces
new particles based on the best solution. A parti-
cle is an n-dimensional binary vector, where each
element represents one feature. The value of each
element (i.e. 0 or 1) signifies the presence or ab-
sence of its corresponding feature. Consequently,
missing feature in a particle does not participate in
training and testing of the system. On termination,
PSO yields a particle (encoding a particular fea-
ture subset) that represents the best solution. We
closely follow PSO based feature selection algo-
rithm of (Akhtar et al., 2017) in the current work.

2.3.1 Feature Set
This section describes the features that we extract
to predict the emotion intensity. All these features
are fed to the PSO to generate the optimized fea-
ture set.

• VADER Sentiment: VADER (Gilbert, 2014)
stands for Valence Aware Dictionary and
Sentiment Reasoner. It is a rule-based sen-
timent analysis technique designed to work
with contents on social media. For every in-
put tweet, it provides positive, negative, neu-
tral and compound sentiment score. We use
these four values as features.

• Lexicon based Features: For each tweet we
extract the following lexicon based features:

– Polar word count: Count of positive
and negative words using the MPQA
subjectivity lexicon (Wiebe and Mihal-

cea, 2006) and Bing Liu lexicon (Ding
et al., 2008).

– Aggregate polarity scores: Positive
and negative scores are obtained from
each of the following lexicons: Sen-
timent140 (Mohammad et al., 2013),
AFINN (Nielsen, 2011) and Sentiword-
net (Baccianella et al., 2010). It is cal-
culated by aggregating the positive and
negative word scores provided by each
lexicon.

– Aggregate polarity scores (Hashtags):
Aggregate of positive and negative
scores of the hashtags in a tweet is cal-
culated from NRC Hashtag Sentiment
lexicon (Mohammad et al., 2013).

– Emotion word count: Count of the
number of words matching each emo-
tion from NRC Word-Emotion Associa-
tion Lexicon (Mohammad and Turney,
2013).

– Aggregate emotion score: Sum of
emotion associations of the words
present in NRC-10 Expanded lexicon
(Bravo-Marquez et al., 2016).

– Aggregate emotion score (Hashtags):
Sum of emotion associations of the
hashtags in tweet matching the NRC
Hashtag Emotion Association Lexicon
(Mohammad and Kiritchenko, 2015).

– Emoticons score: Positive and negative
score of the emoticons obtained from
AFINN project (Nielsen, 2011).

– Negation count: Count of the number
of negating words in the tweet.

2.4 Regression Model

An overall schema of the proposed system is de-
picted in Figure 1. Our proposed regression model
consists of LSTM network and Support Vector Re-
gression (SVR). First a LSTM network is trained
using word vectors as input with sigmoid activa-
tion. Upon completion of training, the output of
the top most hidden layer is used as sentence em-
bedding. The trained sentence embeddings repre-
sent the relevant semantic and syntactic features
of the tweets. Next, optimized feature set, as ob-
tained by PSO, is concatenated with sentence em-
beddings for training a SVR model. The idea of
cascading SVR with LSTM was motivated by the
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recent works of (Akhtar et al., 2016; Wang et al.,
2016).

Figure 1: Proposed architecture.

3 Experiments, Results and Analysis

3.1 Dataset
The evaluation dataset (Mohammad and Bravo-
Marquez, 2017) comprises of four emotions i.e.
anger, fear, sadness and joy. The training set con-
tains 857, 1147, 786 & 823 tweets for anger, fear,
sadness and joy, respectively. The development
set contains 84, 110, 74 & 79 tweets, while test set
comprises of 760, 995, 673 & 714 tweets, respec-
tively for each domain.

3.2 Experimental Results
We use Python based neural network library, i.e.
Keras2, for the implementation. For tokenization
of tweets, we utilize CMU ARK tool3. The official
evaluation metric was Pearson coefficient. We use
tanh as an activation function at the intermediate
layers while at the output layer we utilize sigmoid.
We employ Adam (Kingma and Ba, 2014) opti-
mizer and set the Dropout (Srivastava et al., 2014)
as 40%. We train our network for 50 epochs. Table
1 depicts the evaluation results on the development
and test sets. We first train a BiLSTM network

2http://keras.io/
3http://www.cs.cmu.edu/˜ark/

utilizing GloVe common crawl embeddings. The
resultant network produces average Pearson score
of merely 0.1877. We observe that a good percent-
age of tokens (mostly noisy) were missing in the
embeddings - thus poses challenge to the network
during the learning phase. Subsequently, we try
to minimize the effect of noisy tokens by utiliz-
ing GloVe Twitter embeddings. Though, the net-
work obtains improved average Pearson score at
0.1921, improvement is not significant. On anal-
ysis we find similar issues with Twitter embed-
dings. To address the problem of data sparsity we
employ a series of heuristics (c.f. Section 2.1) in
order to normalize the text. Consequently, we ob-
tain average Pearson score of 0.6289 with normal-
ization outperforming the baseline system (0.610)
provided by the organizers of the shared task.

We then cascade the LSTM network with SVR
for the final predictions (LSTM+SVR). On cascad-
ing we obtain 0.6641 average Pearson score, re-
porting a gain of 0.04 points. Finally, to further
improve the prediction accuracies we introduce
various handcrafted lexicon features (c.f. Section
2.3.1) into the architecture (LSTM+SVR+Feat).
Although, we see an improvement of 0.01 point
in average Pearson score, introduction of same set
of lexicons features have contrasting effect on dif-
ferent emotion datasets i.e. anger, fear, joy & sad-
ness. We observe improvement for joy and sad-
ness, whereas for anger use of this same set of
features degrades the system performance. For
fear, introduction of features to LSTM+SVR al-
most have no effect. Motivated by these results
we perform PSO based feature selection algorithm
in order to find optimal set of features for dif-
ferent emotions. We get the best average Pear-
son score of 0.7271 on the development set by
utilizing sentence embeddings, optimized feature
set and SVR (LSTM+SVR+PSO). We also observe
improvement in Pearson score for each of the
emotion datasets ranging from 0.5-0.7 points over
LSTM+SVR. It is evident from the obtained results
that normalization of tweets is a major factor in
obtaining good performance. Also, introduction
of the PSO based feature selection in LSTM+SVR
hybrid model further assists the system in improv-
ing the performance.

On final evaluation, i.e. on the test set, our pro-
posed system (LSTM+SVR+PSO) scores an av-
erage Pearson score of 0.682. In comparison,
baseline system produces 0.6470 average Pearson
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Models Descriptions
Pearson score

Anger Fear Joy Sadness Avg

RESULT ON DEV SET
Sentence embeddings - Normalization* LSTM 0.178 0.029 0.462 0.080 0.187
Sentence embeddings - Normalization*# LSTM 0.153 0.050 0.462 0.101 0.192
Sentence embeddings LSTM 0.629 0.645 0.737 0.504 0.628
Sentence embeddings LSTM+SVR 0.669 0.661 0.761 0.563 0.664
Sentence embeddings + All features LSTM+SVR+Feat 0.610 0.663 0.806 0.611 0.673
Sentence embeddings + PSO LSTM+SVR+PSO 0.719 0.732 0.826 0.632 0.727
Baseline (Mohammad and Bravo-Marquez, 2017) LibLinear 0.599 0.580 0.694 0.569 0.610

RESULT ON TEST SET
Sentence embeddings + PSO LSTM+SVR+PSO 0.649 0.713 0.657 0.709 0.682
Baseline (Mohammad and Bravo-Marquez, 2017) LibLinear 0.625 0.620 0.635 0.706 0.647

Table 1: Evaluation results on development and test set. *Without normalization step; Other models are
with normalization. #With GloVe Twitter word embeddings; Other models utilize GloVe common crawl
embeddings.

Lexicons
Datasets

Anger Fear Joy Sadness

MPQA D D

Bing Liu D

SentiWordNET D D D

AFINN D

Sentiment140 D D

NRC Hashtag Sentiment D D D

NRC Hashtag Emotion anger anger, antici-
pation, fear &
surprise

anticipation, joy,
sadness & sur-
prise

disgust & sad-
ness

NRC10 Expanded anger, disgust,
surprise, positive,
anger-ex, fear-
ex, positive-ex,
negative-ex

anticipation, joy,
sadness, sur-
prise, positive,
negative, fear-
ex, disgust-ex,
surprise-ex

anticipation, joy,
trust, joy-ex,
surprise-ex

anger, antici-
pation, disgust,
fear, surprise,
anticipation-ex,
disgust-ex, fear-
ex, surprise-ex,
negative-ex

Emoticons-AFINN D D

Table 2: Optimized feature set for four datasets.

score, a difference of 4%. For anger and fear we
observe a small performance drop on the test set
as compared to the development set while our pro-
posed system performs better in case of sadness.
Further, we observe that our system does not per-
form at par (a drop of nearly 17%) for joy as com-
pared to the development set. However, similar
phenomenon was observed for the baseline system
as well i.e. a drop of 6% in joy. We also observe
that our proposed system is statistically significant

over baseline system with p-value = 0.03683.

Table 2 shows the optimized set of feature for
four datasets i.e. anger, fear, joy and sadness. It
is evident from the table that some of the features
have high degree of relevance than others. For ex-
ample, NRC Hashtag Emotion (Mohammad and
Kiritchenko, 2015) & NRC10 Expanded (Bravo-
Marquez et al., 2016) lexicons have been utilized
by all four of them, whereas Bing Liu (Ding et al.,
2008) and AFINN (Nielsen, 2011) lexicons have
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been employed by only fear & joy, respectively.

3.3 Error Analysis

We also perform error analysis on the obtained re-
sults. Following are the few cases where our sys-
tem consistently suffers in predicting the intensity
values.

• Presence of high intensity emotion words
(such as anger, revenge, fury, exciting etc)
makes it non-trivial for the system to cor-
rectly predicts the intensity values.

Example 1:
Tweet: #Forgiveness might make us look
#weak, but the weakest person is the one
who holds #anger, #hatred, and #revenge.
Actual: 0.354 Predicted: 0.630

Example 2:
Tweet: Police: Atlanta rapper Shawty Lo
killed in fiery car crash.
Actual: 0.396 Predicted: 0.619

4 Conclusion

In this paper, we have presented a hybrid LSTM-
SVR architecture for predicting the intensity level
w.r.t. to an emotion. We first applied various
heuristics for normalizing the tweets. Following
this step, the noisiness of tweets is addressed to
a great effect and consequently improves the per-
formance of the system. The proposed approach
further utilized relevant set of hand-crafted fea-
tures obtained through a PSO based feature selec-
tion technique. Adding optimized features in the
proposed architecture (LSTM+SVR+PSO) attains
significant improvement over the system without it
(LSTM+SVR) and this phenomenon was observed
for all the four emotion datasets i.e. anger, fear,
joy and sadness.
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Abstract

In this paper, we describe a method to pre-
dict emotion intensity in tweets. Our ap-
proach is an ensemble of three regression
methods. The first method uses content-
based features (hashtags, emoticons, elon-
gated words, etc.). The second method
considers word n-grams and character n-
grams for training. The final method
uses lexicons, word embeddings, word n-
grams, character n-grams for training the
model. An ensemble of these three meth-
ods gives better performance than individ-
ual methods. We applied our method on
WASSA emotion dataset. Achieved re-
sults are as follows: average Pearson cor-
relation is 0.706, average Spearman cor-
relation is 0.696, average Pearson corre-
lation for gold scores in range 0.5 to 1 is
0.539, and average Spearman correlation
for gold scores in range 0.5 to 1 is 0.514.

1 Introduction

Twitter is a popular microblogging platforms in
which users share their opinions, feelings on
different topics which are happening across the
world.

The aim of sentiment analysis is to detect the
positive, negative, or neutral feelings from the text,
whereas the aim of emotion analysis is to detect
the types of feelings in the text, such as anger,
fear, joy, sadness, disgust, and surprise. In this pa-
per, we focus on emotion analysis in tweets. Sen-
timent analysis of Twitter data is very challeng-
ing. Users who are posting on Twitter often do
not follow grammar rules. This results in noise
in the Twitter data. This noisy nature of Twit-
ter data is in the form of spelling mistakes, use
of slang words, sentence mistakes, abbreviations,

elongated words, etc. Moreover, the text limit is
140 characters long. In this paper, four emotions
are considered. They are anger, fear, joy, and sad-
ness. The task is to predict the emotion intensity of
each test instance in a range between 0 and 1. The
emotion intensity 1 indicates the maximum emo-
tion whereas 0 indicates the least emotion felt by
the author of the tweet.

We use an ensemble of three methods, namely,
Support Vector Regression (SVR), Neural Net-
works, and Baseline to predict the emotion inten-
sity in tweets. The performance of ensemble ap-
proach is better than that of the individual meth-
ods.

There is a growing interest in sentiment anal-
ysis of tweets across variety of domains such as
health (Chew and Eysenbach, 2010), stock market
(Bollen et al., 2011), disaster management (Man-
del et al., 2012), and presedential elections (Wang
et al., 2012).

The rest of the paper is organized as follows.
Related literature for current work is presented in
Section 2. Next in Section 3, problem statement
and details of the methods used in this paper are
defined. Experimental evaluation of the method
is shown in Section 4. We conclude the work by
providing directions for future research in Section
5.

2 Related Work

With the increase of user-generated contents in so-
cial media, blogs, discussion fora, etc. people are
focusing on the problem of analyzing the senti-
ments expressed in these contents. Go et al. (2009)
used emoticons as labels for training data and dis-
tance supervision to classify tweets into positive
or negative class. Pak and Paroubek (2010) pre-
sented a method for automatic collection of a cor-
pus that can be used to train a sentiment classi-
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fier. The authors have classified the tweets into
three classes, namely, positive, negative, and neu-
tral using trained classifier. Kouloumpis et al.
(2011) used linguistic and lexical features to de-
tect the sentiments of Twitter messages. The au-
thors showed that Part-Of-Speech (POS) features
might not be useful for sentiment analysis in the
Twitter domain.

Khan et al. (2015) proposed a method for com-
bining lexicon-based and learning-based methods
for Twitter sentiment analysis. There has been a
lot of work done in the SemEval Twitter sentiment
analysis tasks (Rosenthal et al., 2014, 2015; Nakov
et al., 2016; Rosenthal et al., 2017).

Combining classifiers has been proved to be
very successful for classification problems. A sys-
tem named Webis achieved top-rank in SemEval-
2015 subtask B, task 10 “Sentiment Analysis in
Twitter” (Hagen et al., 2015). The authors repro-
duced four state-of-the-art Twitter sentiment clas-
sification methods with diverse feature sets. The
predictions of four classifiers are combined by
taking the average of classifiers’ individual con-
fidence scores for the three classes and predicts
the label with the highest score. In the Netflix
competition, the winner used an ensemble method
to implement a collaborative filtering algorithm
(Töscher et al., 2009). In KDD Cup 2009 also,
the winner used an ensemble method (Niculescu-
Mizil et al., 2009). Zhang et al. (2016) used a clas-
sifier fusion based method for polarity classifica-
tion in Twitter. The authors have used four classi-
fiers in the ensemble method.

3 System Description

In this section, we describe the methodology used
for WASSA 2017 shared task on emotion inten-
sity. The WASSA 2017 shared task (Mohammad
and Bravo-Marquez, 2017b) problem definition is
as follows: Given a tweet and an emotion E, de-
termine the intensity of the emotion E felt by the
author of the tweet. The intensity is a real-valued
score between 0 and 1. The maximum possible
emotion intensity 1 stands for feeling the maxi-
mum amount of emotion E and the minimum pos-
sible emotion intensity 0 stands for feeling the
least amount of emotion E. There are four cate-
gories of emotion given in the task, namely, anger,
fear, joy, and sadness. We combine the three meth-
ods (Support vector regression, Neural networks,
and Baseline) for predicting the emotion intensity.

