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Abstract

In this paper we describe the approaches
we explored for the 2017 Native Language
Identification shared task. We focused on
simple word and sub-word units avoiding
heavy use of hand-crafted features. Fol-
lowing recent trends, we explored linear
and neural networks models to attempt to
compensate for the lack of rich feature
use. Initial efforts yielded f1-scores of
82.39% and 83.77% in the development
and test sets of the fusion track, and were
officially submitted to the task as team
L2F. After the task was closed, we car-
ried on further experiments and relied on
a late fusion strategy for combining our
simple proposed approaches with modifi-
cations of the baselines provided by the
task. As expected, the i-vectors based sub-
system dominates the performance of the
system combinations, and results in the
major contributor to our achieved scores.
Our best combined system achieves 90.1%
and 90.2% f1-score in the development
and test sets of the fusion track, respec-
tively.

1 Introduction

Native Language Identification (NLI) is the task of
identifying a person’s native language (L1) based
on that person’s written or spoken content in a
learned language (L2). The task has gained in-
creased interest from various research communi-
ties, which led to the first shared task in 2013
(Tetreault et al., 2013). In 2016, a sub-challenge
was held at Interspeech (Schuller et al., 2016) on
identifying the native language based on spoken
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responses in English, in contrast to the NLI shared
task, which was based on written responses.

The NLI Shared Task 2017 is the next instance
in this series of shared tasks (Malmasi et al.,
2017), with the distinction of featuring both writ-
ten and spoken based responses as available data.
Spoken responses were available in the form of
speech transcriptions and i-vectors, not actual au-
dio files. Systems could compete in three tracks:
ESSAYS, where only the provided written essays
data could be used; SPEECH, where only the
speech transcriptions and possibly i-vectors could
be used; and FUSION, where all three datasets
could be combined. The task provided a single de-
velopment labeled dataset and two different unla-
beled test sets: one for the ESSAYS and SPEECH
tracks, and another for the FUSION track. Addi-
tionally, each system was allowed to participate in
an open or closed sub-track depending on whether
any external data was used or not, respectively.

In this paper we describe the approaches we
took in the NLI Shared Task 2017, specifically
in the FUSION closed track, where we partici-
pated as team L2F. After having officially submit-
ted a system to the track, we performed further ex-
periments and developed additional systems, in-
cluding a late fusion one that performs 7 absolute
points above the system we submitted.

The best performing systems on a variety of
Natural Language Processing (NLP) and Informa-
tion Retrieval problems, including NLI, are en-
sembles of complex models that employ a myriad
of high-level features (Malmasi and Dras, 2017).
There are, however, some systems with simple
features that are able to surpass complex ensem-
bles, like the previous state of the art in NLI by
Ionescu et al. (2014).

One way of not relying on specially engineered
features is to follow the current trend on using
Neural Networks (NN) and Deep Learning (DL)
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techniques (and doing parameter tuning instead).
Although DL approaches have achieved several
state of the art results in NLP, this is not the case
yet for NLI.

Our line of approach for this task was to bene-
fit from the power of fusion systems while avoid-
ing complex feature engineering and exploring the
usefulness of DL techniques.

2 Related Work

There are several works on NLI based on essays,
most of which are analyzed by Malmasi (2016).
The current state of the art is the recent work
of Malmasi and Dras (2017), which uses ensem-
bles of several classifiers over a large set of fea-
tures. The previous state of the art was the work
of Ionescu et al. (2014), which used only character
p-grams as features.

A recent trend has been the use of speech tran-
scripts and audio features for tasks like dialect
identification (Malmasi et al., 2016; Zampieri
et al., 2017) or of only spoken responses for NLI,
like in the 2016 Computational Paralinguistics
Challenge (ComParE, Schuller et al. (2016)). The
best performing system in ComParE 2016 was the
work of Abad et al. (2016), which also employs a
fusion of systems and highlights the importance of
i-vectors acoustic features.

3 Methodology and Data

The NLI Shared Task 2017 combines the basic
written essay approach with the spoken response
approach by providing a written essay, a speech
transcript, and an i-vector for each subject. For
a thorough description of the datasets, including
the number of samples for training, development
and test, and the 11 L1 classes, see Malmasi et al.
(2017).

Given that the task allowed for the fusion of
all these data, we experimented with several ap-
proaches targeting a final fusion system, all of
which we describe below.

