
Proceedings of the 12th Workshop on Innovative Use of NLP for Building Educational Applications, pages 149–158
Copenhagen, Denmark, September 8, 2017. c©2017 Association for Computational Linguistics

An Error-Oriented Approach to Word Embedding Pre-Training

Youmna Farag1 Marek Rei1,2 Ted Briscoe1,2

1Computer Laboratory, University of Cambridge, United Kingdom
2The ALTA Institute, Cambridge, United Kingdom

{youmna.farag,marek.rei,ted.briscoe}@cl.cam.ac.uk

Abstract

We propose a novel word embedding pre-
training approach that exploits writing er-
rors in learners’ scripts. We compare
our method to previous models that tune
the embeddings based on script scores
and the discrimination between correct
and corrupt word contexts in addition to
the generic commonly-used embeddings
pre-trained on large corpora. The com-
parison is achieved by using the afore-
mentioned models to bootstrap a neural
network that learns to predict a holistic
score for scripts. Furthermore, we in-
vestigate augmenting our model with er-
ror corrections and monitor the impact on
performance. Our results show that our
error-oriented approach outperforms other
comparable ones which is further demon-
strated when training on more data. Addi-
tionally, extending the model with correc-
tions provides further performance gains
when data sparsity is an issue.

1 Introduction

Assessing students’ writing plays an inherent ped-
agogical role in the overall evaluation of learning
outcomes. Traditionally, human graders are re-
quired to mark essays, which is cost- and time-
inefficient, especially with the growing numbers
of students. Moreover, the evaluation process is
subjective, which leads to possible variations in
the awarded scores when more than one human
assessor is employed. To remedy this, the auto-
mated assessment (AA) of writing has been mo-
tivated in order to automatically evaluate writ-
ing competence and hence not only reduce grader
workload, but also bypass grader inconsistencies
as only one system would be responsible for the

assessment. Numerous AA systems have been
developed for research purposes or deployed for
commercial use, including Project Essay Grade
(PEG) (Page, 2003), e-Rater (Attali and Burstein,
2006), Intelligent Essay Assessor (IEA) (Landauer
et al., 2003) and Bayesian Essay Test Scoring sYs-
tem (BETSY) (Rudner and Liang, 2002) among
others. They employ statistical approaches that ex-
ploit a wide range of textual features.

A recent direction of research has focused on
applying deep learning to the AA task in order
to circumvent the heavy feature engineering in-
volved in traditional systems. Several neural ar-
chitectures have been employed including variants
of Long Short-Term Memory (LSTM) (Alikani-
otis et al., 2016; Taghipour and Ng, 2016) and
Convolutional Neural Networks (CNN) (Dong and
Zhang, 2016). They were all applied to the Auto-
mated Student Assessment Prize (ASAP) dataset,
released in a Kaggle contest1, which contains es-
says written by middle-school English speaking
students. On this dataset, neural models that
only operate on word embeddings outperformed
state-of-the-art statistical methods that rely on rich
linguistic features (Yannakoudakis et al., 2011;
Phandi et al., 2015).

The results obtained by neural networks on the
ASAP dataset demonstrate their ability to capture
properties of writing quality without recourse to
handcrafted features. However, other AA datasets
pose a challenge to neural models and they still
fail to beat state-of-the-art methods when evalu-
ated on these sets. An example of such datasets is
the First Certificate in English (FCE) set where ap-
plying a rank preference Support Vector Machine
(SVM) trained on various lexical and grammatical
features achieved the best results (Yannakoudakis
et al., 2011). This motivates further investigation

1https://www.kaggle.com/c/asap-aes/

149

into neural networks to determine what minimum
useful information they can utilize to enhance their
predictive power.