3.1 Data Preprocessing

For any machine learning algorithm preprocessing
the data is a very important step. As discussed in
Section 1 tweets often contain a lot of noise. Be-
fore applying the model to the data, preprocess-
ing should be done. Removal of unnecessary to-
kens from the text will improve the performance of
the model. All words are converted to lower case,
URLs are removed, numbers, and @ mentions are
also removed as these tokens do not contribute in
predicting the sentiment of the tweet. Hashtags,
emoticons, punctuation marks (?, !) are retained
because they will help in predicting the sentiment.

3.2 Support Vector Regression

This is the first method used for predicting emo-
tion intensity in tweets. First, we define the fea-
tures used in this work.

3.2.1 Features

• No. of hashtags: The number of hashtags
present in the tweet.

• Length: Length of the tweet

• Word n-grams: We used word n-grams with
n ranging from 1 to 3 i.e., unigrams, bigrams,
and trigrams. All these n-grams are word
level n-grams.

• Char n-grams: We also used character n-
grams. These n-grams include the existence
of two, three, four, five, and six consecutive
sequence of characters.

• Punctuation: Number of punctuation sym-
bols (?, !) present in the tweet.

• Emoticons: Number of emoticons present in
the tweet.

• Elongated words: The number of words with
one character repeated more than twice, for
example, ’haaapy’.

• Lexicon: NRC Affect Intensity Lexicon (Mo-
hammad, 2017) is used.

All the above features are used for training the
model.

220



3.3 Neural Networks
This is the second method used to determine the
emotion intensity in tweets. A multi-layered neu-
ral network with two hidden layers is used. These
hidden layers consist of 125 and 25 neurons re-
spectively. We used Keras for developing this
multi-layered neural network model. Keras is a
useful Python library for developing deep learning
models. TensorFlow is used as backend for Keras.
Word n-grams and character n-grams are used in
this model.

3.4 Baseline
This method was given in WASSA 2017 shared
task as the baseline method (Mohammad and
Bravo-Marquez, 2017a). The authors have cre-
ated the datasets of tweets annotated for anger,
fear, joy, and sadness emotion intensities. They
have used the best-worst scaling technique to im-
prove annotation consistency and obtained reliable
scores. They created a regression system, Affec-
tiveTweetsPackage for the Weka machine learning
workbench, to automatically determine emotion
intensity and related tasks. The following features
are used in this baseline system.

• word n-grams: This feature will check
whether the word n-grams are present in the
tweet or not, with n values 1, 2, 3, and 4.

• char n-grams: It will check whether the char
n-grams are present in the tweet or not, with
n values 3, 4, and 5.

• Word Embeddings: Word2Vec (Mikolov
et al., 2013) is used to create word em-
beddings with negative sampling skip-gram
model. Vector for the tweet is created by av-
eraging the individual word embeddings of
the tweet. Word vectors are trained from
the Edinburgh Twitter Corpus (Petrovic et al.,
2010). Number of dimensions used is 400.

• Lexicons: Lexicons used in this system
are AFINN (Nielsen, 2011), BingLiu (Hu
and Liu, 2004) , MPQA (Wilson et al.,
2005), NRC Affect Intensity Lexicon (Mo-
hammad, 2017), NRC Word-Emotion As-
sociation Lexicon (Mohammad and Turney,
2013), NRC10 Expanded (Bravo-Marquez
et al., 2016), NRC Hashtag Emotion As-
sociation Lexicon (Mohammad and Kir-
itchenko, 2015), NRC Hashtag Sentiment

Lexicon (Mohammad et al., 2013), Senti-
ment140 (Mohammad et al., 2013), Sen-
tiWordNet (Baccianella et al., 2010), Sen-
tiStrength (Thelwall et al., 2012).

3.5 Ensemble Combination
Ensemble methods use several learning algorithms
to obtain better predictive performance than any
other individual method used in the ensemble
combination. There are several ways to combine
the learning models such as bagging, boosting,
majority voting, simple averaging, stacking, etc.
Bagging trains each model in the ensemble us-
ing a subset of the training data drawn randomly,
whereas boosting builds an ensemble in such a
way that new model performance will improve for
instances that are misclassified by previous mod-
els.

In majority voting, each model makes a predic-
tion for the test instance, and the final prediction
of the model is the one which is predicted by more
models. Simple averaging is also another method
for combining predictions of learned models, in
which the prediction of the model for each test
instance is the average of the predictions of the
individual models. Stacking is another approach
where the models are combined using another ma-
chine learning algorithm. The predictions of the
individual model are the input to another learning
algorithm (meta-learning algorithm).

We tested different ways of combining the indi-
vidual regressors to an ensemble method. We ob-
served that each method tries to predict the emo-
tion intensity closer to the actual predictions for
some test instances that others fail for. This is be-
cause of having different feature sets for different
methods which are used in an ensemble. When
we combine the individual regression methods, the
performance of an ensemble will increase because
of individual strengths of the methods. Finally,
we observed that simple averaging performs bet-
ter than other methods.

Our ensemble works as follows: SVR is trained
separately for each class, anger, fear, joy, and sad-
ness by considering train and dev data. Testing
is performed on test data, and predictions of each
class are saved in separate files. These predic-
tions are real-valued scores between 0 and 1. We
used all features that are listed in Section 3.2.1 for
this method. Next, a multi-layered neural network
is trained on the same data as SVR. Two hidden
layers are used with 125 and 25 neurons. Num-
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Table 1: Number of tweets in each phase.
Emotion Training Validation Testing All
anger 857 84 760 1701
fear 1147 110 995 2252
joy 823 74 714 1611
sadness 786 74 673 1533
All 3613 342 3142 7097

Table 2: Submitted results for the competition.
Result Pearson

0to1
Spearman
0to1

Pearson
.5to1

Spearman
.5to1

Submitted
Results

0.525 0.528 0.373 0.369

ber of features is the input to the input layer, and
the output is a real value between 0 and 1. For
this reason, sigmoid activation function is used in
the output layer. Word n-grams and character n-
grams are used as features for this model. Then,
we directly used the baseline algorithm given in
the shared task. It is trained on the same data as
SVR and neural network models.

Word embeddings of Edinburgh corpus, lexi-
cons, word n-grams, char n-grams are used as
features. Word embeddings are available for 50
dimensions and 400 dimensions. However, we
found 400 dimension word embedding to perform
better in our experiments. Predictions for each
class are obtained from each of the trained models.
Finally, the average of individual methods predic-
tion for each test instance is considered as final
prediction. The final prediction value is also in be-
tween 0 and 1.

4 Experiments

4.1 Data

There are four emotion categories, namely, anger,
fear, joy, and sadness in the dataset given in the
shared task (Mohammad, 2017). Details of num-
ber of tweets in each category for training, valida-
tion, and testing are shown in Table 1.

4.2 Results

In this section, we describe the results obtained by
our methods. For evaluating the proposed meth-
ods, two evaluation metrics Pearson correlation
and Spearman correlation are used. Pearson corre-
lation for two sets is equal to 1 if they have a high
positive correlation, -1 if they have a high negative
correlation, and 0 if there is no correlation.

Table 2 shows our submitted results to the com-

petition before the deadline. Word unigrams, and
some limited features (lexicon, hashtags, punctua-
tion) related to the sentiment are used, and SVR is
used for learning and predicting the emotion inten-
sities. Later, we improved our method using ex-
tra features and using different approaches. Table
3 shows the SVR model using polynomial kernel
function. Table 4 shows SVR model using RBF
kernel, and Table 5 shows SVR model using linear
kernel function. We observe that SVR using lin-
ear kernel function is performing better than SVR
with RBF and SVR with polynomial kernel func-
tion. So, we used SVR with linear kernel in the en-
semble. The parameters used in SVR are gamma =
0.1 (kernel coefficient for rbf, poly), and C = 0.001
(penalty term)

Table 6 describes the results using neural net-
works model with word n-grams and char n-grams
as features. The parameters used in this experi-
ment are as follows: loss function is entropy, opti-
mization algorithm is stochastic gradient descent,
rectifier activation function is used in the hidden
layers whereas sigmoid activation function is used
in the output layer. Table 7 presents the results
of the baseline method using 50 dimensional word
embeddings of Edinburgh corpus whereas base-
line method with 400 dimensional word embed-
dings are presented in Table 8.

The results of ensemble combination of SVR
using linear kernel, neural networks, baseline
method with 400 dimensional word embeddings
are presented in Table 9. We have achieved the
following results in the ensemble: average Pear-
son correlation is 0.706, average Spearman cor-
relation is 0.696, average Pearson correlation for
gold scores in range 0.5 to 1 is 0.539, and Spear-
man correlation for gold scores in range 0.5 to 1
is 0.514. Comparison of proposed method with
baseline methods is presented in Table 10. We ob-
serve that our proposed method correlation values
are higher than two variations of baselines (50d,
400d). We also observe that ensemble method
is performing better than any other individual
method used in combination. This is due to dif-
ferent feature sets used in the methods mentioned
in Section 3.

5 Conclusion

We created two methods Support Vector Re-
gression and Neural Networks and used baseline
method from the shared task to detect the emotion
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Table 3: SVR with polynomial kernel.

Emotion Pearson
0to1

Spearman
0to1

Pearson
.5to1

Spearman
.5to1

anger 0.405 0.455 0.278 0.276
fear 0.333 0.466 0.239 0.250
joy 0.416 0.487 0.283 0.354
sadness 0.482 0.552 0.438 0.465
Average 0.409 0.490 0.310 0.336

Table 4: SVR with rbf kernel.

Pearson
0to1

Spearman
0to1

Pearson
.5to1

Spearman
.5to1

0.591 0.583 0.431 0.422
0.606 0.571 0.491 0.428
0.572 0.580 0.374 0.396
0.656 0.656 0.543 0.533
0.606 0.597 0.460 0.445

Table 5: SVR with linear kernel.

Pearson
0to1

Spearman
0to1

Pearson
.5to1

Spearman
.5to1

0.601 0.590 0.426 0.416
0.617 0.589 0.491 0.425
0.603 0.621 0.377 0.399
0.665 0.679 0.535 0.531
0.622 0.620 0.457 0.443

Table 6: Neural Networks.
Emotion Pearson

0to1
Spearman
0to1

Pearson
.5to1

Spearman
.5to1

anger 0.570 0.557 0.432 0.436
fear 0.601 0.567 0.492 0.451
joy 0.571 0.565 0.350 0.329
sadness 0.642 0.630 0.499 0.491
Average 0.596 0.580 0.443 0.427

Table 7: Baseline with 50d word embeddings.
Emotion Pearson

0to1
Spearman
0to1

Pearson
.5to1

Spearman
.5to1

anger 0.631 0.620 0.502 0.469
fear 0.622 0.606 0.477 0.431
joy 0.635 0.641 0.368 0.354
sadness 0.710 0.713 0.537 0.521
Average 0.649 0.645 0.471 0.444

intensity in tweets. The predictions of these three
methods are averaged to get the final prediction of
each test instance for each class. The results of
ensemble method show that average Pearson cor-
relation, average Spearman correlation values are
higher than the baseline method, SVR, neural net-
works.

For future work, we would like to see other
learning methods which can improve the perfor-
mance of the ensemble, and also we want to iden-
tify additional features for predicting the emotion
intensity. We would like to use different Twitter
word embeddings other than Edinburgh corpus in
future.
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Abstract

In this paper we describe Tecnolengua
Group’s participation in the shared task on
emotion intensity at WASSA 2017. We
used the Lingmotif tool and a new, com-
plementary tool, Lingmotif Learn, which
we developed for this occasion. We based
our intensity predictions for the four test
datasets entirely on Lingmotif’s TSS (text
sentiment score) feature. We also devel-
oped mechanisms for dealing with the id-
iosyncrasies of Twitter text. Results were
comparatively poor, but the experience
meant a good opportunity for us to iden-
tify issues in our score calculation for short
texts, a genre for which the Lingmotif tool
was not originally designed.

1 Introduction

For this shared task on emotion intensity we have
used the Lingmotif (Moreno-Ortiz, 2017a) senti-
ment analysis software. This tool is not specifi-
cally built to classify texts, although it offers this
feature. It is designed more as a general text anal-
ysis tool with a focus on sentiment analysis. It
offers several text metrics and displays a detailed
view of the analysis results, where specific text
segments are marked and annotated with their va-
lence and other data.

For sentiment analysis, it relies on its rich lexi-
cal sources rather than on sophisticated machine
learning algorithms. We undertook this shared
task as an evaluation of the performance of our
tool for short texts,1 and as a good opportunity to

∗This research was supported by Spain’s MINECO
through the funding of project Lingmotif2 (FFI2016-78141-
P).

1We use the term short text to refer specifically to under
140 characters, such as those used in Twitter and other social
networks.

learn about the linguistic features and issues that
such texts raise in a strictly lexicon-based senti-
ment analysis tool. It also meant a first attempt to
use Lingmotif’s sentiment data as features in clas-
sification and regression algorithms.

1.1 Task Description and datasets

Unlike most shared tasks on sentiment analysis,
the EmoInt Shared Task at WASSA-2017 (Mo-
hammad and Bravo-Marquez, 2017b) focused on
sentiment intensity rather than classification. Sev-
eral annotated Twitter datasets were provided for
system training, development and testing. Tweets
were classified as belonging in one of three nega-
tive emotions (anger, fear, and sadness) and one
positive emotion (joy).

The training datasets were labeled for sentiment
intensity. The annotation system to obtain these
datasets is described in Mohammad and Bravo-
Marquez (2017a). Basically, they polled the Twit-
ter API to extract tweets that contained represen-
tative words for each of the four emotions, which
they selected using Roget’s Thesaurus. They col-
lected over 7,000 tweets, differentiating between
those that contained the query term in hashtag
form and those that included them in non-hashtag
form. Then they crowdsourced the annotation for
this dataset using a Best-Worst Scaling system,
whose details we will not reproduce here.

In our experience with the datasets, we be-
lieve this procedure offers very reliable results, al-
though we have come across a number of ques-
tionable annotations and some obvious errors.2

1.2 Lexicon-based Sentiment Analysis

Within Sentiment Analysis it is common to dis-
tinguish corpus-based approaches from lexicon-

2The authors themselves (Mohammad and Bravo-
Marquez, 2017a) warn about the cognitve load that is placed
on the respondents during the annotation process.
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based approaches. Generally speaking, lexicon-
based approaches are preferred for sentence-level
classification (Andreevskaia and Bergler, 2007),
whereas corpus-based, statistical approaches are
preferred for document-level classification. Of
course, these methods can be combined (for ex-
ample, Riloff et al. (2006)).

Using sentiment dictionaries has a long tra-
dition in the field. WordNet (Fellbaum, 1998)
has been a recurrent source of lexical informa-
tion (Kim and Hovy, 2004; Hu and Liu, 2004;
Adreevskaia and Bergler, 2006) either directly as a
source of lexical information or for sentiment lex-
icon construction. Other common lexicons used
in English sentiment analysis research include The
General Inquirer (Stone and Hunt, 1963), MPQA
(Wilson et al., 2005), and Bing Liu’s Opinion Lex-
icon (Hu and Liu, 2004). Yet other researchers
have used a combination of existing lexicons or
created their own (Hatzivassiloglou and McKe-
own, 1997; Turney, 2002). The use of lexicons
has sometimes been straightforward, where the
mere presence of a sentiment word determines a
given polarity. However, negation and intensi-
fication can alter the valence or polarity of that
word.3 Modification of sentiment in context has
also been widely recognized and dealt with by
some researchers (Kennedy and Inkpen, 2006;
Polanyi and Zaenen, 2006; Choi and Cardie, 2008;
Taboada et al., 2011).

One disadvantage on relying solely on a senti-
ment lexicon is that different domains may greatly
alter the valence of words, a fact well recognized
in the literature (Aue and Gamon, 2005; Pang and
Lee, 2008; Choi et al., 2009). A number of so-
lutions have been proposed to these, mostly using
ad hoc dictionaries, sometimes created automati-
cally from a domain-specific corpus (Tai and Kao,
2013; Lu et al., 2011).