3.1 Language Identification Techniques

Following the success in applying language iden-
tification techniques to L1 identification in speech
(Abad et al., 2016), we explored language identifi-
cation techniques in an initial stage. We trained
the well known langid tool (Lui and Baldwin,
2011) using the data-sets provided in the shared

task. The technique implemented in langid com-
bines a Naive Bayes classifier with byte n-grams
and no assumption over word boundaries. Un-
fortunately, no results outperforming the baseline
could be attained with langid.

Character n-grams are a common feature in NLI
systems and have been shown to provide strong re-
sults (Koppel et al., 2005; Ionescu et al., 2014).
The low performance we attained with langid
might therefore be related with particularities of
the tool. It is also possible that specific tuning
of algorithms for language identification might not
be suitable for L1 identification.

3.2 Sub-word Features

Together with part-of-speech, character-level fea-
tures are a commonly used feature for NLI (Mal-
masi, 2016). Upon manual inspection of the
essays and speech transcriptions corpora of the
shared task, it became clear that spelling or tran-
scription errors were present with high frequency.
This is a scenario in which sub-word units can play
an important role for two main reasons. On the
one hand, sub-word units help alleviate the effect
of rare words that do not appear in the training
corpus, also known as Out of Vocabulary Words
(OOVs). On the other hand, they can capture sys-
tematic sub-word patterns, such as typographical
or transcription errors, that can be specific to a par-
ticular L1 profile.

As an alternative to sub-word units based on
character n-grams, we explored the use of the Byte
Pair Encoding (BPE) approach (Sennrich et al.,
2015). This simple approach, that has recently
help to achieve state-of-the-art results in machine
translation (Sennrich et al., 2015), provides a mid-
dle ground between character and word models.
BPE is a well known compression technique that
is here employed to iteratively merge the charac-
ters or sequences of characters that are most com-
mon into new tokens. The resulting vocabulary
contains many or the original word tokens as well
as fragments of frequent character sequences and
individual characters.

Initial experiments explored the use of BPE to-
kens as a replacement for word tokens in the base-
line system. This yielded however no notable im-
provements over the provided features. One pos-
sible limitation on the use of BPE features com-
pared to Sennrich et al. (2015) is the lack of Re-
current Neural Networks to capture context. With-
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out them, the use of sub-word units might destroy
some useful information at the word token level.
For this reason, further experiments included n-
grams of BPE units as features with n = 1, 2, 3.
It has to be taken into account that n-grams of
BPE features might not only capture whole words
but also sub-word patterns within and across word
boundaries. The use of n-grams together produced
however no improvements compared to the base-
line system.

To provide some additional complementarity
in the final ensemble, a Naive Bayes model was
trained on the same features. Despite its simplic-
ity, the model became competitive after introduc-
ing the n-gram features. Minor improvements over
the baseline on the ESSAYS dataset were then at-
tained by using BPE sub-word units (as we will
see in Section 5, Table 1) and were kept for the
final ensemble due to its complementarity. After
determining the optimal features, the system pa-
rameters were tuned using the development set. A
value of 10000 new BPE symbols was determined
as optimal. The Naive Bayes classifier smooth-
ing, equivalent to an uniform Dirichlet prior for
the likelihood estimation, was set to 1e−4.

3.3 Neural Networks

Neural Networks are being successfully applied to
a varying set of NLP problems. Following the cur-
rent trend, we developed several architectures and
tested them over the ESSAYS and FUSION tracks.

A common choice for treating sequence
data like text are Recurrent Neural Networks
(RNN), usually in their Long-Short Term Memory
(LSTM) or Gated Recurrent Units (GRU) flavors,
which are better able to capture long dependen-
cies than plain RNNs. We decided to use GRUs
(Chung et al., 2015) since they are faster to train
and provide similar results to LSTMs.

We ended up building two networks: one for
the ESSAYS tracks (NN-ESSAYS) and another for
the FUSION track (NN-FUSION). The network
for the FUSION track uses all available data as in-
put: essays, transcripts, and i-vectors. The net-
work for the ESSAYS track only uses the tokens
in the essays.

Our final architecture for the NN-ESSAYS net-
work is composed by the following layers:

• An embedding layer mapping input identi-
fiers to a 300-dimensional space;

• A feed-forward layer with 300 units and
ReLU (Nair and Hinton, 2010) activations;

• A bidirectional GRU layer with 300 units;

• A max-pooling layer applied across the time
dimension;

• A feed-forward layer with 11 units (one for
each language) and softmax activation.

The architecture for the NN-FUSION network is
essentially similar but has to deal with the multiple
inputs:

• The essay and transcript inputs each pass
through the first four layers as in NN-ESSAYS

before being concatenated;

• Each sample i-vector goes through a 400
units, ReLU activated feed-forward layer be-
fore being concatenated with the resulting
concatenation above;

• A final softmax layer is then applied.