Initializing neural models with contextually rich
word embeddings pre-trained on large corpora
(Mikolov et al., 2013; Pennington et al., 2014;
Turian et al., 2010) has been used to feed the net-
works with meaningful embeddings rather than
random initialization. Those embeddings are
generic and widely employed in Natural Language
Processing (NLP) tasks, yet few attempts have
been made to learn more task-specific embed-
dings. For instance, Alikaniotis et al. (2016) de-
veloped score-specific word embeddings (SSWE)
to address the AA task on the ASAP dataset. Their
embeddings are constructed by ranking correct
ngrams against their “noisy” counterparts, in addi-
tion to capturing words’ informativeness measured
by their contribution to the overall score of the es-
say.

We propose a task-specific approach to pre-train
word embeddings, utilized by neural AA models,
in an error-oriented fashion. Writing errors are
strong indicators of the quality of writing com-
petence and good predictors for the overall script
score, especially in scripts written by language
learners, which is the case for the FCE dataset. For
example, the Spearman’s rank correlation coeffi-
cient between the FCE script scores and the ratio
of errors is −0.63 which is indicative of the im-
portance of errors in writing evaluation:

ratio of errors =
number of erroneous script words

script length

This correlation could even be higher if error
severity is accounted for as some errors could be
more serious than others. Therefore, it seems
plausible to exploit writing errors and integrate
them into AA systems, as was successfully done
by Yannakoudakis et al. (2011) and Rei and Yan-
nakoudakis (2016), but not by capturing this in-
formation directly in word embeddings in a neural
AA model.

Our pre-training model learns to predict a score
for each ngram based on the errors it contains and
modifies the word vectors accordingly. The idea
is to arrange the embedding space in a way that
discriminates between “good” and “bad” ngrams
based on their contribution to writing errors. Boot-
strapping the assessment neural model with those
learned embeddings could help detect wrong pat-

terns in writing which should improve its accuracy
of predicting the script’s holistic score.

We implement a CNN as the AA model and
compare its performance when initialized with our
embeddings, tuned based on natural writing errors,
to the one obtained when bootstrapped with the
SSWE, proposed by Alikaniotis et al. (2016), that
relies on random noisy contexts and script scores.
Furthermore, we implement another version of
our model that augments ngram errors with their
corrections and investigate the effect on perfor-
mance. Additionally, we compare the aforemen-
tioned pre-training approaches to the commonly
used embeddings trained on large corpora (Google
or Wikipedea). The results show that our approach
outperforms other initialization methods and aug-
menting the model with error corrections helps al-
leviate the effects of data sparsity. Finally, we
further analyse the pre-trained representations and
demonstrate that our embeddings are better at de-
tecting errors which is inherent for AA.

2 Related Work

There have been various attempts to employ neu-
ral networks to assess the essays in the ASAP
dataset. Taghipour and Ng (2016) compared the
performance of a few neural network variants
and obtained the best results with an LSTM fol-
lowed by a mean over time layer that averages
the output of the LSTM layer. Alikaniotis et al.
(2016) assessed the same dataset by building a
bidirectional double-layer LSTM which outper-
formed Distributed Memory Model of Paragraph
Vectors (PV-DM) (Le and Mikolov, 2014) and
Support Vector Machines (SVM) baselines. Dong
and Zhang (2016) implemented a CNN where the
first layer convolves a filter of weights over the
words in each sentence followed by an aggrega-
tive pooling function to construct sentence repre-
sentations. Subsequently, a second filter is applied
over sentence representations followed by a pool-
ing operation then a fully-connected layer to pre-
dict the final score. Their CNN was applied to the
ASAP dataset and its efficacy in in-domain and
domain-adaptation essay evaluation was demon-
strated in comparison to traditional state-of-the-art
baselines.

Several AA approaches in the literature have ex-
ploited the “quality” or “correctness” of ngrams as
a feature to discriminate between good and poor
essays. Phandi et al. (2015) defined good essays

150

Figure 1: Error-specific Word Embeddings (ESWE).

as the ones with grades above or equal to the av-
erage score and the rest as poor ones. They cal-
culated the Fisher scores (Fisher, 1922) of ngrams
and selected 201 with the highest scores as “useful
ngrams”. Similarly, they generated correct POS
ngrams from grammatically correct texts, classi-
fied the rest as “bad POS ngrams” and used them
along with the useful ngrams and other shallow
lexical features as bag-of-words features. They
applied Bayesian linear ridge regression (BLRR)
and SVM regression for domain-adaptation es-
say scoring using the ASAP dataset. Alikaniotis
et al. (2016) applied a similar idea; in their SSWE
model, they trained word embeddings to distin-
guish between correct and noisy contexts in addi-
tion to focusing more on each word’s contribution
to the overall text score. Bootsrapping their LSTM
model with those embeddings offered further per-
formance gains.