Our approach to using a lexicon takes some
ideas from the aforementioned approaches. We
describe it in the next section.

2 The Lingmotif SA tool

The Tecnolengua group started work on lexicon-
based sentiment analysis with the development
of Sentitext, a linguistically-motivated sentiment
analysis system for Spanish, and evolved within

3The use of the terms valence and polarity is used incon-
sistently in the literature. We use polarity to refer to the bi-
nary distinction positive/negative sentiment, and valence to a
value of intensity on a scale.

the Lingmotif project to integrate English, French,
Italian, and German.4

Lingmotif is based on the same principles as
Sentitext: a reliance on wide-coverage lexical re-
sources rather than a complex set of algorithms. It
utilizes a number of lexical sources and analyzes
context, by means of sentiment shifters, in order
to identify sentiment-laden text segments and pro-
duce a number of scores that qualify a text from a
SA perspective, as well as other various text ana-
lytics.

Analysis is produced by the identification of
words and phrases that are stored in its lexicon.
The overall score for a text is computed as a func-
tion of the accumulated negative, positive and neu-
tral scores. Specific domains can be accounted for
by applying user-provided dictionaries, which can
be imported from CSV files, and used along with
the application’s core dictionary.

Lingmotif was not designed as a sentiment clas-
sifier, but as a user-focused text analysis tool. It
offers a visual representation of the sentiment pro-
file of texts, which allows users to compare the
profile of multiple documents side by side, and
can process ordered document series. Such fea-
tures are useful in discourse analysis tasks, where
sentiment changes are relevant, whether within or
across texts, such as political speeches and narra-
tives, or to track the evolution in sentiment towards
a given topic (in news, for example). It uses a sim-
ple, easy-to-use GUI that allows users to select in-
put and options, and launch the analysis. Details
of the GUI’s capabilities can be found in Moreno-
Ortiz (2017b).

Results are generated as an HTML/Javascript
document, which is saved locally to a predefined
location and automatically sent to the user’s de-
fault browser for immediate display. Internally,
the application generates results as an XML docu-
ment containing all the relevant data; this XML
document is then parsed against one of several
available XSL templates, and transformed into the
final HTML.

2.1 Lexical data

Lingmotif’s main asset is its comprehensive lexi-
cal sources. For each language, Lingmotif uses the
following resources:

4The current version of Lingmotif supports English and
Spanish. Version 1.2 will include initial support for French.
Italian and German will be added in future versions.
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• A wide-coverage core sentiment lexicon that
contains both unigrams and multiword ex-
pressions, from bigrams to 6-grams.

• A set of context rules, where sentiment
shifters are defined using a template ap-
proach.

• Optionally, a plugin lexicon can be used to
account for domain-specific sentiment ex-
pression.

A part of speech tagger and lemmatizer are also
used. Lingmotif’s lexicons are still under develop-
ment. For this shared task, version 1.2 was used.5

2.2 The Lingmotif lexicon

Lexicon entries have the structure
<form>,<part-of-speech>,<valence>, where
valence is an integer from -5 to 5, 0 being
neutral. All single-word entries have a non-zero
valence. Unigrams can be entered as literals or
as lemmas (expressed by angled brackets), in
which case they will be inflected during import
and expanded into their possible forms. Examples
are: <safe>, JJ, 2; <fallacy>, ALL, -3;
insolent, ALL, -36

Multi-word expressions are a big asset of Ling-
motif. No other sentiment lexicon, to our knowl-
edge, contains a significant amount of, or any at
all, multi-word expressions. Avoiding MWEs has
practical advantages; first, it obviously makes lexi-
con construction much simpler, as it does the iden-
tification process of sentiment words during anal-
ysis, thus facilitating bag-of-words approaches.
However, it also ignores the fact that idiomaticity
plays a huge role in the expression of sentiment.
While it is true that many MWEs contain individ-
ual words of the same polarity as the overall ex-
pression, for example ”turn a blind eye”, ”raise the
alarm”, ”smear campaign”, many do not contain
any sentiment words at all (”raise the bar”, ”silver
lining”, ”lose ground”, ”peanut gallery”), or even
words with the opposite polarity (”smile at dan-
ger”, ”penny wise and pound foolish”). Finally,
many zero-valence MWEs do contain individual

5At the time of editing this document version 1.0
can be downloaded from the Tecnolengua website
(http://tecnolengua.uma.es/lingmotif). Version 1.2 will
be made available during 2017.

6The ”ALL” notation simplifies acquisition and avoids
matching problems derived from bad part-of-speech tagging
at run-time.

words with some valence: ”vanity bag”, ”proper
fraction”, ”fancy dress”.

This is the reason why MWEs in Lingmotif can
have a 0 valence; the aim is to block detection of
individual words which are part of a MWE and
whose valence may or may not be the same as that
in the MWE. Other zero-valence MWEs are in-
cluded because they are valence shifters used in
the CVS system, mostly intensifiers such as ”kind
of”, ”a fair bit of”, ”through and through”.

In version 1.2 multiword expressions can also
contain variables that act as placeholders for any
word, such as <fall>_into_2_hands, which will
match any sequence of any form of the lemma
”fall” followed by ”into”, then 0 to 2 words (e.g.,
”the” ”his”, ”the wrong”), then ”hands”. This al-
lows flexible representation and identification of
variable MWEs and collocations.

Version 1.2 of the English Lingmotif lexicon
contains 13,250 unigram lemmas (which expand
to 21,300 forms, 12,300 MWE lemmas (which ex-
pand to 37,700 forms), and 720 context rules (sen-
timent shifters).

As for its origin, the Lingmotif lexicon was ini-
tially compiled from a lexicographic perspective,
aiming at comprehensiveness. The core single-
word lexicon was jumpstarted using existing sen-
timent lexicons, namely, the Harvard General In-
quirer (Stone and Hunt, 1963), MPQA (Wilson
et al., 2005), and Bing Liu’s Opinion Lexicon (Hu
and Liu, 2004). These resources were expanded
by using a thesaurus and derivational generation
rules. The lexicon has been subsequently refined
manually using corpus analysis techniques as well
by qualitative techniques.

2.3 Sentiment shifters

A sentiment word or expression can change its va-
lence in context. It can be intensified or down-
toned, by means of quantifiers, for example, or its
valence may be inverted altogether (negation be-
ing the most obvious case), thus altering the polar-
ity.

Lingmotif implements a contextual valence
shifter (CVS) system based on the matching of a
number of context rules that define how a senti-
ment item changes its polarity in context. Such
approach has been used by Polanyi and Zaenen
(2006), Kennedy and Inkpen (2006), and Taboada
et al. (2011), among others. In our implementa-
tion, we use simple addition or subtraction of in-

227



Inversion
NN,-,avoid*,LR,5,INV0

JJ,+-,not,L,2,INV0

Intensification
NN,-,avoid*,LR,5,INV0

JJ,+-,not,L,2,INV0

Downtoning
NN,-,avoid*,LR,5,INV0

JJ,+-,not,L,2,INV0

Table 1: Sentiment shifters

tegers to modify the original valence, as specified
by a set of patterns in which certain features are
matched, namely, the part of speech and polar-
ity of the sentiment word, the form, location (left
or right), and span (in number of words) of the
shifter, and the result of the rule application. Ver-
sion 1.2 contains over 700 such rules for English.
These are some examples:

When a context rule is matched, the resulting
text segment is marked as a single unit and as-
signed the calculated valence, as specified by the
rule. New in version 1.2 is multiple rule matching,
where results are aggregated. Thus the sequences
”really interesting” and ”really really interesting”
produce different results. This is an experimental
feature that we have yet to improve, as it can pro-
duce some unexpected results.

2.4 Lingmotif Learn
For this task we created a new tool, still under de-
velopment, tentatively called ”Lingmotif Learn”.
This is a GUI-enabled convenience tool that man-
ages datasets and uses the Python-based scikit-
learn (Pedregosa et al., 2011) machine learning
toolkit. This tool facilitates loading and prepro-
cessing of datasets, getting the text run trough the
Lingmotif SA engine, and feeding the resulting
data into one of several machine learning algo-
rithms.

It makes it easy to compare the performance of
different combinations of the available Lingmotif
data as features and classification/regression algo-
rithms. After the optimal features and algorithm
have been selected, the model is trained and saved;
then it can be loaded to classify the development
and test datasets.

Table 2 lists the features available for each text
after the Lingmotif analysis.

As we will discuss in section 4 below, for this
shared task we used only TSS as a predictor. TSS
attempts to summarize the overall sentiment of a

ID Name Description
1 tss Text Sentiment Score
2 tsi Text Sentiment Intensity
3 lex items Number of lexical Items
4 pos score Positive score
5 neg score Negative score
6 pos items Number of positive items
7 neg items Number of negative items
8 crules Number of sentiment shifters
9 V0 Number of items with valence 0
10 V-1 Number of items with valence -1
11 V-2 Number of items with valence -2
12 V-3 Number of items with valence -3
13 V-4 Number of items with valence -4
14 V-5 Number of items with valence -5
15 V1 Number of items with valence 1
16 V2 Number of items with valence 2
17 V3 Number of items with valence 3
18 V4 Number of items with valence 4
19 V5 Number of items with valence 5
20 x marks Number of exclamation marks
21 q marks Number of question marks
22 pmarks Number of punctuation marks
23 handles Number of user handles
24 hashtags Number of hashtags
25 urls Number of exclamation URLs

Table 2: Set of available features

text on a 0-100 scale. It is arrived at by calcu-
lating a sentiment weight, which is dependent on
text length, and is encapsulated in the TSI fea-
ture, which, in turn, is calculated by combining
the pos score , neg score, and lex items features.
A more detailed description of these scores can be
found in Moreno-Ortiz (2017a).

3 Dealing with social media text

It is only recently that we have begun experiment-
ing with social media content analysis. Our focus
so far has been on longer texts (user reviews, po-
litical debates and speeches, narratives). We un-
dertook this task as a challenge that would give us
a first glimpse of the potentiality of our system to
analyze tweets and other social media short texts,
which certainly show certain specific characteris-
tics, such as the intensive use of emoticons and
emojis, hashtags, repetitions, etc. As a first ap-
proach to this type of texts, we adapted our system
as described below.

3.1 Emoticons and emojis

Emoticons are a well known source of emotion
expression, and very common in social media in
general and Twitter in particular. Even though
the relationship between emoticons and the sen-
timent conveyed in the overall message is not al-
ways unambiguous (Wang and Castanon, 2015),
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they clearly play an important role in the expres-
sion of sentiment, and, relevant to this task, they
have been found to have a strong impact in the in-
tensity of the emotions expressed in the message.
Accordingly, they have recurrently been used as
features for machine learning classifiers in senti-
ment analysis tasks, even from the first efforts to
classify Twitter data, e.g., Go et al. (2009).

Further, the generalization of emoji keyboards
in mobile devices in the recent years has no doubt
contributed to the proliferation of emojis. If (text)
emoticons display certain ambiguity, the senti-
ment conveyed by emojis is obviously more so-
phisticated, as is its relation to the text.

This shared task gave us an opportunity to im-
prove on the management of emoticons and emo-
jis we have used so far in Lingmotif. In the current
version (1.0), emoticons are dealt with during pre-
processing and are converted to a placeholder lexi-
cal item with a certain polarity. Emojis are simply
ignored.

For this task we implemented support for emo-
jis by including them in the lexicon just like any
other sentiment word. Currently, the list of emo-
jis is limited to 126 positive and negative items,
which were selected as these and other English
and Spanish Twitter datasets. All these emojis are
more or less consistent in their usage in terms of
their polarity. Emojis denoting surprise, and oth-
ers which exhibit a high degree of variability in
their denoted polarity were not included. At this
stage, all emojis in our lexicon have the same level
of intensity, i.e., 3/-3 (medium). This is of course
far from ideal, and our intention is to provide bet-
ter intensity ratings, for which we intend to use
Novak et al. (2015)’s results, which provide reli-
able polarity and intensity data for 970 emojis in
13 European Languages.

3.2 Treatment of hashtags

Hashtags have been shown to be excellent cues
of the sentiment conveyed in tweets (Mohammad,
2012; Mohammad and Kiritchenko, 2015). Mak-
ing sense of hashtags is not an easy task, however,
since users can be extremely creative in their use.
Efforts have been made to process and normal-
ize their content, some of them quite sophisticated
(Declerck and Lendvai, 2015).

As a first approach, we introduced in Lingmotif
a simple system to process hashtags. Our strategy
consisted of trying to match substrings in the hash-

tag against our single-word lexicon, either as the
whole string (minus the hash symbol) or in Camel-
Case. Simple as it is, this system turned out to be
able to decode the content of a significant propor-
tion of hashtags,

4 Analysis and results

We approached the task by running a Lingmo-
tif analysis of each emotion dataset as a sin-
gle document. Since training datasets were pro-
vided already sorted by emotion intensity, this was
straightforward and could give us a rough idea of
the performance. We used Lingmotif’s ”Sentiment
Profile” feature to quickly check if there was a vi-
able correlation. The Sentiment Profile is a line
graph whose data points are obtained by break-
ing the input text into segments of varying lengths
(dependent on the text’s overall length), and com-
puting the valence for each segment by averaging
the valences of the lexical words and phrases (after
the sentiment shifters system discussed above has
been applied) contained in the segment. Figure 1
shows the sentiment profile obtained for the anger
training dataset.

Figure 1: Sentiment Profile for the ”anger” train-
ing dataset

Higher scores in this graph indicate more posi-
tive sentiment. Tweets in the dataset were sorted
in decreasing order of intensity, so, as we are using
a negative emotion, a higher TSS indicates a lower
intensity, and therefore a correlation between TSS
and the scores in the dataset. This gave us the im-
pression that average to good performance could
be achieved simply by using the TSS data of each
individual tweet. Our approach to building the sta-
tistical model then consisted of using a simple lin-
ear regression (best fit with least squares), using
Lingmotif’s Text Sentiment Score (TSS) as the in-
dependent variable.

For the analysis, we decided to include the emo-
tion word as part of the text to be analyzed. This
would ensure that at least one word of the same
polarity was included in every tweet. This turned
out not to be a good solution, as we will discuss in
section 5 below.
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Figure 2: Lingmotif TSS vs. intensity in the anger
training dataset

Dataset Pearson Spearman
Anger 0.324 0.324
Fear 0.466 0.454
Sadness 0.436 0.449
Joy 0.408 0.393
Average 0.409 0.405

Table 3: Official results.

This first impression, however, turned out no to
be too accurate. Figure 2 shows the scatter plot
of the anger training dataset in terms of intensity
vs Lingmotif’s TSS. As the figure shows, it is a
relatively poor predictor. The final results obtained
are detailed in Table 3.

5 Discussion

We believe these comparatively poor results were
due to the fact that Lingmotif’s TSS is not well
suited to extremely short texts. Even though iden-
tification of sentiment words (or hashtags) and ex-
pressions is fairly good, thanks to the wide cov-
erage of the Lingmotif Lexicon and sentiment
shifters, the intensity reflected by TSS does not
seem to finely reflect the intensity as perceived by
human annotators of tweets.

As expected, there were also a number of analy-
sis errors, many of them related to the nature of so-
cial media text. An analysis of the annotated text,
which Lingmotif produces, allowed us to discover
certain recurrent problems:

• Unaccounted/bad shifters: ”zero tolerance
for honesty her alliance”

• Overreaching of shifters: ””Why are people
that do [not have iPhones so bitter] about
iPhones????”

• Bad spelling and/or grammar: ”These guys
dcan not get nothing right”

• Irony and sarcasm: ”thanks or saying My
wife and I were getting our iphones today and
then losing both of them with no eta thanks”

• Complex wording: ”You will never find
someone who loved you like I did. And that
my love, will be my revenge.”