Several different architectures were tested, but
none yielded results outperforming the baseline.
As we will see in Section 5, the i-vectors dominate
over the other features.

3.4 I-vector system

The success of the i-vector (Dehak et al., 2011a)
framework in speaker recognition tasks has mo-
tivated the investigation of its application to
other related fields, including language recogni-
tion (Martınez et al., 2011; Dehak et al., 2011b),
where it has become the current de facto stan-
dard for acoustic Spoken Language Recognition
(SLR), and more recently L1 recognition (Abad
et al., 2016).

In the Total-variability modeling approach – so-
called i-vector approach – the variability present in
the high-dimensional GMM super-vector is jointly
modeled as a single low-rank total-variability
space. The low-dimensionality total variability
factors extracted from a given speech segment
form a vector, named i-vector, which represents
the speech segment in a very compact and efficient
way. Thus, the total-variability modeling is used
as a factor analysis based front-end extractor.

In this work, the 800 dimensionality i-vectors
provided in the task were used to build a new
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acoustic L1 classifier. First, we apply i-vector cen-
tering and whitening (Garcia-Romero and Espy-
Wilson, 2011) that is known to contribute to a re-
duction of the channel variability. Moreover, the
resulting centered and whitened i-vectors are nor-
malized to be of unit length.

Second, we explored different classifiers on the
top of the processed i-vectors. Like in Abad et al.
(2016), in which log-linear and non-linear classi-
fiers based on feed-forward networks were inves-
tigated, we could observe that the i-vector front-
end already provides a very good separation of the
classes which leads to similar results for the dif-
ferent modeling techniques.

In particular, we tried to model the distribution
of i-vectors for each language with a single mix-
ture Gaussian distribution with full covariance ma-
trix shared across different target languages since
it has proven very effective (Martınez et al., 2011;
Abad et al., 2016). However, in this case, this
approach showed very similar performance to the
baseline classifier: a multi-class one-vs-rest logis-
tic regression classifier. Consequently, we opted
for the baseline logistic regression approach.

4 Calibration and Fusion Back-End

In this work, we carried out calibration and fusion
of the systems at the output score level using the
FoCal Multi-class Toolkit1. For that purpose, ev-
ery single sub-system is forced to produce an 11-
element score vector si corresponding to each of
the target languages. Then, a Linear Logistic Re-
gression (LLR) is trained to fuse the score outputs
generated by the selected sub-systems in order to
produce fused well-calibrated log-likelihoods l as
follows:

l =
∑

i

αisi + b, (1)

where αi is the weight for sub-system i and b is
the language-dependent shift. For this challenge,
the language with the highest fused log-likelihood
is the hypothesized L1 language.

Notice that, in contrast to Abad et al. (2016),
the use of a Gaussian Back-End to transform the
score-vector of each individual sub-system before
the LLR stage has not been applied, since it did not
reveal to contribute for improved language identi-
fication in the validation experiments.

1https://sites.google.com/site/
nikobrummer/focalmulticlass

During the development of our systems, the
LLR fusion parameters were trained and evalu-
ated on the development set using a kind of 2-fold
cross-validation: development data was randomly
split in two halves, one for parameter estimation
and the other for assessment. This process was
repeated using 10 different random partitions so
that the mean and variance of the systems’ perfor-
mance could be computed. This method allowed
for a comparison and ranking of the different sub-
systems under study. Then, for the trial submis-
sions, no partition was made and all the develop-
ment data was used to train the LLR fusion.

The final combined system for the FUSION
track, which we call FINAL-FUSION, consists in
the LLR fusion of the following 5 systems: i) ES-
SAY baseline; ii) speech transcriptions baseline;
iii) the i-vector system described in Section 3.4;
iv) the NN-ESSAYS system described in Section
3.3; and v) the BPE system described in Section
3.2. We also evaluated a LLR-FUSION system con-
sisting in i), iv) and v) on the ESSAYS track.

5 Results

We first show the results over the development set
in order to justify our approach choices, beginning
with the ESSAYS track. The official evaluation
metric is the macro averaged F1 score.

The organizers provided an already strong base-
line at 72% F1 over essays. As we can see in
Table 1, our BPE based systems and NN system
were only able to be on par with the baseline, with
the Naive Bayes using BPE n-grams only slightly
surpassing it. However, as shown in Table 2, the
Naive Bayes approach is indeed very complemen-
tary to the baseline. It performs well above the
baseline for German, Italian, and Spanish, while
performing much worse for Arabic and Telugu.
The fusion system results confirms this hypoth-
esis, showing the best result for all languages.
The NN model also shows complementarity in a
smaller scale that still provides a positive impact
in the final ensemble.