Other models have directly leveraged error in-
formation exhibited in text. For example, Yan-
nakoudakis et al. (2011) demonstrated that adding
an “error-rate” feature to their SVM ranking
model that uses a wide range of lexical and gram-
matical writing competence features further im-
proves the AA performance. They calculated the
error-rate using the error annotations in the Cam-
bridge Learner Corpus (CLC) in addition to clas-
sifying a trigram as erroneous if it does not oc-
cur in the large ukWaC corpus (Ferraresi et al.,
2008) or highly scoring CLC scripts. Rei and Yan-
nakoudakis (2016) proposed a bidirectional LSTM
for error detection in learner data, where the model
predicts the probability of a word being correct for
each word in text. As an extension to their ex-
periment, they incorporated the average predicted
probability of word correctness as an additional
feature to the self-assessment and tutoring system

(SAT) (Andersen et al., 2013) that applied a su-
pervised ranking perceptron to rich linguistic fea-
tures. Adding their correctness probability feature
successfully enhanced the predictive power of the
SAT.

3 Approach

3.1 Word Embedding Pre-training

In this section, we describe three different neu-
ral networks to pre-train word representations: the
model implemented by Alikaniotis et al. (2016)
and the two error-oriented models we propose in
this work. The models’ output embeddings – re-
ferred to as AA-specific embeddings – are used
later to bootstrap the AA system.

Score-specific Word Embeddings (SSWE). We
compare our pre-training models to the SSWE de-
veloped by Alikaniotis et al. (2016). Their method
is inspired by the work of Collobert and Weston
(2008) which learns word representations by dis-
tinguishing between a target word’s context (win-
dow of surrounding words) and its noisy counter-
parts. These counterparts are generated by replac-
ing the target word with a randomly selected word
from the vocabulary. The network is trained to
rank the positive correct contexts higher than the
negative corrupt ones. Additionally, the model is
augmented with score specific information to fo-
cus on the informative words that contribute to
the overall score of essays rather than the fre-
quent words that occur equally in good and bad
essays. They optimize the overall loss function as
a weighted sum of the ranking loss between cor-
rect and noisy ngrams and the score specific loss:

151

Figure 2: A CNN for AA where the final score is predicted by applying a convolutional operation fol-
lowed by a pooling function.

Loss(SSWE) = α · loss(ranking)

+ (1− α) · loss(score)

(1)

where α is a hyperparameter. In their experiment,
they set α to 0.1 giving most of the weight to
score-related information.

Error-specific Word Embeddings (ESWE). We
propose a model that fine-tunes the embedding
space using a supervised method that leverages the
errors appearing in the training data. It modifies
the embedding space to discriminate between er-
roneous ngrams and correct ones. The core differ-
ence between this approach and SSWE is that it
relies on the writing errors occurring naturally in
the training data instead of randomly generating
incorrect ngrams or capturing words’ informative-
ness. The motivation for adopting this approach
is twofold. First, we believe that the model could
learn more useful AA features from actual errors
rather than introducing random contexts that are
unlikely to happen. Second, SSWE ignores the
frequent words as they have less predictive power
(they are used equally in highly and lowly scored
texts). However, despite the fact that frequent
words (e.g. function words) carry less topical in-
formation than content ones, the errors associated
with them constitute a substantial portion of the
errors committed by non-native English speakers.
For instance, determiner errors account for more
than 9% of the total errors in public FCE train-
ing data. Therefore, learning representations from

both function and content word errors in their con-
texts could be advantageous.