Obviously, some of these issues are harder to
fix than others. Irony and sarcasm are possibly the
hardest cases to deal with automatically, and are
very common in social media short texts.7 Others,
however, are of a more practical nature and easier
to tackle.

Since the EmoInt organizers allowed partici-
pants in the shared task to keep uploading results
after the competition was over, we took this oppor-
tunity to tackle some of these issues. We started by
removing the emotion tag from the tweets, which,
in retrospect, we consider a bad decision. We
then reduced the range of far-reaching sentiment
shifters to avoid overreaching and adapt to the sim-
pler syntactic structures found in tweets.

Another recurrent issue we found is repetitions
of emojis. As explained in section ?? above, Ling-
motif’s current TSS uses text length, in terms of
number of lexical items to determine intensity. In
”regular” texts, for the same text length, the num-
ber of lexical items falls within consistent ranges.
However, repetition of emojis as an intensifica-
tion of emotion is very common in social media
text, and, when emojis are treated as lexical items,
as we have experimented here for the first time,
we obtain some cases where the number of lexical
items exceeds by far the average frequency in texts
of that length. The result is that the tweet is treated
by Lingmotif as a longer text, thus calculating the
wrong intensity. We avoided this problem by con-
trolling character repetition during preprocessing,
and limiting it to three consecutive same emojis.

Even after this, we realized that our current
thresholds for binning texts in terms of their length
was too fine, and resulted in tweets falling in one
one of three categories according to their length.
We fixed this by defining fewer (broader) cate-
gories in the lower end of the range, thus mak-
ing sure that all tweets fall within the same cate-
gories in terms of text length. The new text length

7Wallace et al. (2014) report that 10-15 percent of mes-
sages on reddit.com exhibit some form of irony or sarcasm.
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Dataset Pearson Spearman
Anger 0.423 0.425
Fear 0.524 0.524
Sadness 0.490 0.470
Joy 0.492 0.490
Average 0.482 0.477

Table 4: Results after adjustments

threshold (25 lexical items) is based on the maxi-
mum number of lexical items found on the EmoInt
datasets.8

After applying the above-mentioned adjust-
ments and fixes, we ran the system again to mea-
sure their effect, if any. Results were significantly
improved, as is reflected in Table 4.

It would have been interesting to experiment
with multiple regression using other sentiment
features provided by our system, something we
were unable to do for this task due to time limi-
tations. In particular, we feel that using the raw
pos score and neg score features would have pro-
duced better results. Another possibility would be
to use pos items and neg items. The difference
being that the valence values assigned in the lex-
icon are ignored, and only polarity is taken into
account.

6 Conclusions

This work has been extremely useful to us. We
now have a clearer picture of what it means to deal
with social media short texts, and the difficulties
they pose. This task gave us the chance to adapt
our analysis system in a number of ways, at least in
terms of form (emojis, character repetitions, etc.).

From a linguistic perspective, we have also
found clear evidence that dealing with short texts
of the type commonly found in social media call
for specific adaptations of our system than the
merely superficial ones we have described in this
paper. Not only are there a number of formal dif-
ferences, but the message itself is expressed in ex-
tremely condensed ways.

Our most relevant conclusion is that Lingmo-
tif’s present sentiment score may not be a good
predictor because it does not encapsulate the fea-
tures it is based on optimally, and we think better
results would be achieved by combining such fea-
tures (pos score, neg score, lex items, and others)
using more sophisticated statistical learning meth-

8After rounding it up. The actual highest number of lexi-
cal items found in the EmoInt datasets was 22. The average
number of lexical items per tweet was 9.18.

ods, a path that we will explore in future develop-
ments.
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Abstract

In this paper we describe a deep learning
system that has been designed and built
for the WASSA 2017 Emotion Intensity
Shared Task. We introduce a representa-
tion learning approach based on inner at-
tention on top of an RNN. Results show
that our model offers good capabilities and
is able to successfully identify emotion-
bearing words to predict intensity without
leveraging on lexicons, obtaining the 13th

place among 22 shared task competitors.

1 Introduction

Twitter is a huge micro-blogging service with
more than 500 million tweets per day from dif-
ferent locations in the world and in different lan-
guages. This large, continuous, and dynamically
updated content is considered a valuable resource
for researchers. In particular, many of these mes-
sages contain emotional charge, conveying af-
fectemotions, feelings and attitudes, which can be
studied to understand the expression of emotion in
text, as well as the social phenomena associated.

While studying emotion in text it is commonly
useful to characterize the emotional charge of a
passage based on its words. Some words have af-
fect as a core part of their meaning. For example,
dejected and wistful denote some amount of sad-
ness, and are thus associated with sadness. On the
other hand, some words are associated with affect
even though they do not denote affect. For exam-
ple, failure and death describe concepts that are
usually accompanied by sadness and thus they de-
note some amount of sadness.

While analyzing the emotional content in text,
mosts tasks are almost always framed as classi-
fication tasks, where the intention is to identify
one emotion among many for a sentence or pas-

sage. However, it is often useful for applications
to know the degree to which an emotion is ex-
pressed in text. To this end, the WASSA-2017
Shared Task on Emotion Intensity (Mohammad
and Bravo-Marquez, 2017b) represents the first
task where systems have to automatically deter-
mine the intensity of emotions in tweets. Con-
cretely, the objective is to given a tweet containing
the emotion of joy, sadness, fear or anger, deter-
mine the intensity or degree of the emotion felt
by the speaker as a real-valued score between zero
and one.

The task is specially challenging since tweets
contain informal language, spelling errors and text
referring to external content. Given the 140 char-
acter limit of tweets, it is also possible to find some
phenomena such as the intensive usage of emoti-
cons and of other special Twitter features, such as
hashtags and usernames mentions —used to call
or notify other users. In this paper we describe
our system designed for the WASSA-2017 Shared
Task on Emotion Intensity, which we tackle based
on the premise of representation learning without
the usage of external information, such as lexi-
cons. In particular, we use a Bi-LSTM model
with intra-sentence attention on top of word em-
beddings to generate a tweet representation that is
suitable for emotion intensity. Our results show
that our proposed model offers interesting capabil-
ities compared to approaches that do rely on exter-
nal information sources.

2 Proposed Approach

Our work is related to deep learning techniques
for emotion recognition in images (Dhall et al.,
2015) and videos (Ebrahimi Kahou et al., 2015),
as well as and emotion classification (Lakomkin
et al., 2017). Our work is also related to Liu and
Lane (2016), who introduced an attention RNN
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for slot filling in Natural Language Understanding.
Since in the task the input-output alignment is ex-
plicit, they investigated how the alignment can be
best utilized in encoder-decoder models conclud-
ing that the attention mechanisms are helpful.

EmoAtt is based on a bidirectional RNN that
receives an embedded input sequence x =
{x1, ..., xn} and returns a list of hidden vec-
tors that capture the context each input token
{h1, ..., hn}. To improve the capabilities of the
RNN to capture short-term temporal dependencies
(Mesnil et al., 2013), we define the following:

x̄i = [xi−d; ...;xi; ...;xi+d] (1)

Where x̄i can be regarded as a context win-
dow of ordered word embedding vectors around
position i, with a total size of 2d + 1. To fur-
ther complement the context-aware token repre-
sentations, we concatenate each hidden vector to
a vector of binary features bi, extracted from each
tweet token, defining an augmented hidden state
h̄i = [hi; bi]. Finally, we combine our n aug-
mented hidden states, compressing them into a
single vector, using a global intra-sentence atten-
tional component in a fashion similar to Vinyals
et al. (2015). Formally,

uj = v> tanh(Wa[h̄n; h̄j ]) (2)

αj = softmax(uj) (3)

t =
n∑

j=1

αj · h̄j (4)

Where t is the vector that compresses the input
sentence x, focusing on the relevant parts to esti-
mate emotion intensity. We input this compressed
sentence representation into a feed-forward neural
network, ŷ = Wst, where ŷ is the final predicted
emotion intensity. As a loss function we use the
mini-batch negative Pearson correlation with the
gold-standard.

3 Experimental Setup

To test our model, we experiment using the train-
ing, validation and test datasets provided for
the shared task (Mohammad and Bravo-Marquez,
2017a), which include tweets for four emotions:
joy, sadness, fear, and anger. These were anno-
tated using Best-Worst Scaling (BWS) to obtain
very reliable scores (Kiritchenko and Mohammad,
2016).

Dataset Tweet Length (tokens) Vocab. in GloVeMean Min Max
Fear 17.849 2 37 60.8 %
Joy 17.480 2 42 65.0 %

Sadness 18.285 2 38 65.5 %
Anger 17.438 1 41 65.8 %

Average 17.776 1.75 39.5 64.3 %

Table 1: Data summary.

We experimented with GloVe1 (Pennington
et al., 2014) as pre-trained word embedding vec-
tors, for sizes 25, 50 and 100. These are vec-
tors trained on a dataset of 2B tweets, with a to-
tal vocabulary of 1.2 M. To pre-process the data,
we used Twokenizer (Gimpel et al., 2011), which
basically provides a set of curated rules to split
the tweets into tokens. We also use Tweeboparser
(Owoputi et al., 2013) to get the POS-tags for each
tweet.

Table 1 summarizes the average, maximum and
minimum sentence lengths for each dataset af-
ter we processed them with Twokenizer. We can
see the four corpora offer similar characteristics
in terms of length, with a cross dataset maximum
length of 41 tokens. We also see there is an im-
portant vocabulary gap between the dataset and
GloVe, with an average coverage of only 64.3 %.
To tackle this issue, we used a set of binary fea-
tures derived from POS tags to capture some of
the semantics of the words that are not covered by
the GloVe embeddings. We also include features
for member mentions and hashtags as well as a
feature to capture word elongation, based on regu-
lar expressions. Word elongation is very common
in tweets, and is usually associated to strong senti-
ment. The following are the POS tag-derived rules
we used to generate our binary features.

• If the token is an adjective (POS tag = A)

• If the token is an interjection (POS tag = !)

• If the token is a hashtag (POS tag = #)

• If the token is an emoji (POS tag = E)

• If the token is an at-mention, indicating a user
as a recipient of a tweet (POS tag = @)

• If the token is a verb (POS tag = V)

• If the token is a numeral (POS tag = $)

1nlp.stanford.edu/projects/glove
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• if the token is a personal pronoun (POS tag =
O)

While the structure of our introduced model
allows us to easily include more linguistic fea-
tures that could potentially improve our predictive
power, such as lexicons, since our focus is to study
sentence representation for emotion intensity, we
do not experiment adding any additional sources
of information as input.

In this paper we also only report results for
LSTMs, which outperformed regular RNNs as
well as GRUs and a batch normalized version of
the LSTM in on preliminary experiments. The
hidden size of the attentional component is set to
match the size of the augmented hidden vectors
on each case. Given this setting, we explored dif-
ferent hyper-parameter configurations, including
context window sizes of 1, 3 and 5 as well as RNN
hidden state sizes of 100, 200 and 300. We exper-
imented with unidirectional and bidirectional ver-
sions of the RNNs.

To avoid over-fitting, we used dropout regular-
ization, experimenting with keep probabilities of
0.5 and 0.8. We also added a weighed L2 regu-
larization term to our loss function. We experi-
mented with different values for weight λ, with a
minimum value of 0.01 and a maximum of 0.2.

To evaluate our model, we wrapped the pro-
vided scripts for the shared task and calculated the
Pearson correlation coefficient and the Spearman
rank coefficient with the gold standard in the vali-
dation set, as well as the same values over a subset
of the same data formed by taking every instance
with a gold emotion intensity score greater than or
equal to 0.5.

For training, we used mini-batch stochastic gra-
dient descent with a batch size of 16 and padded
sequences to a maximum size of 50 tokens, given
the nature of the data. We used exponential decay
of ratio 0.9 and early stopping on the validation
when there was no improvement after 1000 steps.
Our code is available for download on GitHub 2.

4 Results and Discussion

In this section we report the results of the exper-
iments we performed to test our proposed model.
In general, as Table 2 shows, our intra-sentence
attention RNN was able to outperform the Weka
baseline (Mohammad and Bravo-Marquez, 2017a)

2github.com/epochx/emoatt

on the development dataset by a solid margin.
Moreover, the model manages to do so without
any additional resources, except pre-trained word
embeddings. These results are, however, reversed
for the test dataset, where our model performs
worse than the baseline. This shows that the model
is not able to generalize well, which we think is
related to the missing semantic information due
to the vocabulary gap we observed between the
datasets and the GloVe embeddings.

To validate the usefulness of our binary fea-
tures, we performed an ablation experiment and
trained our best models for each corpus without
them. Table 3 summarizes our results in terms of
Pearson correlation on the development portion of
the datasets. As seen, performance decreases in
all cases, which shows that indeed these features
are critical for performance, allowing the model to
better capture the semantics of words missing in
GloVe. In this sense, we think the usage of ad-
ditional features, such as the ones derived from
emotion or sentiment lexicons could indeed boost
our model capabilities. This is proposed for future
work.

On the other hand, our model also offers us very
interesting insights on how the learning is per-
formed, since we can inspect the attention weights
that the neural network is assigning to each spe-
cific token when predicting the emotion intensity.
By visualizing these weights we can have a clear
notion about the parts of the sentence that the
model considers are more important. As Figure 1
shows, we see the model seems to be have learned
to attend the words that naturally bear emotion or
sentiment. This is specially patent for the exam-
ples extracted from the Joy dataset, where posi-
tive words are generally identified. However, we
also see some examples where the lack of seman-
tic information about the input words, specially
for hashtags or user mentions, makes the model
unable to identify some of these the most salient
words to predict emotion intensity. Several pre-
processing techniques can be implemented to alle-
viate this problem, which we intend to explore in
the future.

4.1 Anger Dataset

For the anger dataset, our experiments showed that
GloVe embeddings of dimension 50 outperformed
others, obtaining an average gain of 0.066 corre-
lation over embeddings of size 25 and of 0.021
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Corpus Dropout Embeddings λ h
EmoAtt Baseline

ρdev ρtest ρdev ρtest

Sadness 0.8 GloVe Twitter 50 0.20 50 0.586 0.520 0.562 0.648
Joy 0.8 GloVe Twitter 50 0.20 100 0.790 0.537 0.703 0.654

Anger 0.5 GloVe Twitter 50 0.01 100 0.734 0.470 0.605 0.639
Fear 0.9 GloVe Twitter 50 0.05 100 0.644 0.561 0.574 0.652

Average 0.689 0.522 0.611 0.648

Table 2: Summary of the best results.

Dataset w/features w/o features
Sadness 0.586 0.543

Joy 0.790 0.781
Anger 0.734 0.662
Fear 0.644 0.561

Table 3: Impact of adding our binary features.

Figure 1: Example of attention weights for the Joy
dataset. White denotes more weight.

for embeddings of size 100. However on ly the
first of these values was significant, with a p-value
of 3.86 × 10−5. Regarding the hidden size of
the RNN, we could not find statistical difference
across the tested sizes. Dropout also had inconsis-
tent effects, but was generally useful.

4.2 Joy Dataset

In the joy dataset, our experiments showed us
that GloVe vectors of dimension 50 again out-
performed others, in this case obtaining an aver-
age correlation gain of 0.052 (p = 5.6 × 10−2)
over embeddings of size 100, and of 0.062 (p =

3.1×10−2) for size 25. Regarding the hidden size
of the RNN, we observed that 100 hidden units of-
fered better performance in our experiments, with
an average absolute gain of 0.052 (p = 6.5×10−2)
over 50 hidden units. Compared to the models
with 200 hidden units, the performance difference
was statistically not significant.

4.3 Fear Dataset

On the fear dataset, again we observed that em-
beddings of size 50 provided the best results, of-
fering average gains of 0.12 (p = 7 × 10−4) and
0.11 (p = 1.9 × 10−3) for sizes 25 and 100, re-
spectively. When it comes to the size of the RNN
hidden state, our experiments showed that using
100 hidden units offered the best results, with av-
erage absolute gains of 0.117 (p = 9× 10−4) and
0.108 (p = 0.002.4×10−3) over sizes 50 and 200.