Considering the FUSION track, both NN-
FUSION and FINAL-FUSION systems significantly
surpassed the baselines, as can be seen in Table
3. This is due mainly because of the use of the
i-vectors in both systems. The NN-FUSION sys-
tem without i-vectors, for example, performed 5
points worse than the baseline with no i-vector
(not shown in the tables).
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System F1 (macro) Accuracy

Baseline (1) 0.7230 0.7236

langid (2) 0.5469
Naive Bayes 1-gram (3) 0.5912 0.5918
NN-ESSAYS (4) 0.7127 0.7145
Naive Bayes 1,2,3-grams (5) 0.7210 0.7227
Naive Bayes BPE 1,2,3-grams (6) 0.7294 0.7309
LLR-FUSION (1)+(4)+(6) 0.7949 0.7945

Table 1: Results for the ESSAYS track over the development dataset for the baseline, the langid, the
Naive Bayes with and without BPE, the essay Neural Network (NN-ESSAYS), and the LLR-FUSION

systems. The best result, excluding the LLR-FUSION, is highlighted in bold.

L1 Baseline NB+BPE NN-ESSAYS FINAL-FUSION

ARA 0.74 0.67 0.65 0.76
CHI 0.75 0.74 0.74 0.84
FRE 0.74 0.77 0.72 0.81
GER 0.79 0.85 0.81 0.93
HIN 0.69 0.66 0.69 0.71
ITA 0.76 0.83 0.80 0.86
JPN 0.74 0.76 0.69 0.82
KOR 0.69 0.70 0.68 0.75
SPA 0.61 0.68 0.66 0.73
TEL 0.73 0.65 0.71 0.77
TUR 0.72 0.70 0.67 0.77
avg 0.72 0.73 0.71 0.79

Table 2: F1 (macro) scores on the ESSAYS track over the development dataset for the baseline, the Naive
Bayes with BPE (NB+BPE), the essay Neural Network (NN-ESSAYS), and the FINAL-FUSION systems.
The best result for each language, excluding the FINAL-FUSION, is highlighted in bold.

System F1 (macro) Accuracy

Baseline fusion 0.7500 0.7500
Baseline fusion+i-vectors 0.7809 0.7827

NN-FUSION 0.8238 0.8245
FINAL-FUSION 0.9011 0.9009

Table 3: Results for the FUSION track over the development dataset for the baselines, the fusion Neural
Network (NN-FUSION), and the FINAL-FUSION systems.

5.1 Test set

As previously mentioned, the NLI Shared Task
2017 provided two test datasets, one for the ES-
SAYS and SPEECH tracks, and one for the FU-
SION track. We focused on the FUSION track test
set for comparing the systems described above.

Table 4 shows the results of our two best single
systems trained only on the ESSAYS dataset. The
difference in performance is proportional to that

on the development set shown in Table 1.

Table 5 shows the results on the FUSION track
for our two fusion systems trained on all avail-
able data: essays, speech transcriptions, and i-
vectors. The NN-FUSION was the only system
we officially submitted to the task. After advanc-
ing with the other complementary systems and the
FINAL-FUSION one, the results we achieved make
it clear Neural Networks are not the best alterna-

427



tive for combining multiple sources of informa-
tion, at least not in the simple way we approached
it.

6 Discussion

Concerning the text component of the problem,
we focused on simple word and sub-word features
avoiding excessive use of hand engineered fea-
tures. We also tested linear and recurrent neural
networks based classifiers to attain complemen-
tary models. We then relied on fusion methods
for combining our simple approaches and the task
provided i-vectors.

Compared with the existing results, perfor-
mance on the text component of the tasks was lim-
ited, with small improvements over the baseline.
The obtained models were however complemen-
tary to each other and the baseline system, provid-
ing additional gains when ensembled. The use of
BPE has shown as well to be a possible alternative
to other sub-word units usually employed in NLI
systems.

The outstanding performance of the i-vectors,
consistent with findings of previous works, is the
main driver in the final system’s performance. The
main improvements shown reside therefore in the
alternative fusion strategy followed for the differ-
ent systems.

Following the current trend, a possible line of
work is to explore sub-word information com-
bined with recurrent or convolutional neural ar-
chitectures. In addition, more complex neural ar-
chitectures can also be explored, like hierarchical
classification models with attention, which are re-
cently obtaining good results in other document
classification problems.
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