The ESWE model predicts error scores for word
ngrams. First, we demonstrate how the true er-
ror scores for ngrams are calculated and second,
we describe the approach applied to estimate these
scores. Each word wi in a training document is
given an error indicating score ei ∈ {1, 0} based
on whether it is part of an error or not, respectively.
Subsequently, an ngram gold score (n score) is
calculated based on the sum of the errors it con-
tains as follows:

n score =
1

1 +
∑n

i ei
(2)

where n is the ngram length. For the model to es-
timate the ngram scores, a convolutional operation
is applied as depicted in Figure 1. First, each word
is mapped to a unique vector vwrd

i ∈ Rdwrd
re-

trieved from an embedding space E ∈ R|V |×dwrd
,

where |V | is the vocabulary size. Consequently,
an ngram is represented as a concatenation of its
word vectors vng = [vwrd

i ; ...; vwrd
i+n−1]. Scoring

the ngrams is accomplished by sliding a convolu-
tional linear filterW e ∈ Rn×dwrd

– hereafter error
filter2 – over all the ngrams in the script, followed
by a sigmoid non-linearity to map the predicted
score to a [0, 1] probability space:

ˆn score = σ(W e · vng) (3)

2We also refer to the window size used in SSWE as error
filter for simplicity.

152

where σ is the sigmoid function.3 The error filter
should work as an error detector that evaluates the
correctness of words given their contexts and ar-
ranges them in the embedding space accordingly.
For optimization, the sum of squared errors loss is
minimized between the gold ngram scores and the
estimated ones and the error gradients are back-
propagated to the embedding matrix E building
the ESWE space:

Loss =
∑

k

(n scorek − ˆn scorek)2 (4)

where k is the ngram index.

Error-correction-specific Word Embeddings
(ECSWE). As an extension to ESWE, we propose
augmenting it with the errors’ corrections as fol-
lows. We build a corrected version of each script
by replacing all its errors with their suggested cor-
rections and train the ESWE model using the cor-
rected scripts together with the original ones. In
the corrected version, all the ngrams are given
ei = 0 and consequently, n score = 1 according
to Equation 2. All the above ESWE equations are
applied and the loss for each script is calculated as
the sum of both the loss of the original script and
its corrected version (Equation 4 applied to obtain
both). The motivation for this model is twofold.
First, it could enrich the embedding space by al-
lowing the model to learn from faulty ngrams and
their correct counterparts (both occur naturally in
text) and construct ECSWE which is a modified
version of ESWE that is more capable of distin-
guishing between good and bad contexts. Second,
it could alleviate the effects of data sparsity, when
training on small datasets, by learning from more
representations.4

3.2 AA Model

The previous section discusses pre-training ap-
proaches for word embeddings that are later used
to initialize the AA model. For this model, we
use a second CNN to predict a holistic score for
the script (Figure 2) as follows. Each word in an
input script is initialized with its vector vwrd′

i ∈
Rdwrd

from a pre-trained embedding matrix, re-
sulting in a script embedding [vwrd′

1 ;; vwrd′
l],

where l is the length of the script. A convolu-
tional filter W s ∈ Rm×dwrd×h is slid over all the

3Biases are removed from equations for simplicity.
4We refer to ESWE and ECSWE as error-oriented mod-

els.

Model Dataset Error Script
Google Word2Vec

& GloVe
FCE

- 3
FCEext

SSWE, ESWE &
ECSWE

FCE 3 3
FCEext 9 9

Table 1: Error and script refer to their filter sizes.
For each of the 5 pre-training models on the two
datasets, the error filter size is displayed (if ap-
plicable) along with the script filter size used in
the AA network initialized with the embeddings
on the left. FCE refers to the public FCE.

script’s subsequences to generate the feature maps
M ∈ Rh×(l−m+1), where m is the filter height
(window size) and h is the number of the out-
put feature maps. We refer to this filter as the
script filter. Previously, for the error filter used
in the ESWE and ECSWE approaches, h was set
to 1 which represents the predicted ngram score
(ˆn score), whereas here, the system extracts vari-
ous contextual features from each ngram as a pre-
step towards predicting the script’s score, hence
setting h to a large value. The convolutional oper-
ation is followed by a ReLU non-linearity to cap-
ture more complex linguistic phenomena:5