4.4 Sadness Dataset

Finally, on the sadness datasets again we exper-
imentally observed that using embeddings of 50
offered the best results, with a statistically sig-
nificant average gain of 0.092 correlation points
(p = 1.3 × 10−3) over size 25. Results were sta-
tistically equivalent for size 100. We also observed
that using 50 or 100 hidden units for the RNN of-
fered statistically equivalent results, while both of
these offered better performance than when using
a hidden size of 200.

5 Conclusions

In this paper we introduced an intra-sentence at-
tention RNN for the of emotion intensity, which
we developed for the WASSA-2017 Shared Task
on Emotion Intensity. Our model does not make
use of external information except for pre-trained
embeddings and is able to outperform the Weka
baseline for the development set, but not in the test
set. In the shared task, it obtained the 13th place
among 22 competitors.
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Abstract 

The EmoInt-2017 task aims to determine a 
continuous numerical value representing 
the intensity to which an emotion is ex-
pressed in a tweet. Compared to classifica-
tion tasks that identify 1 among n emo-
tions for a tweet, the present task can pro-
vide more fine-grained (real-valued) sen-
timent analysis. This paper presents a sys-
tem that uses a bi-directional LSTM-CNN 
model to complete the competition task. 
Combining bi-directional LSTM and 
CNN, the prediction process considers 
both global information in a tweet and lo-
cal important information. The proposed 
method ranked sixth among twenty-one 
teams in terms of Pearson Correlation Co-
efficient. 

1 Introduction 

Categorical and dimensional representations are 
two major approaches to representing emotional 
states (Calvo and Kim, 2013; Gunes and Schuller, 
2013). The categorical approach represents emo-
tional states using several discrete classes such as 
positive and negative (binary) or Ekman’s (1992) 
six basic emotions (anger, happiness, fear, sad-
ness, disgust, and surprise), which have been suc-
cessfully adopted in various sentiment applica-
tions (Pang and Lee 2008; Liu, 2012; Feldman, 
2013). Based on this representation, application 
tasks focus on classification (i.e., identify 1 
among n emotions for a given text). The dimen-
sional approach provides a more fine-grained (re-
al-valued) sentiment analysis. Knowing the inten-
sity or degree to which an emotion is expressed in 
text is useful for more intelligent sentiment appli-

cations (Thelwall et al., 2012; Paltoglou et al., 
2013; Malandrakis et al., 2013; Kiritchenko and 
Mohammad, 2016; Wang et al., 2016a; 2016b, Yu 
et al., 2016). 

The EmoInt-2017 task (Mohammad and Bravo-
Marquez, 2017b) seeks to automatically deter-
mine a continuous numerical value representing 
the intensity or degree to which an emotion is ex-
pressed in a tweet. That is, given a tweet and an 
emotion X, determine the intensity of emotion X 
felt by the speaker ranging from 0 (feeling the 
least amount of emotion X) to 1 (feeling the max-
imum amount of emotion X). The proposed sys-
tem uses word embeddings (Mikolov et al., 
2013a; 2013b) and a bi-directional LSTM-CNN 
model to complete the competition task. 

Word embeddings can capture both semantic 
and syntactic information of selected words and 
provide a low dimensional and continuous vector 
representation for them. Convoluational neural 
network (CNN) (Kim, 2014; Kalchbrenner et al., 
2014) is effective for extracting features in texts 
without considering the global information of that 
text. Long short-term memory (LSTM) (Tai et al., 
2015) can capture long-distance dependencies by 
sequentially modeling texts across words. The 
proposed bi-directional LSTM-CNN model com-
bines LSTM and CNN to model texts, encoding 
global information captured by LSTM in the most 
principal features extracted by CNN. 

We first use word vectors to transform tweets 
into text matrices. The bi-directional LSTM is ap-
plied to these matrices to build new text matrices. 
CNN is applied to the output of the bi-directional 
LSTM to obtain text vectors for emotion intensity 
prediction. LSTM, CNN and their combination 
are described in detail in the following section. 
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2 Bi-directional LSTM-CNN Model 

Figure 1 shows the overall framework of the pro-
posed Bi-directional LSTM-CNN model. For a 
given sentence, the system's input is a sentence 
matrix composed of the word vectors of all words 
and punctuation in the sentence. The sentence ma-
trix is further transformed into a new sentence 
matrix by the Bi-directional LSTM model. The 
new sentence matrix is then sequentially passed 
through a convolutional layer and a max pooling 
layer for feature extraction. The extracted features 
are then passed through a dense layer to build a 
sentence vector for emotion intensity prediction. 

2.1 Long Short-Term Memory (LSTM) 

The LSTM (Hochreiter et al., 1997) uses a gat-
ing mechanism to track the state of sequences. 
There are three gates and a memory cell in the 
LSTM architecture. The LSTM transition func-
tions are defined as follows: 
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Here jW , jU , jb  for { , , , }j i f o g∈  are the 

parameters to be learned. ht is the hidden state to 
be produced in time step t. The input vector xt  and 
the hidden state ht-1 are the input in time step t. 

( )σ ⋅  and tanh( )⋅  are the logistic sigmoid and hy-
perbolic tangent functions,   is the element-wise 
multiplication operator, and ti , tf , to  whose val-
ues are in (0, 1) are respectively called the input, 
forget and output gates. ct  is the internal memory 
cell. ti  controls how much new information will 
be stored in the current memory cell, tf  controls 
how much information from the old memory cell 
will be maintained and to  controls how much in-
formation will be output as the hidden state in the 
current time step. 

LSTM is theoretically powerful in language 
modelling due to its capability of representing a 
sentence or text with sequence order information. 
The last hidden state of the LSTM layer can be 

 
Figure 1: System architecture of the proposed Bi-directional LSTM-CNN model. 
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regarded as the text representation containing the 
contextual information of the text. However, 
LSTM is a biased model, where the words in the 
tail of a text are more dominant than the words in 
the header. Thus, prediction performance could be 
reduced when it is used to capture the emotion in-
tensity of a whole text, since the key components 
could appear anywhere in the text. 

To avoid this problem, we maintain the hidden 
states of all time steps, and sequentially use the 
hidden state to replace the original word vector 
input. Then we build a new text matrix. 

In addition, we replace the LSTM layer with a 
bi-directional LSTM layer consisting of two 
LSTMs running in parallel: one on the input se-
quence and the other on the reverse of the input 
sequence. At each time step, the hidden state of 
the bi-directional LSTM is the concatenation of 
the forward and backward hidden states. The hid-
den state can thus capture both past and future in-
formation. 

2.2 Convolutional Neural Network (CNN) 

The CNN architecture consists of a convolutional 
layer and a max pooling layer. The convolutional 
layer’s input is the bi-directional LSTM layer’s 
output which is a new text matrix. Once the new 
text matrix sequentially passes through the con-
volutional layer, the local n-gram features can be 
extracted. 

The max-pooling layer subsamples the output 
of the convolutional layer. Pooling is conducted 
by maintaining the max value of the result of each 
filter. The max-pooling layer can reduce the di-
mension of the extracted feature vector and extract 
the local dependency to maintain the most im-
portant information for prediction. 

The obtained vectors are then fed to a dense 
layer to build a text representation. Since emotion 
intensity is a continuous value, a linear decoder 

layer uses a linear regression to transform the text 
representation into a real value. 

3 Experiments and Evaluation 

This section evaluates the performance of the 
proposed bi-directional LSTM-CNN model by 
submitting the results to the EmoInt-2017 task. 

Dataset. The statistics of the official dataset 
(Mohammad and Bravo-Marquez, 2017a) used in 
this competition are summarized in Table 1. Each 
tweet was rated with a real-value (emotion inten-
sity) in the range of (0, 1). Training, development 
and test datasets are provided for four emotions: 
joy, sadness, fear, and anger. We trained four 
models corresponding to four emotions using their 
respective training sets without their development 
sets. The anger, joy and fear models used the ar-
chitecture of the proposed bi-directional LSTM-
CNN model. To improve results, the sadness 
model used the architecture of CNN model which 
excludes the bi-directional LSTM layer shown in 
Fig.1. For word embeddings, we used GloVe pre-
trained word vectors for Twitter 
(glove.twitter.27B) with 200 dimensions 
(Pennington et al., 2014). 

Implementation details. The hyper-parameters of 
the network are chosen based on the performance 
on the development set. In our experiments, we 
set the length of all tweets in the training set to be 

 Anger Fear Joy Sadness 

Training set 857 1147 823 786 

Development set 84 110 79 74 

Test set 760 995 714 673 

Max-length  
in training set 37 42 43 46 

Table 1: Summary of data statistics. 

 

 LSTM CNN BiLSTM-
CNN 

LSTM hidden 
state size 200 - 64 

Filter windows - 2 3 

Feature maps - 128 128 

Convolutional 
layer activation - ReLU ReLU 

Dense layer size - 64 64 

Dense layer ac-
tivation - ReLU ReLU 

Dense layer 
dropout  - 0.3 - 

Loss function MSE MSE MSE 

Optimizer adam adam adam 

Mini-batch size 10 10 10 

Table 2: Hyper-parameters Used 
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the maximum length in the training set. A linear 
activation function is used in the output layer. 
Other hyper-parameters are presented in Table 2. 

Evaluation metrics. The EmoInt-2017 task pub-
lished the results for all participants using the 
Pearson and Spearman correlation coefficient. 

Results. A total of twenty-one teams participated 
in the task. Table 3 shows the results of the pro-
posed bi-directional LSTM-CNN model. Table 4 
shows the results over the subset of the test data 
with a gold emotion intensity score greater than or 
equal to 0.5. Table 5 shows the experimental re-
sults for CNN, LSTM and their combineations af-
ter the release of test set ratings. LSTM used the 
last hidden state as the text vector, which caused 
the worse performance than CNN and BiLSTM-
CNN. In addition, BiLSTM-CNN performed a lit-
tle better than CNN and performed well for the 
subset with higher emotion intensity scores 
(>=0.5). 

4 Conclusions 

This study presents a deep learning approach to 
determine the emotion intensity of tweets. The 
proposed model combines long short-term 
memory networks and the convolutional neural 
networks to encode the global information cap-

tured by LSTM among the most principal fea-
tures extracted by CNN. Experimental results 
show that the proposed method archived good 
performance. Future work will focus on other 
deep learning approaches such as the attention-
based model and tree-LSTM to improve perfor-
mance, and adopt an additional sentiment corpus 
to allow the system to capture more sentiment in-
formation.  
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Abstract 

In this paper, we present a novel ensemble 
learning architecture for emotion intensity 
analysis, particularly a novel framework 
of ensemble method. The ensemble 
method has two stages and each stage 
includes several single machine learning 
models. In stage1, we employ both linear 
and nonlinear regression models to obtain 
a more diverse emotion intensity 
representation. In stage2, we use two 
regression models including linear 
regression and XGBoost. The result of 
stage1 serves as the input of stage2, so the 
two different type models (linear and non-
linear) in stage2 can describe the input in 
two opposite aspects. We also added a 
method for analyzing and splitting multi-
words hashtags and appending them to the 
emotion intensity corpus before feeding it 
to our model. Our model achieves 0.571 
Pearson-measure for the average of four 
emotions. 

1 Introduction 
Social media has evolved into a data source that is 
massive and growing rapidly. Analyzing the 
emotion of a user‘s tweet can be helpful to the 
tasks from personalized advertising to public 
health monitoring and surveillance. Emotion 
analysis is a warm area of Natural Language  
 

 

Processing (NLP) dealing with the intensity of 
emotion in tweets. (An.Y, et al., 2017) Traditional  
emotion analysis problems are usually 
classification tasks such as emotion classification 
(Bandhakavi, et al., 2017). Some of the methods of 
this task usually use manually designed semantic 
lexicon. However, these semantic lexicons 
usually are not general to different corpus and 
 targets and it will take much time to build the 
 
 semantic lexicon. And some researchers establish 
the models using signal machine learning 
algorithms such as Support Vector Machine 
(SVM) and naive Bayes (Tang B et al., 2016) 
However, such signal model just describes the 
corpus in only one aspect, which will lead to 
inaccuracy of the emotion analysis since every 
single model has its own disadvantages. In recent 
KDD CUPs, winner solutions are not signal 
models. (Sandulescu, et al 2016, Kadam et al 2015) 

Ensemble based methods are among the most 
widely used techniques for data science problems. 
Their popularity is because of their good 
performance compared with strong single learners 
while being quite easy to arrange in real-world 
applications. It has been proved in many 
competitions such as Kaggle competitions (Zou et 
al 2017) and KDD CUPs mentioned above. 
Ensemble algorithms usually perform well in the 
data learning tasks as they can be integrated with 
different signal algorithms and the strategy of 
ensemble can be adjusted according to each task. 

In this paper, we present a novel ensemble  
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learning architecture for emotion intensity 
analysis, particularly a novel framework of 
ensemble method. Our model participated in the 
WASSA-2017 shared task emotion intensity 
analysis in tweets. (Mohammad, S.M, et al2017) 
The goal of the task was to automatically 
determine the intensity or degree of emotion X 
when given a tweet and an emotion X. We treat 
this task as a regression problem. Our ensemble 
method includes two stages and each stage 
includes several single regression models. The 
method can obtain a diverse emotion intensity 
representation of the corpus. In stage1, we employ 
three models containing both linear and non-linear 
regression models and the result of stage1 serves 
as the input of the stage2. Stage2 has two 
regression models including linear regression and 
XGBoost. And finally, the results of the two 
models in stage2 are added with weights. 
Meanwhile, we analyze and split multi-words 
hashtags and this result is also in the algorithm. 
Our average Pearson-measure score for the 
average of four emotions is 0.571(shown in 
Table7). 

2 Related Work 

A large amount of work related to analyzing 
emotion have been done. A very broad overview 
of the existing work was presented in (Pang and 
Lee, 2008). Meanwhile, there are lots of related 
work using deeply models (Majumder et al, 2017). 
In their survey, the authors described existing 
techniques and approaches for the sentiment 
analysis and information retrieval. In the paper 
(Pang et al. 2002) which used machine learning 
models to predict sentiments in text, the approach 
showed that SVM classifiers trained using bag-of-
words features produced hopeful results. In the 
paper (Yang et al., 2007), the authors used 
emotion icons in the blog posts as significant 
indicators of users sentiment. The authors applied 
SVM classifier to classify sentiments at the 
sentence level and then study the overall 
sentiment of the document. However, social 
media sources, such as Twitter posts, presented 
many unsolved natural language processing (NLP) 
tasks and machine learning challenges. As the 
intensive study of machine learning in the NLP 
task, some of the key challenges including data 
imbalance, noise, and feature sparseness may be 
solved. 

3 System Description 

Fig 1 shows the architecture of our ensemble 
learning model. The core framework of our 
ensemble models includes the two stages. The 
ensemble model is an improved version of 
stacking (Wolpert, 1992; Zhou, 2012). After data 
processing and feature engineering, the features 
are sent to the stage1. We test various kinds of 
regression models. Finally, we find the four 
regression models can achieve satisfying 
performance on these features. (Table 6) In stage1, 
including Linear Regression, Huber Regression, 
Gradient Boost Decision Trees and XGBoost. The 
former two models are linear models and the latter 
two are non-linear. The output of the two different 
models will be gotten by linear and non-linear 
algorithms based on raw features, which 
guarantees the diverse representation of the raw 
features. With the output of stage1 serves as the 
input, stage2 also has both linear and non-linear 
models, including Huber Regression and 
XGBoost, which are covered by Ensemble block 
in the figure1.According to the characteristics of 
data, we carefully tune these models and find 
some tricks (such as ‘emoji’ expression) to 
achieve better performance than raw data. The 
tuning work will be discussed in following single 
model sections. 