Mi = ReLU(W s · vwrd′
i:i+m−1) (5)

M = [M1,M2, ...Ml−m+1] (6)

Subsequently, an average pooling function is ap-
plied to the output feature maps in order to select
the useful features and unify the scripts’ represen-
tations to a vector S ∈ Rh of fixed length. Finally,
the last layer of the network is a fully connected
one by applying linear regression to the script rep-
resentation in order to predict the final score:

ˆs score = W reg · S (7)

where W reg ∈ Rh is a learned parameter matrix.
The network optimizes the sum of squared errors
loss between the scripts’ predicted scores and the
gold ones.

4 Experimental Setup

Baselines. We compare our error-oriented ap-
proaches to the SSWE model as well as generic
pre-trained models commonly used to initialize

5Initial experimentation showed that ReLU performs bet-
ter than tanh in the AA model.

153

Bootstrapping Model Pearson (r) Spearman (ρ) RMSE
Google Word2Vec 300d 0.488 0.446 5.339

GloVe 50d 0.475 0.427 5.308
SSWE 0.494 0.445 5.182
ESWE 0.521 0.481 5.194

ECSWE 0.538 0.499 5.033

Table 2: AA results when bootstrapped from different word embeddings and trained on public FCE. The
bold values indicate the best results.

neural networks for different NLP tasks. The
generic models are trained on large corpora to cap-
ture general semantic and syntactic regularities,
hence creating richer, more meaningful word vec-
tors, as opposed to random vectors. In particular,
Google News Word2Vec (dwrd = 300) (Mikolov
et al., 2013) and GloVe (dwrd = 50) (Pennington
et al., 2014) pre-trained models are used. Google
Word2Vec6 is a Skip-gram model that learns to
predict the context of a given word. It is trained on
Google News articles which contain around 100
billion words with 3 million unique words. On the
other hand, GloVe7 vectors are learned by leverag-
ing word-word cooccurrence statistics in a corpus.
We use the GloVe embeddings trained on a 2014
Wikipedia dump in addition to Gigaword 5 with a
total of 6 billion words.

Evaluation. We replicate the SSWE model, im-
plement our ESWE and ECSWE models, use
Google and GloVe embeddings and conduct a
comparison between the 5 initilization approaches
by feeding their output embeddings to the AA sys-
tem from Section 3.2. All the models are im-
plemented using the open-source Python library
Theano (Al-Rfou et al., 2016). For evaluation, we
calculate Spearman’s rank correlation coefficient
(ρ), Pearson’s product-moment correlation coef-
ficient (r) and root mean square error (RMSE)
between the final predicted script scores and the
ground-truth values (Yannakoudakis and Cum-
mins, 2015).

Dataset. For our experiments, we use the FCE
dataset (Yannakoudakis et al., 2011) which con-
sists of exam scripts written by English learners
of upper-intermediate proficiency and graded with
scores ranging from 1 to 40.8 Each script con-
tains two answers corresponding to two different

6https://code.google.com/archive/p/word2vec/
7https://nlp.stanford.edu/projects/glove/
8We only evaluate on FCE and not the ASAP dataset be-

cause the latter does not contain error annotations.

prompts asking the learner to write either an arti-
cle, a letter, a report, a composition or a short story.
We apply script-level evaluation by concatenating
the two answers and using a special answer end
token to separate the answers in the same script.

The writing errors committed in the scripts are
manually annotated using a taxonomy of 80 er-
ror types (Nicholls, 2003) together with suggested
corrections. An example of error annotations is:

The problems started <e type=“RT”>
<i>in</i><c>at</c></e> the box
office.

where<i></i> is the error,<c></c> is the sug-
gested correction and the error type “RT” refers to
“replace preposition”. For error-oriented models,
a word is considered an error if it occurs inside an
error tag and the correction is retrieved according
to the correction tag.

We train the models on the released public FCE
dataset which contains 1, 141 scripts for training
and 97 scripts for testing. In order to examine the
effects of training with extra data, we conduct ex-
periments where we augment the public set with
additional FCE scripts and refer to this extended
version as FCEext, which contains 9, 822 scripts.
We report the results of both datasets on the re-
leased test set. The public FCE dataset is divided
into 1, 061 scripts for training and 80 for devel-
opment while for FCEext, 8, 842 scripts are used
for training and 980 are held out for development.
The only data preprocessing employed is word to-
kenization which is achieved using the Robust Ac-
curate Statistical Parsing (RASP) system (Briscoe
et al., 2006).

Training. Hyperparameter tuning is done for each
model separately. The SSWE, ESWE and ECSWE
models are initialized with GloVe (dwrd = 50)
vectors, trained for 20 epochs and the learning
rate is set to 0.01. For SSWE, α is set to 0.1,
batch size to 128, the number of randomly gen-

154

Bootstrapping Model Pearson (r) Spearman (ρ) RMSE
Google Word2Vec 300d 0.626 0.567 4.930

GloVe 50d 0.568 0.518 5.200
SSWE 0.624 0.583 4.872
ESWE 0.667 0.637 4.536

ECSWE 0.674 0.642 4.692

Table 3: AA results when bootstrapped from different word embeddings and trained on the extended
FCE version (FCEext). The bold values indicate the best results.

erated counterparts per ngram to 20 and the size
of hidden layer to 100.9 For the AA network, ini-
tialized with any of the 5 models, h is set to 100,
and learning rate to 0.001 when training on pub-
lic FCE and 0.0001 on FCEext. The sizes used for
error and script filters are shown in Table 1.10 All
the networks are optimized using Stochastic Gra-
dient Descent (SGD). The AA system is regular-
ized with L2 regularization with rate = 0.0001 and
trained for 50 epochs during which performance is
monitored on the dev sets. Finally, the AA model
with the best mean square error over the dev sets
is selected.

5 Results and Discussion

The public FCE results shown in Table 2 reveal
that AA-specific embedding pre-training offers
further gains in performance over the traditional
embeddings trained on large corpora (Google and
GloVe embeddings), which suggests that they are
more suited for the AA task. The table also
demonstrates that the ESWE model outperforms
the SSWE one on correlation metrics, with a slight
difference in the RMSE value. While the vari-
ance in the correlations between the two models
is noticeable and suggests that the ESWE model
is a more powerful one, the RMSE values weaken
this assumption. This result could be attributed to
the fact that public FCE is a small dataset with
sparse error representations and SSWE is trained
on 20 times more data as each ngram is paired
with 20 randomly generated counterparts. There-
fore, a more relevant comparison is needed and
could be achieved by either training on more data,
as will be discussed later, or further enriching
the embedding space with corrections (ECSWE).
Table 2 demonstrates that learning from the er-

9Using the same parameters as Alikaniotis et al. (2016).
10Tuning the filter sizes was done for each model sepa-

rately; for the Glove and Word2Vec models, a filter of size 3
performed better than 9, on both datasets.

rors and their corrections enhances the error pre-
training performance on public FCE which indi-
cates the usefulness of the approach and its ability
to mitigate the effects of data sparsity. Accord-
ing to the results, training the model based on nat-
urally occurring errors and their correct counter-
parts is better suited to the AA task rather than in-
troducing artificial noisy contexts and tuning the
embeddings according to scripts’ scores or relying
on word distributions learned from large corpora.

For a more robust analysis, we examine the
performance when training on additional data
(FCEext) as shown in Table 3. Comparing the re-
sults in Tables 2 and 3 proves that training with
more data boosts the predictive power of all the
models. It is also clear from Table 3 that with
more data, the discrepancy in the performance be-
tween SSWE and ESWE models becomes more
prominent and ESWE provides a superior perfor-
mance on all evaluation metrics which suggests
that, qualitatively, learning from learners’ errors
is a more efficient bootstrapping method. How-
ever, with FCEext, the ECSWE approach outper-
forms ESWE on correlation metrics while giving
a worse RMSE value. This change in the results
when training on a bigger dataset indicates that the
effect of incorporating the corrections in training
becomes less obvious with enough data as the dis-
tribution of correct and incorrect ngrams is enough
to learn from.