3.1 XGBoost 

XGBoost (Chen, T et al,2016) is an open-source 
software library which provides the gradient 
boosting framework. From the project description, 
it aims to provide a Scalable, Portable and 
Distributed Gradient Boosting (GBM, GBRT, 
GBDT) Library. In this work, we use XGBoost to 
as one of the four signal models of stage1 and 
ensemble model in stage2.  

Figure 1: Architecture of the ensemble learning 
model. Note that “Ensemble” in stage2 contains 
linear regression and XGBoost models. 
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XGBoost has gained much popularity and 
attention recently as it was the algorithm of choice 
for many winning teams of a number of machine 
learning competitions. For example, in all the 29 
winning solutions published at Kaggle’s blog 
during 2015, 17 teams used XGBoost. 

3.2 Gradient Boosting Decision Tree 

Gradient Boosting Decision Tree (GBDT) uses 
decision trees as base learners and combines them 
into a single strong learner. (Drucker,1996) The 
final prediction of GBDT is the weighted sum of 
outputs from each tree. In Stage 1, the model is 
implemented by scikit-learn package 
(Pedregosa.F et al, 2011). There are some specific 
parameters in GBDT: the number of trees 
(iterations), learning rate, the maximum depth of 
each tree and the minimum number of samples in 
a leaf. The last two parameters control the size of 
each tree. Empirical results show that small values 
of learning rate favor better test error (Zeiler et al 
2012), so we set it as 0.03 in both Stage 1. In Stage 
1, we train 500 trees with no less than 50 samples 
in each leaf, since the data set is much larger. 

3.3 Linear Regression 
We use the implementation of regularized linear 
regression from scikit-learn (Pedregosa, F et al 2011) 
package, with liblinear library solver, to train 
learner. L2 regularization is chosen to avoid 
overfitting. We have done tuning work in the 
training dataset and tried to find the best set of 
parameters. Finally, the regularization strength is 
set to 50. Since the distribution of labels in 
training dataset is not uniform just like class 
imbalance in classification problem, the weight of 
positive samples is set to 100, while the weight of 
negative samples is 1. In addition, the values of all 
features are normalized to the range of [0,1] with 
the minimum-maximum scaler. 

3.4 Huber Regression 
The Huber Regressor (Jeng J et al 2009)optimizes 
the squared loss for the samples where |(y − 
X0w)/sigma| < epsilon and the absolute loss for the 
samples where |(y − X0w)/sigma| > epsilon, where 
w and sigma are parameters to be optimized. In 
Huber Regression, the parameter sigma is an 
adjustment factor to guarantee the robustness. In 
other word, if y is scaled up or down by a certain 
factor, we do not need to rescale the epsilon. The 

model we trained to achieve the best average 
Pearson-measure score 0.554. 

4 Feature Engineering 

4.1 Data Processing and Feature Extraction 
All the data used for training the emotion intensity 
regression model undergoes the following 
preprocessing algorithm. Firstly, to determine the 
importance of word in an emotion, we use a 
tokenize to separate the corpus into a series of 
single word. The TfidfVectorizer in the open 
source sickit-learning (Sklearn) is used to 
complete this. Secondly, the URL text and other 
useless specific symbols such as ‘/’ and ‘_’ should 
be removed from the features because this type of 
text may mislead the regression model. Then the 
context information is supposed to be considered 
since a word may not cover enough information in 
short texts. Finally consider the following two 
tweet, “Sometimes I get mad over something so 
minuscule I try to ruin somebodies life not like 
lose your job like get you into federal prison”and 
“Sometimes I get mad over something so 
minuscule I try to ruin somebodies life not like 
lose your job like get you into federal prison 
#anger “. The two tweets are nearly same except 
the last expression tags #anger, which leads to a 
different intensity. However, the symbol # is 
removed by TfidfVectorizer, and so is emoji 
expressions. As a result, these expression texts 
should be added into the features. Totally, the raw 
data is processed to features in following steps: 

1. Using Scikit-learn TfidfVectorizer to 
tokenize each tweet. 

2. Remove the useless text data including URL 
and specific symbol. 

emotions train numbers dev numbers 
anger 857 84 
sadness 786 74 
joy 823 110 
fear 1147 110 

Table 1: The numbers of instances training dataset 
and dev datasets 
3. Using N-gram (Brown, P. F et al 1992) to 

import the context information. In this work, 
N=2. 
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4. Since default model TfidfVectorizer will 
remove the emoji and tweet tags, these key 
expressions need to be recalled. 

4.2 Feature Selection 
The number of features for the four emotions is 
from 3722 to 3945 by methods of feature 
extraction mentioned above. However, some of 
them are redundant. To improve the efficiency, we 
design a feature selection strategy to further select 
the features. Specifically, to avoid overfitting and 
remove useless features, we design three different  

Table 2: anger’s words analysis 
validation sets (each one 10% of training dataset) 
and make sure that each feature has performance 
improvement on all of three validation sets, and 
then we choose it as an effective feature. This 
selection process is very important because we 
can detect if a feature is useful. Finally, 3010 
features out of more than 3722 are obtained. 

5 Experiments and Analysis 
To train and validate our models for this task, we 
used the dataset provided for Shared Task on 
Emotion Intensity. (Mohammad, S.M, et al2017)  
 We obtained 857 instances from the training 
datasets and 84 instances from the Development 
datasets for the anger intensity, and others show in 
Table1.We build four different models for the four 
Emotions: anger, sadness, joy and fear. Table 1 
shows the distribution of datasets about all 
subtasks. All the experiments have been 
developed using scikit-learn. The models were 
trained using the default parameters. All our 
experiments were performed on a machine with 
Intel Core i5 CPU @ 2.00GHz (4 cores), 8GB of 
RAM. 

5.1    Four Emotion Models  
The single model with best score is Huber 
Regressor, which gets the Pearson of 0.682 in 

anger task. In the training process of Huber 
Regressor, every word gets a score of intensity of 
anger. For example, the word “fucking” gets the 
0.609, which is the highest score of intensity of 

positive intensity  negative intensity 
nervous 
panic  
anxiety 
nightmare 
die  
shudder 
scared  
gonna 
comments 
cry 

0.883 
0.852 
0.789 
0.670 
0.524 
0.514 
0.470 
0.462 
0.449 
0.442 

terrific 
excited 
refuse 
wrong  
love 
serious 
year 
walking 
yes  
kissed 

-0.446 
-0.334 
-0.320 
-0.318 
-0.313 
-0.308 
-0.303 
-0.300 
-0.299 
-0.295 

Table 3: fear’s words analysis 

anger. In fact, the word “fucking” mostly means 
anger. So, the model can represent the intensity of 
the emotion precisely. Table 2,3,4,5 show the top 
positive and negative words in four subtasks. As 
the tables show, the words in the table can reflect 
the intensity of each emotions. 

Table 6 shows our results of the four models 
on the development datasets for anger emotion 
intensity prediction. The other three emotions` 
results are similar to this (not listed here). 

5.2    Ensemble Results  
Table 7 shows our results on the development 
datasets and the test datasets for all four subtasks. 
According to the scores and our ranking in 
leaderboard, we noticed that our model was not as 
we expected, which might mainly due to the 
following reasons: 

1. Recently most of teams in many 
competitions use Neural Networks. As we 
know, deep learning needs plentiful training 
dataset(Goodfellow,2016). 
 

positive intensity  negative intensity 
hilarious 
laughter 
thanks  
happy  
gets 
myahris.. 
meant 
lol  
exhilar.. 
nick_off.. 

0.612  
0.461  
0.444  
0.428  
0.426  
0.423  
0.420  
0.414  
0.406 
0.372 

pity  
hate 
barmy.. 
tears  
bit 
fucking 
sad  
say  
last  
stop 

-0.458 
-0.448 
-0.420 
-0.383 
-0.382 
-0.379 
-0.365 
-0.335 
-0.327 
-0.319 

Table 4: joy’s words analysis  
 

positive intensity  negative intensity 
fucking 
fuming 
outrage 
fuck  
angry 
furious 
boiling  
put 
offended 
raging 

0.609  
0.568  
0.554 
0.522  
0.501 
0.477  
0.412  
0.406  
0.403 
0.385 

love  
follow 
heart 
incense 
 fast  
better 
 live 
 pray 
laughing 
best 

-0.504 
-0.402 
-0.367 
-0.349 
-0.344 
-0.329 
-0.309 
-0.301 
-0.290 
-0.292 
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positive intensity 

 

negative intensity 
depressing 
depression  
sad  
sadness 
unhappy 
despair 
 sulk  
sick  
hard 
swp_roads 

0.723 
0.672 
0.603 
0.558 
0.517 
0.392 
0.381 
0.378 
0.367 
0.357 

pine 
serious 
issues 
moment 
single 
long  
why  
look  
love  
chill 

-0.458 
-0.336 
-0.334 
-0.331 
-0.321 
-0.320 
-0.313 
-0.294 
-0.292 
-0.284 

Table 5: sadness’s words analysis 
models Pearson 
LinearRegression 0.55061 
HuberRegressor 0.68261 
XGBoost 0.64796 
GBDT 0.63017 
Ensemble 0.68459 

Table 6: results of different models of anger 

However, our model did not use the Neural 
Networks and Word Embedding, because 
the number of training data is not abundant, 
but we will have try to apply the neural 
network method to this task in the future. 

2. We did not use grid-search to find the best set 
of parameters of each single model. So, our 
model can be improved. And we did not use 
complicated ensemble methods compared 
with ensemble methods described in 
(Dietterich, 2002). 

3. We did not use the extra information of the 
emotion intensity of every word which means 
that we learning the emotion intensity just 
from the datasets provided. The training 
datasets and development datasets all the 
information that we used in the task. 

Although our model has a gap with the top teams, 
we have some advantages as following: 

1. we did not consume excessive computing 
resources, and our training time is ms-level 
which is fast enough for this task. And our 
model is suitable for all the subtask while all 
the subtask has the same model and all the 
emotions intensity predicted is stable enough, 
which is robust in train set, development set 
and test set. 

2. After training, we can obtain an extra 
emotion lexicon which can be used for other 

Unsupervised learning task, such as obtain a 
unlabeled sentence emotion intensity as the 
scores of four subtask in dev and test datasets 
have no big difference. 

emotions dev Pearson test Pearson 
anger 0.68459 0.550 
sadness 0.47009 0.603 
joy 0.66913 0.556 
fear 0.56406 0.576 
average 0.59697 0.571 

Table 7: The results of dev datasets and test 
datasets (5% lower than baseline) 

6 Conclusion and Further Work 
Our model achieved moderate performance on the 
emotion intensity sentiment analysis task with 
very basic settings include the default setting of 
the parameters of the methods. Considering that 
the performance of our model was achieved by a 
sample settings, there is big achievement of better 
performance by adopting the more exquisite 
methods and the more feature engineering. We 
have several planned works to improve the 
performance in this task, including the more 
fusion of the methods and the statistical feature. 
We will also attempt to optimize our models 
further and use the word embedding which may 
provide additional information to improve our 
performance.  
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Abstract

This paper describes the UWaterloo affect
prediction system developed for EmoInt-
2017. We delve into our feature se-
lection approach for affect intensity, af-
fect presence, sentiment intensity and
sentiment presence lexica alongside pre-
trained word embeddings, which are uti-
lized to extract emotion intensity signals
from tweets in an ensemble learning ap-
proach. The system employs emotion spe-
cific model training, and utilizes distinct
models for each of the emotion corpora
in isolation. Our system utilizes gradient
boosted regression as the primary learning
technique to predict the final emotion in-
tensities.

1 Introduction

The goal of this EmoInt task is to predict the
intensity of affect expressions in a selection of
tweets. The intensity scores are floating point val-
ues between 0 and 1, representing low and high
intensities of the emotion being expressed, respec-
tively. The emotions analyzed in this shared task
are anger, fear, joy and sadness (Mohammad and
Bravo-Marquez, 2017b) (Mohammad and Bravo-
Marquez, 2017a).

This paper describes the techniques used to
clean tweets, build lexical features, find optimal
combinations of features to produce a final vec-
tor representation of a tweet and train general-
ized regression, gradient boosted regression and
neural-network computed regression models to fit
the vector representations to the intensity scores.

The following sections describe each of these
processes, followed by an enumeration of the
parameters that worked in favor of the best-
performing models, a discussion of the results and

potential approaches to boost model accuracy.

2 Related Work

A majority of the existing literature on emo-
tion/affect analysis on text focuses on classifi-
cation tasks which aim to predict the probabil-
ity distribution of a pre-defined set of emotions
in bodies of text (Alm et al., 2005) (Aman and
Szpakowicz, 2007) (Strapparava and Mihalcea,
2007). The VAD (valence, arousal and domi-
nance) model as a way of visualizing multiple as-
pects of each known emotion was proposed by
(Schlosberg, 1954), which has subsequently been
adopted by other studies in quantifying emotion
(Bradley and Lang, 1999).

This shared task is designed with the purpose
of detecting intensity of a tweet given an emo-
tion, which is comparable to detection of arousal
to stimulus in the VAD model. The immediate dif-
ference that is noted compared to emotion classi-
fication tasks is that the training data can be anno-
tated with cross-emotional intensity scores. The
annotated scores for the tweets is obtained using
Best-Worst Scaling, which increases the reliabil-
ity of continuous valued scores (Kiritchenko and
Mohammad, 2017).

3 Data Cleaning

Tweets, in general, are not always syntactically
well-structured and the language used doesn’t al-
ways strictly adhere to grammatical rules (Bar-
bosa and Feng, 2010). Our feature extraction ap-
proach doesn’t depend on syntactic features, rely-
ing solely on the presence of lexical features.

The grammatically incorrect use of language in
many published tweets also makes it a necessity to
clean the raw text in order to filter noisy data in-
cluding special characters, alphanumeric strings,
etc. The letter case for each tweet is standard-
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ized by converting all tweets to lowercase. Stop-
words are removed using NLTK (Bird, 2006). The
hashtags in the tweets are stripped of the # sym-
bol, and each of the hashtags are treated as regular
unigrams in the corpus. The twitter handles are
stripped away under the hypothesis that they are
entity references that aren’t correlated with affect.

All of the annotated lexica are also cleaned in
the exact same way as the tweets are, to ensure
that lexical pattern matching does not suffer as a
result of the cleaning.

4 Feature Extraction

We used two primary methods for feature extrac-
tion from the tweets’ raw text, namely annotated
lexicons (Section 4.1) and pre-trained word em-
beddings (Section 4.2)

4.1 Annotated lexicons

Our system utilizes curated lexicons for emo-
tion intensity/presence and sentiment inten-
sity/presence. We include sentiment lexicons with
the hypothesis that positive sentiment-polarity lex-
icon features would be positively correlated with
some emotions and negatively correlated with oth-
ers and vice-versa, since the emotion classes them-
selves possess an inherent sentiment polarity.

• NRC Affect Intensity Lexicon (AI): This
lexicon assigns distinct emotion labels to uni-
grams, and provides the intensity at which the
emotion is expressed. Each of the emotions
evaluated in the EmoInt shared task are rep-
resented in this lexicon, and a floating point
intensity score is assigned to each unigram-
emotion pair (Mohammad, 2017).

• NRC Emotion Lexicon (EL) & NRC Hash-
tag Emotion Lexicon (HE): These lexicons
contain the association of unigrams and Twit-
ter hashtags with eight emotions (inclusive of
the four emotions evaluated in this EmoInt
task). EL is manually annotated on Ama-
zon’s Mechanical Turk (EL) and is scored
either 0 or 1 implying whether or not the
unigram is associated with any of the lexi-
con’s eight emotion categories (Mohammad
and Turney, 2010). HE is generated automat-
ically from tweets with emotion-word hash-
tags and the features are floating point scores
ranging from 0 to 2.24, indicating the inten-
sity of the emotion category (Mohammad and

Turney, 2013).