6 Analysis

We conduct further analysis to the scores predicted
by AA-specific embeddings by investigating the
ability of the ESWE and SSWE models to de-
tect errors in text. We run each model for 20
epochs on the public FCE (ngram size = 3) and
FCEext (ngram size = 9) training sets, then test
the models on the respective dev sets and exam-
ine the output predictions. For simplicity, we as-
sign a binary true score for each ngram with a

155

Model Public FCE FCEext

Random Baseline 0.258 0.494
SSWE 0.251 0.480
ESWE 0.472 0.539

Table 4: AP results of the random baseline and
SSWE and EWE models when trained on public
and extended FCE sets and tested on the respective
dev sets. The AP is calculated with respect to the
error class.

zero value if it contains any errors and one oth-
erwise. ESWE predicts a score ∈ [0, 1] for each
ngram indicating its correctness and hence could
be used directly in the evaluation. On the other
hand, SSWE predicts two scores for each ngram:
correct score that it maximizes in comparison to
the noisy ngrams and script score that should be
high for good ngrams that occur in highly-graded
scripts. The two scores are hence expected to be
high for high-quality ngrams and low otherwise,
which suggests that they can be used as proxies
for error detection. We calculate the ngram pre-
dicted score of the SSWE model as a weighted
sum of the correct and script scores, similar to its
loss function (Equation 1 with α = 0.1), and map
the output to a [0, 1] probability based on the min-
imum and maximum generated scores.11 We cal-
culate the average precision (AP) between the true
scores and predicted ones with respect to the error
representing class (true score = 0) and compare
it to a random baseline, where random probability
scores are generated. The results are displayed in
Table 4 which shows that ESWE achieves a higher
AP score on all evaluation sets, particularly with
public FCE, and SSWE’s performance is similar
to the random baseline. This result is expected
since the ESWE model is trained to predict ac-
tual errors, yet an empirical verification was re-
quired. We conclude from this analysis that tuning
the embeddings based on training writing errors
increases their sensitivity to unseen errors which
is key for learners’ data assessment and yields bet-
ter performance than comparable pre-training ap-
proaches.

7 Conclusion and Future Work

In this work, we have presented two error-oriented
approaches to train the word embeddings used by

11Different score combinations were implemented includ-
ing using only one score, but they all led to similar results.

writing assessment neural networks. The first ap-
proach learns to discriminate between good and
bad ngrams by leveraging writing errors occur-
ring in learner data. The second extends the first
by combining the error representations with their
suggested corrections and tuning the embedding
space accordingly. Our motivation for applying
these models is to provide neural assessment sys-
tems with the minimum features useful for the task
in an attempt to boost their performance on chal-
lenging datasets while still avoiding heavy fea-
ture engineering. The presented results demon-
strate that our error-oriented embeddings are better
suited for learners’ script assessment than generic
embeddings trained on large corpora when both
are used to bootstrap a neural assessment model.
Additionally, our embeddings have yielded supe-
rior performance to those that rely on ranking cor-
rect and noisy contexts as well as words’ contri-
butions to the script’s overall score. Furthermore,
extending our error embeddings with error correc-
tions has enhanced the performance when trained
on small data, while having a less obvious effect
when trained on greater amounts of data which
shows their efficacy to enrich the embedding space
and mitigate data sparsity issues. We further anal-
ysed our embeddings and the score-specific ones
and showed empirically that error-oriented repre-
sentations are better at error detection which expli-
cates their superior performance in learners’ data
evaluation.