• NRC Emoticon Lexicon (EC), NRC Hash-
tag Sentiment Lexicon (HS), NRC Emoti-
con Affirmative Context Lexicon and NRC
Emoticon Negated Context Lexicon (EAN)
& NRC Hashtag Affirmative Context Sen-
timent Lexicon and NRC Hashtag Negated
Context Sentiment Lexicon (HSAN): The
first two lexicons associate words with posi-
tive/negative sentiment and the other two as-
sociate words with similar sentiment labels
in affirmative or negated contexts generated
automatically from tweets with sentiment-
emoticons and sentiment-word hashtags. The
terms in these lexicons can be unigrams, bi-
grams or pairs of unigrams and bigrams. The
features are three-fold: a real-valued senti-
ment score denoted by the point-wise mu-
tual information between a term and the pos-
itive/negative class, the number of times the
term appears in each positive and negative
contexts (Kiritchenko et al., 2014) (Moham-
mad et al., 2013) (Zhu et al., 2014).

• SentiWordNet (SWN): SentiWordNet is an
opinion mining resource available through
NLTK. Words in this lexicon are related in
terms of synonymy. For each word present
in the WordNet lexicon, three floating point
sentiment scores are given: positive, negative
and objective, such that∑

i∈pos,neg,obj

word scorei = 1

The positive and negative scores are extracted
as features for each of the individual words
present in the cleaned tweets. If a word
does not have an entry or synonym in Senti-
WordNet, the positive and negative sentiment
scores are assumed to be zero (Esuli and Se-
bastiani, 2007).

• Emoji Valence (EV): This is a hand-
classified lexicon of Unicode emojis, rated on
a scale of -5 (negative) to 5 (positive)1.

• Depeche Mood (DM): This is a lexicon com-
prised of about 37,000 unigrams annotated
with real-valued scores for the emotional
states afraid, amused, angry, annoyed, don’t

1https://github.com/wooorm/
emoji-emotion
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Emotion Features P Sp P
(> 0.5)

Sp
(> 0.5)

anger W2V-GN, W2V-T, GV-T, AI, EL, EC, HS 0.705 0.686 0.521 0.507
fear W2V-GN, W2V-T, GV-T, AI, SWN, EL,

EC, EAN
0.713 0.694 0.558 0.525

joy W2V-GN, GV-T, SWN, EC, HE, HS 0.728 0.705 0.619 0.599
sadness W2V-T, GV-T, AI, SWN, EL, EC, EAN,

HE, HS
0.679 0.668 0.507 0.468

Table 1: Training Cross-validated Accuracy

Emotion Features P Sp P
(> 0.5)

Sp
(> 0.5)

anger W2V-GN, W2V-T, GV-T, AI, EC, HSL,
GV-CC1, GV-CC2

0.691 0.670 0.581 0.556

fear W2V-GN, W2V-T, GV-T, AI, SWN, EL,
EC, EAN, HE, GV-WG, GV-CC2, EV

0.716 0.696 0.558 0.523

joy W2V-GN, GV-T, AI, EC, HSL, HSAN,
GV-WG, GV-CC1, EV

0.728 0.733 0.567 0.556

sadness W2V-GN, W2V-T, GV-T, AI, SWN,
EAN, HE, HSAN, GV-CC2, EV

0.729 0.723 0.550 0.535

Table 2: Testing Accuracy - Features + ML

care, happy, inspired and sad (Staiano and
Guerini, 2014).

4.2 Word Embeddings

In addition to the features extracted from anno-
tated lexica, vector representations of each of the
tweets are generated from pre-trained word em-
beddings using large corpora. For our system,
we utilize six distinct word embedding sources in-
cluding two Word2Vec models, and four GloVe
models.

• Word2Vec Model - Google News (W2V-
GN), Tweets (W2V-T): Word2Vec is a tech-
nique for learning low-dimensional word em-
beddings for words in a corpus, based on
the continuous bag-of-words (CBOW) and
skip-gram models (Mikolov et al., 2013).
W2V-GN is trained on the Google News
corpus containing over 100 billion words.
It is a skip-gram model containing 300-
dimensional embeddings for 3 million dis-
tinct words and phrases2. W2V-T is a simi-
lar skip-gram model trained on tweets (Godin

2https://code.google.com/archive/p/
word2vec/

et al., 2015) and the embeddings produced
are 400-dimensional and real-valued3.

• GloVe Model - Tweets (GV-T), Wikipedia
+ Gigaword (GV-WG), Common Crawl
42B tokens (GV-CC1), Common Crawl
840B tokens (GV-CC2): GloVe is similar
to Word2Vec, in that it obtains dense vec-
tor representations of words. GloVe builds
a word co-occurrence matrix for the entire
corpus prior to training. This matrix is then
utilized to produce word and phrase vectors
based on their context of appearance in the
corpus (Pennington et al., 2014). The em-
beddings used in the system are 200- to 300-
dimensional and real-valued4.

The tweet vector representations using each of
these word embeddings could be obtained either
by averaging or summing up the real-valued word
vectors for each of the words that had a corre-
sponding trained vector representation from the
pre-trained embeddings. Our system averages the
word vectors, to avoid introducing a tweet length
bias.

3http://www.fredericgodin.com/software
4https://nlp.stanford.edu/projects/

glove
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Emotion P Sp P (> 0.5) Sp (> 0.5)
anger 0.692 0.678 0.529 0.519
fear 0.713 0.701 0.553 0.531
joy 0.676 0.680 0.422 0.423
sadness 0.704 0.711 0.556 0.554

Table 3: Testing Accuracy: Pre-trained Embedding Features + Shallow Neural Network

5 Model Learning

Since the task requires the computation of a real-
valued emotion intensity score for the tweets in the
test set, we explored several regression methods.

The models initially tested including simple lin-
ear regression and generalized linear models like
Gaussian process regression and Bayesian ridge
regression.

We also conducted experiments using two feed-
forward neural network (NN) architectures imple-
mented in Keras5. The shallow NN architecture
(Fig.1) uses a hidden layer densely connected to a
sigmoid output neuron, while the deep NN archi-
tecture (Fig.2) uses iteratively smaller dense hid-
den layers culminating in a sigmoid output neuron.

The first layer for the shallow NN as well as all
layers for the deep NN were comprised of densely
connected ReLU activation units. The learning
method used is stochastic gradient descent (SGD).

Figure 1: Shallow NN Architecture

However, all of these models were outper-
formed by gradient boosted regression models.
The final system implementation uses the boosted
regression implementation provided by the XG-
Boost library6 (Chen and Guestrin, 2016).

6 System Tuning

The system was tuned with respect to feature se-
lection by performing an exhaustive grid search

5https://github.com/fchollet/keras
6http://dmlc.cs.washington.edu/

xgboost.html

Figure 2: Deep NN Architecture

in the space of different possible combinations for
the features. Consequently, the emotion intensity
scores for each of the four emotions’ test sets are
predicted using models that have been trained on
different subsets of the features, the accuracy re-
sults of which are discussed in Section 7.

Polynomial transformations of the features ex-
tracted from the annotated lexicons described in
Section 4.1 were used to introduce non-linearity
into the final feature space. The hyper-parameters
of the gradient boosted regression model, namely
tree-depth and number of boosted trees7, were
tuned using a randomized search strategy. The
tree-depth retained it’s library-default value of 3,
and the number of boosted trees was set to 30,000.

Each of the feature sets was determined using
10-fold cross-validated evaluation on the combi-
nation of the training and development datasets.

7http://xgboost.readthedocs.io/en/
latest/python/python_api.html
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7 Results

The systems in this shared task are evaluated using
the Pearson correlation coefficient, which com-
putes a bivariate linear correlation, and the Spear-
man rank correlation coefficient, which is a non-
parametric version of the Pearson correlation co-
efficient, and relies on rank/ordering rather than
absolute values (Mohammad and Bravo-Marquez,
2017b). These scores are denoted by P and Sp,
respectively, in the results tables.

We present the results of the system submitted
to the competition leaderboard in Table 1. The av-
erage scores of the system were 0.685 (Pearson)
and 0.671 (Spearman). Post-competition evalu-
ation on the gold labels of the test set are pre-
sented in tables 2 and 3. The correlation scores
improved to 0.716 (Pearson) and 0.705 (Spear-
man) after grid-search testing including new fea-
tures (EV & DM) using gradient boosted regres-
sion, as shown in table 2. Table 3 presents accu-
racy scores obtained using the Shallow NN archi-
tecture using only word embeddings as features.

Our system ranked 4th overall, and 3rd for the
intensity range 0.5 to 1, on the task leaderboard.

8 Discussion

The results demonstrate that there is a different set
of features that works best for each emotion in the
task. It is observed that pre-trained word embed-
dings learned using Word2Vec and GloVe domi-
nate the set of best performing features for nearly
every emotion.

From experimental observations on the NN ar-
chitectures in Keras, it was determined that in-
creasing the depth of the network did not signifi-
cantly improve its prediction accuracy. It was also
noticed that the inclusion of regular & polynomial
versions of the annotated lexicon features as fea-
tures severely hampered the network’s predictive
accuracy. This could potentially be addressed by
scaling each feature’s values into a standard Gaus-
sian distribution, or by clamping gradients to pre-
determined boundary values.

It is also worth noting that sentiment polarity
lexicons boosted predictive accuracy for all four
models, corroborating our hypothesis to justify
their inclusion in the feature set.

9 Conclusion

We have described UWat-Emote, used at EmoInt
to predict the emotion intensity of tweets. Our best

system utilizes a combination of lexical resources
and word embeddings to obtain vector representa-
tions of tweets, and uses gradient boosted regres-
sion to predict real-valued emotion intensities.

The system utilizes separate models for each
emotion and achieves average Pearson and Spear-
man correlation scores of 0.716 and 0.705 respec-
tively. Our implementation is fully open-sourced
for replicability8.

In the future, we would like to explore aspect
based affect intensity for larger bodies of text,
such as customer reviews for products and ser-
vices. We would also like to evaluate normalized
polynomial-kernel features and integrate the anno-
tated lexicon features into convolutional and recur-
rent neural-network architectures.
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Abstract

This paper presents the combined LIPN-
UAM participation in the WASSA 2017
Shared Task on Emotion Intensity. In
particular, the paper provides some high-
lights on the system that was presented
to the shared task, partly based on the
Tweetaneuse system used to participate
in a French Sentiment Analysis task
(DEFT2017). We combined lexicon-based
features with sentence-level vector rep-
resentations to obtain a random forest
model.

1 Introduction

Nowadays, an important quantity of the textual in-
formation that is produced everyday on the Web
originates from social media and commercial sites
with crowd-sourced reviews. These data include
beliefs, opinions and judgments, expressed in var-
ious forms, sometimes resorting to the use of fig-
urative language, such as irony, which makes an
automated analysis of these texts even more dif-
ficult. Therefore, there is an increased interest
by academia and industry towards the field of
Sentiment Analysis (SA). This research activity
has been mainly focused to extract and character-
ize opinions by recognizing the attitude (positive,
negative or objective) of an opinion holder on a
certain topic, or determine the global polarity of a
given text.

A more recent and emerging field consists of
studying the opinions in a more detailed way, re-
vealing the underlying emotions, such as anger,
fear, joy and disgust. One of the pioneer works
in this sense is the one by (Strapparava and Mi-
halcea, 2008), in which they proposed for the
first time a dataset dedicated to emotion analysis
and some knowledge and corpus-based approach.

Their proposal included texts annotated with six
emotions: anger, disgust, fear, joy, sadness and
surprise. More recently, (Cambria et al., 2014)
proposed Sentic.net1, a resource for concept-level
sentiment analysis, containing word senses anno-
tated with weighted emotions.

The Shared Task proposed at WASSA2017
(Mohammad and Bravo-Marquez, 2017) aims to
steer research about sentiments and emotions in
text towards the intensity of the expressed emo-
tions, and not only on binary polarity values or
assigning an emotion to the texts. This paper de-
scribes the system submitted to the WASSA 2017
shared task by the joint LIPN-UAM team, in part
based on the “Tweetaneuse” system that partici-
pated to the French Sentiment Analysis task DEFT
2017 (Benamara et al., 2017). The rest of the pa-
per is structured as follows: in Section 2 we de-
scribe the features used and the machine learn-
ing approach; in Section 3 we show the results
obtained on the official data together with some
experiments to verify the effectiveness of the pro-
posed features. Finally, in Section 4 we draw some
conclusion about our participation.

2 System Description

The system that we built for our participation in
the Shared Task at WASSA2017 is based on a set
of 8 features derived from lexicons and various
textual clues, and 600 features derived from word
embeddings. These features are used to train a ran-
dom forest regressor. These features are inspired
by those previously used for our participation in
the French sentiment analysis task at DEFT2017.
The basic textual clues were the following ones:

• smi: presence of a smiley;

1http://sentic.net/
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• shout: number of uppercase words (to detect
the fact that the writer is shouting);

• excl: number of exclamation marks;

• int: number of interrogation marks.

We used 4 different lexicons: sentic.net (Cam-
bria et al., 2014), labMT (Dodds et al., 2011), the
NRC Affect Intensity lexicon (Mohammad, 2017),
and the emojis sentiment ranking by (Novak et al.,
2015). We already talked about sentic.net in Sec-
tion 1. We limited the use of sentic.net to the
polarity values since the shared task did not in-
volve determining which emotion was contained
in the sentence but only its intensity. LabMT is a
lexicon obtained via Mechanical Turk that is cur-
rently used in the hedonometer.org project to mea-
sure average happiness in Twitter. We thought that
this lexicon would be particularly useful for the
joy and sadness categories. The emojis sentiment
ranking is a lexicon obtained from a set of 1.6 mil-
lion tweets manually annotated with their polar-
ity strength, and is currently, to our knowledge,
the only available resource providing the polarity
and the intensity for emojis. The features extracted
from these lexicons were the following ones:

• pol: average of sentic.net polarity values in
the sentence;

• happiness: average of happiness values ac-
cording to labMT;

• nrc ai: average of scores from the NRC af-
fect intensity lexicon (according to the emo-
tion being tested);

• emoji: sum of scores from the emojis senti-
ment ranking.

The scores for all dictionaries have been mod-
ified to take into account the position where the
score is detected. This modification reflects the
idea that affective words towards the end of the
sentence are more important than those at the be-
ginning or the middle of the sentence. This is par-
ticularly true in the case of tweets where there may
be affective hashtags at the end of the message,
such as in the case “All I want to do is watch some
netflix but I am stuck here in class. #depressing”
(we normalized hashtags by removing the leading
#). The formula used is the following one:

ŝ(w) = s(w) ∗ (1 + 0.15 ∗ rpos(w))

Where rpos(w) is the relative posi-
tion of word w within the sentence (i.e.
pos(w)/len(sentence)) and s(w) is the original
score from the lexicons. The 0.15 weight was
arbitrarily chosen.

These features are completed with sentence-
level vector representations based on word em-
beddings. Word embeddings, as introduced by
(Bengio et al., 2006), are vector representations of
words that capture a certain number of syntactic
and semantic relationships, generated with neural
networks. One of the problems with word embed-
dings is how to compose them to obtain a repre-
sentation of a sentence, knowing that sentences
may have variable sizes. (De Boom et al., 2016)
showed that it’s possible to exploit the properties
of embeddings to represent sentences with the av-
erage or a combination of the max and the min
(per dimension) of the vectors of the composing
words. We chose to use the second method since
it is the one that achieved the best results in their
experiments.

In our work, we used the pre-trained vectors
trained on 100 billion words from the Google
News dataset used for word2vec (Mikolov et al.,
2013). The vocabulary size is 3 million words and
the vector length is 300. Therefore, in our system
each sentence is represented by a vector of size
600.

The advantages of this representation are two:
on one hand, it is more concise than the bag-of-
words representation (600 dimensions while a typ-
ical BOW vector has thousands of components);
on the other, it compensates for the words that are
not observed in the training set (since the vocabu-
lary size for embeddings is >> than the vocabu-
lary size for the task training corpora).