Our best performing model still underperforms
the state-of-the-art system by Yannakoudakis et al.
(2011) that utilises a wide variety of features, even
when they exclude error related features. How-
ever, the improvement obtained by error-oriented
models over employing generic embeddings or
score-specifc ones suggests that our pre-training
approach is a promising avenue of research as it
provides neural network assessment with useful
information and motivates learning relevant prop-
erties associated with language proficiency.

For future work, it will be interesting to jointly
train the score-specific model with the error-
oriented one and test if this could further improve
the performance. We also suggest fully automat-
ing the assessment process by using the outputs
of automated error detection and correction sys-
tems to build the embeddings rather than relying
on handcrafted error annotations. Finally, we en-
courage further examination for other types of fea-

156

tures that could be useful for assessment models
and incorporating them in the pre-training stage.
This way the performance could be further en-
hanced with less information than what heavily
engineered systems require.

References
Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,

et al. 2016. Theano: A Python framework for fast
computation of mathematical expressions .

Dimitrios Alikaniotis, Helen Yannakoudakis, and
Marek Rei. 2016. Automatic text scoring using neu-
ral networks. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, pages 715–725.

Øistein E Andersen, Helen Yannakoudakis, Fiona
Barker, and Tim Parish. 2013. Developing and test-
ing a self-assessment and tutoring system. In Pro-
ceedings of the Eighth Workshop on Innovative Use
of NLP for Building Educational Applications, BEA.
pages 32–41.

Yigal Attali and Jill Burstein. 2006. Automated essay
scoring with e-rater R© v. 2. The Journal of Technol-
ogy, Learning and Assessment 4(3).

Ted Briscoe, John Carroll, and Rebecca Watson. 2006.
The second release of the rasp system. In Proceed-
ings of the COLING/ACL on Interactive presenta-
tion sessions. Association for Computational Lin-
guistics, pages 77–80.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning. ACM, pages 160–167.

Fei Dong and Yue Zhang. 2016. Automatic features
for essay scoring – an empirical study. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing. pages 1072–1077.

Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and
Silvia Bernardini. 2008. Introducing and evaluating
ukwac, a very large web-derived corpus of english.
In Proceedings of the 4th Web as Corpus Workshop
(WAC-4) Can we beat Google. sn, pages 47–54.

Ronald A Fisher. 1922. On the interpretation of χ 2
from contingency tables, and the calculation of p.
Journal of the Royal Statistical Society 85(1):87–94.

Thomas K Landauer, Darrell Laham, and Peter W
Foltz. 2003. Automated scoring and annotation of
essays with the intelligent essay assessor. Auto-
mated essay scoring: A cross-disciplinary perspec-
tive pages 87–112.

Quoc Le and Tomas Mikolov. 2014. Distributed repre-
sentations of sentences and documents. In Proceed-
ings of the 31st International Conference on Ma-
chine Learning (ICML-14). pages 1188–1196.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Diane Nicholls. 2003. The cambridge learner corpus:
Error coding and analysis for lexicography and elt.
In Proceedings of the Corpus Linguistics 2003 con-
ference. volume 16, pages 572–581.

Ellis Batten Page. 2003. Project essay grade: Peg.
Automated essay scoring: A cross-disciplinary per-
spective pages 43–54.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543.

Peter Phandi, Kian Ming Adam Chai, and Hwee Tou
Ng. 2015. Flexible domain adaptation for automated
essay scoring using correlated linear regression. In
EMNLP. pages 431–439.

Marek Rei and Helen Yannakoudakis. 2016. Composi-
tional sequence labeling models for error detection
in learner writing. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1181–1191.

Lawrence M Rudner and Tahung Liang. 2002. Au-
tomated essay scoring using bayes’ theorem. The
Journal of Technology, Learning and Assessment
1(2).

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1882–1891.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: a simple and general method
for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computa-
tional linguistics. pages 384–394.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1. Association for Computational Linguistics, pages
180–189.

Helen Yannakoudakis and Ronan Cummins. 2015.
Evaluating the performance of automated text scor-
ing systems. In Proceedings of the Tenth Workshop

157

on Innovative Use of NLP for Building Educational
Applications. pages 213–223.

158