3 Results

The official results are listed in Table 1. The sys-
tem ranked slightly below the baseline system, ex-
cept on the ‘sadness’ test set, where our system
was better. The results obtained for the emotion
intensities in the range 0.5− 1 (shown in Table 2)
are also very close to the baseline system, with the
exception of the results obtained on the ‘sadness’
test set. This evaluation scenario highlights some
problems that our system had on the ‘joy’ dataset.
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Test Set Pearson Spearman
anger 0.580 0.575
fear 0.639 0.630
joy 0.583 0.601
sadness 0.676 0.686
average 0.619 0.623
baseline 0.648 0.641

Table 1: Results obtained at the WASSA2017
Shared Task.

Test Set Pearson Spearman
anger 0.435 0.439
fear 0.496 0.463
joy 0.366 0.347
sadness 0.489 0.503
average 0.446 0.438
baseline 0.477 0.442

Table 2: Results obtained at the WASSA2017
Shared Task, for intensity values in the range
[0.5, 1.0].

We already observed during the development
phase that the system was quite ‘cautious’ in
the output scores, providing scores in the range
(0.3, 0.7), with some exceptions. We impute this
behaviour to two factors: the scarcity of extreme
examples in the training set, and the use of random
forests. However, we tried to use a Support Vector
Regressor but the results were significantly worse
(from 5 to 10% less depending on the test set).

Table 3 shows the results we obtained with dif-
ferent configurations of the system, in particular
using only vectors, or only dictionary and text-
based features. This experiment highlights the
fact that on the ‘joy’ dataset, lexicons and text
clues alone were able to beat the vector represen-
tations. On the other hand, we can observe that
when the vector representations worked, the sys-
tem was able to perform well. This is difficult to
explain, but we suspect it to be related to the data
used to train the vectors. We expect newswire data
to contain more details about negative events, such
as wars, natural disasters or accidents, which con-
tains more words related to fear and sadness. This
bias may result in modelling negative words better
than positive ones.

Finally, we carried out Correlation Feature Se-
lection (CFS) to test which features were most re-
lated to the intensity values. The CFS showed
that nrc ai and emoji were among the best fea-
tures for all datasets. Among the base features,
the CFS indicates that excl was important for ‘joy’
and ‘anger’, while shout was one of the best fea-
tures for ‘joy’ and ‘fear’.

Test Set All features Vectors Lexicons+base
anger 0.580 0.547 0.388
fear 0.639 0.632 0.439
joy 0.583 0.524 0.555
sadness 0.676 0.651 0.615
average 0.619 0.588 0.499

Table 3: Pearson correlation obtained with differ-
ent configurations of the system: Vectors - only
the max/min of word embeddings are used; Lex-
icons+base - only text-based clues and lexicon-
based features are used.

4 Conclusions

In this participation we combined the use of word
embeddings with lexicon-based features and sim-
ple text clues. According to the low complexity
of the system created, the obtained results were
close to the baseline system. Further analysis of
the results allowed us to detect a possible prob-
lem with the news corpus used to train the word
embeddings: news language does not necessarily
use emotions, and when it does, the emotions are
often related to negative events such as wars, nat-
ural disasters, etc. We plan to carry out the experi-
ments with a different set of pre-trained vectors, in
particular those extracted from Twitter by (Godin
et al., 2013).

Feature analysis indicates that the NRC affec-
tive intensity dictionary (Mohammad and Turney,
2013) and the Emojis dictionary by (Novak et al.,
2015) were particularly useful. As a future work,
we plan to add a classification layer to the sys-
tem to detect whether the emotion expressed is ex-
treme or not, in order to improve the results on the
most polarizing messages. Finally, we would like
to test the effectiveness of the positional weighting
for lexicon scores.
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Véronique Moriceau, and Isabelle Robba. 2017.
Analyse d’opinion et langage figuratif dans des
tweets : présentation et résultats du Défi Fouille de
Textes DEFT2017 (In French). In Actes de l’atelier
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Abstract

This working note presents the method-
ology used in deepCybErNet submission
to the shared task on Emotion Intensities
in Tweets (EmoInt) WASSA-2017. The
goal of the task is to predict a real val-
ued score in the range [0-1] for a particular
tweet with an emotion type. To do this, we
used Bag-of-Words and embedding based
on recurrent network architecture. We
have developed two systems and experi-
ments are conducted on the Emotion In-
tensity shared Task 1 data base at WASSA-
2017. A system which uses word em-
bedding based on recurrent network archi-
tecture has achieved highest 5 fold cross-
validation accuracy. This has used embed-
ding with recurrent network to extract op-
timal features at tweet level and logistic
regression for prediction. These methods
are highly language independent and ex-
perimental results shows that the proposed
methods is apt for predicting a real valued
score in than range [0-1] for a given tweet
with its emotion type.

1 Introduction

Internet has become an essential platform to carry
out daily activities to our lives. People use social
media resources like Twitter, Facebook, What-
sApp, Hike, WeChat etc. to share their language
such as views or emotions, stance over issues,
reviews related to products, services, blogs etc.
In recent days, the amount of language sharing
through the internet is ubiquitous. This neces-
sitates the need of analyzing reviews to identify
the emotions including estimating the degree to
which an emotion is expressed in text. Unlike
natural language, the user reviews are small; rich

information is represented through nonstandard
language such as emoticons, emojis, creatively
spelled words (happee), and hash-tagged words
(#happy). These factors can make a high influence
on the social and economic behavior worldwide
like real-world applications such as marketing, e-
Governance, business intelligence, social analysis
and applications in Natural Language Processing
(NLP) - information extraction, question answer-
ing, textual entailment, etc. Many methods have
been introduced by researchers for emotion anno-
tation work. This gives binary labels for the given
text (Alm et al., 2005), (Aman and Szpakowicz,
2007; Brooks et al., 2013),(Neviarouskaya et al.,
2009), (Bollen et al., 2011), (Summa et al., 2016).
only one annotation work exists for providing a
real valued score as annotation for a given text
(Strapparava and Mihalcea, 2007). This was a task
included in the SemEval-2007 shared task. Many
methods devised for automatic emotion classifica-
tion (Werbos, 1990), (Summa et al., 2016), (Mo-
hammad, 2012), (Bollen et al., 2011), (Aman and
Szpakowicz, 2007), (Brooks et al., 2013). How-
ever, only less amount work exists on emotion
regression other than SemEval-2007 shared task
(Strapparava and Mihalcea, 2007).

In this paper, we use Bag-of-Words (BOW) and
a Bag-of-Words (BOW) based recurrent embed-
ding system for predicting a real valued score in
the range [0-1]. In first case, BOW is used to ob-
tain the feature representation for the tweets and
classification is done using logistic regression. We
also employed an RNN and LSTM based method
for mining the features at tweets level. These
methods are language independent. So irrespec-
tive of the language, we can use these approaches
for finding the stance of micro blogging posts.

The rest of the paper is organized as follows.
Section 2 discusses information of shared task.
Section 3 discusses the proposed methodology.
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Dataset Anger Fear Joy Sadness
Training 857 1147 823 786
Development 84 110 79 74
Testing 760 995 714 673

Table 1: Statistics of Tweet Emotion Intensity
dataset

Section 4.2 provides experimental analysis and re-
sults and at last conclusion is placed in Section 5.

2 Task description

The Emotion Intensity Task is a shared task
of 8th Workshop on Computational Approaches
to Subjectivity, Sentiment & Social Media
Analysis (WASSA 2017) in conjunction with
the EMNLP 2017 conference (Mohammad and
Bravo-Marquez, 2017). The aim of the task is to
obtain a real valued score in the range [0-1] for
the given tweet including an emotion type . The
tweets in training, validation and testing are from
four different categories such as anger, fear, joy,
sadness. Each tweet has an emotion type with its
score in the range [0-1], where 0 denotes that the
tweet has maximally away from its emotion and 1
denotes that the tweet has maximally closer to its
emotion . The detailed statistics of the data set is
described in Table 1.

3 Methodology

This section provides the information of the pro-
posed approach for predicting a real valued score
in the range [0-1] for a given twee with an emotion
type . We used two approaches; (1) Bag-of-words
(BoW) based word embedding(2) Recurrent Neu-
ral Network (RNN) based word embedding

3.1 Bag-of-words based system for Emotion
Intensities in Tweets

The embedding size was set to 256 so that each
word is now represented using a 256 dimension
vector and word length to 70. Anger, Fear,
Joy and Sadness have 857, 1147, 823 and 786
instances. We constructed matrix of shape
857X70, 1147X70, 823X70 and 786X70 for
training instances and 84X70, 110X70, 79X70
and 74X70 for development instances. Next, we
replace each word with their corresponding word
embedding and this forms an input tensor of shape
857X70X256, 1147X70X256, 823X70X256
and 786X70X256 for training instances and
84X70X256, 110X70X256, 79X70X256 and

74X70X256 for development instances. At
last, an input tensor is transformed to matrix
of shape 857X256, 1147X256, 823X256
and 786X256 for training instances and
84X256, 110X256, 79X256 and 74X256
for development instances using max-pooling
approach. These matrices are passed to logistic
regression and a real valued score is chosen for a
given tweet with an emotion type using argmax
function.

3.2 Recurrent neural network (RNN) based
system for Emotion Intensities in Tweets

Recurrent neural network is largely used deep
learning architecture for sequence data modeling.
This has achieved significant results in various
tasks exists in the field of natural language pro-
cessing (LeCun et al., 2015). It generally looks
same as feed forward networks (FFN), addition-
ally contains self-recurrent connection in units
(Elman, 1990). This cyclic loop carries out in-
formation from one time-step to another. Conse-
quently, RNN are able to learn the temporal pat-
terns by considering the past information in esti-
mating the present states. Generally, RNN takes
input as xt ∈ Rn and hit−1 ∈ Rm of arbitrary
length to compute succeeding hidden state vector
hit by using the following formulae recursively.

ht = f(wxhxt + whhht−1 + b) (1)

ot = sf(wohht + bot) (2)

Where f is the nonlinear activation function, par-
ticularly logistic sigmoid function (σ) applied on
element wise, hi0 is usually initialized to 0 at time-
step t0 and wxh ∈ Rm×n, whh ∈ Rm×m and
b ∈ Rm are arguments of affine transformation.
Here o is the output at time step t.

Using RNN approach, a system was im-
plemented for predicting a real valued score
in the range [0-1] for emotional intensities in
tweets. By following the aforementioned mech-
anism, we constructed an input tensor of shape
857X70X256, 1147X70X256, 823X70X256
and 786X70X256 for training instances and
84X70X256, 110X70X256, 79X70X256 and
74X70X256 for development instances. So the
embedding matrix for the tweets of size 70X256
in both training and development are now reduced
to 256 dimensional vectors. So, embedding
matrices of size 857X256, 1147X256, 823X256
and 786X256 were used as training samples and
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84X256, 110X256, 79X256 and 74X256 were
taken as development instances and then fed into
the RNN layer followed by logistic regression for
prediction.

3.3 Long short-term memory based system
for Emotion Intensities in Tweets

RNN issues vanishing and exploding gradient is-
sue in memorizing long-term dependencies (Ben-
gio et al., 1994). To reduce, (Hochreiter and
Schmidhuber, 1997) has introduced long short-
term memory (LSTM). Unlike RNN simple units
in recurrent hidden layer, LSTM has introduced
a memory block. A memory block is a complex
processing unit that contains one or more mem-
ory cell, adaptive gates such as input gate and out-
put gate and Constant Error Carousel (CEC). A
memory block stores an information and updates
them across time-steps based on the input and out-
put gates. Input and output gate controls the in-
put and output flow of information to a memory
cell. Additionally, it is has a built-in value as 1 for
constant Error carousel (CEC). This value will be
activated when in the absence of value from the
outside the signal. Moreover, (Gers et al., 1999)
introduced forget gate, (Gers et al., 2002) intro-
duced peephole connections to the memory block
in LSTM. A forget gate facilitates to forget or re-
set the values across time steps and peephole con-
nections helps to learn precise timing of the out-
puts. The newly proposed architecture has per-
formed well in learning long-range temporal de-
pendencies in various artificial intelligence (AI)
tasks (LeCun et al., 2015). Generally, at each time
step an LSTM network considers the following 3
inputs; xt, ht−1, ct−1 and outputs ht, ct through
the following equations

it = σ(wixt + Uiht−1 + Vimt−1 + bi) (3)

ft = σ(wfxt + Ufht−1 + Vfmt−1 + bf ) (4)

ot = σ(woxt + Uoht−1 + Vomt−1 + bo) (5)

m̃t = tanh(wmxt + Umht−1 + bm) (6)

mt = f i
t � mt−1 + it � m̃ (7)

ht = ot � tanh(mt) (8)

Where xt is the input at time step t, σ is sigmoid
non-linear activation function, tanh is hyperbolic
tangent non-linear activation function,� denotes
element-wise multiplication. Concretely, at t = 0

Method Emotion Pearson Spearman

Bow

Anger 0.677 0.697
Fear 0.675 0.685
Joy 0.601 0.621
Sadness 0.657 0.647

RNN

Anger 0.718 0.707
Fear 0.715 0.75
Joy 0.601 0.721
Sadness 0.707 0.71

LSTM

Anger 0.721 0.736
Fear 0.72 0.753
Joy 0.621 0.725
Sadness 0.737 0.724

Table 2: 5-fold cross validation with embedding
vector size 128

hidden and memory cell state vectors such as h0

and c0 are initialized to 0.
We followed subsections 3.1 and 3.2 to develop

a LSTM based system for predicting a real valued
score in the range [0-1] for a given emotion includ-
ing its emotion type. This system is constructed by
simple replacing RNN layer with LSTM.

4 Experiments

All deep learning architecture are trained using
GPU enabled TensorFlow (Abadi et al., 2016)
with backpropogation through time (BPTT) (Wer-
bos, 1990).

4.1 Parameter Selection

To choose optimal parameter for embedding size,
the LSTM model is trained with embedding size
128 and 256 and the performance of them is eval-
uated on the development data set. The detailed
evaluation results are displayed in Tables 2 and 3.
We didn’t use any hyper parameter tuning mecha-
nism for tweet length instead we used static length
70 in all our experiments.

4.2 Evaluation results

We have submitted one run based on LSTM based
recurrent embedding system to WASSA2017 and
the detailed results is displayed in Tables 4 and 5

Analysis of training results and testing results
showed that there is a significant difference in the
performance measure. This is due to the overfit-
ting of the model to the training data because, a
deep learning framework requires huge amount of
data to learn the features. Unavailability of such
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Method Emotion Pearson Spearman

BoW

Anger 0.681 0.71
Fear 0.682 0.695
Joy 0.611 0.632
Sadness 0.661 0.654

RNN

Anger 0.721 0.714
Fear 0.724 0.761
Joy 0.613 0.742
Sadness 0.714 0.721

LSTM

Anger 0.731 0.741
Fear 0.741 0.764
Joy 0.634 0.732
Sadness 0.739 0.731

Table 3: 5-fold cross validation with embedding
vector size 256

sufficient training data samples caused the overfit-
ting of the system. This in turn affected the accu-
racy of prediction.

5 Conclusion

This working note has presented a language in-
dependent approach based on BoW and recurrent
based embedding for predicting a real valued score
in the range [0-1] for a given tweet with an emo-
tion type. LSTM network has outperformed both
bag-of-words embedding and recurrent based em-
bedding mechanism. This is primarily due to
the fact that LSTM has capability to learn long-
temporal dependencies across time steps. Due to
less number of instances in training data, the accu-
racy of the proposed mechanism is less. Though,
the efficacy of embedding’s of RNN and LSTM is
considerable and paves the manner in future to use
for predicting real valued score in the range [0-1]
with more training instances including its emotion
type. To justify that the proposed deep learning
mechanism has capability to perform better with
large amount of instances will be remained as one
direction towards future work.
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