
Proceedings of the Workshop on Stylistic Variation, pages 43–52
Copenhagen, Denmark, September 7–11, 2017. c©2017 Association for Computational Linguistics

“Deep” Learning: Detecting Metaphoricity in Adjective-Noun Pairs∗

Yuri Bizzoni and Stergios Chatzikyriakidis and Mehdi Ghanimifard
yuri.bizzoni,stergios.chatzikyriakidis,mehdi.ghanimifard@gu.se

Abstract

Metaphor is one of the most studied and
widespread figures of speech and an essen-
tial element of individual style. In this pa-
per we look at metaphor identification in
Adjective-Noun pairs. We show that us-
ing a single neural network combined with
pre-trained vector embeddings can outper-
form the state of the art in terms of accu-
racy. In specific, the approach presented in
this paper is based on two ideas: a) trans-
fer learning via using pre-trained vectors
representing adjective noun pairs, and b) a
neural network as a model of composition
that predicts a metaphoricity score as out-
put. We present several different architec-
tures for our system and evaluate their per-
formances. Variations on dataset size and
on the kinds of embeddings are also inves-
tigated. We show considerable improve-
ment over the previous approaches both in
terms of accuracy and w.r.t the size of an-
notated training data.

1 Introduction

The importance of metaphor to characterize both
individual and genre-related style has been under-
lined in several works (Leech and Short, 2007;
Simpson, 2004; Goodman, 1975). Studying the
kinds of metaphors used in a text can contribute
to differentiate between poetic and prosaic style,
between different types of fiction, etc. In literary
studies, metaphor analysis is often undertaken on
a stylistic perspective: ”after all, metaphor in lit-
erature is a stylistic device and its forms, mean-
ings and use all fall within the remit of stylistics”

∗This research is funded by the Centre of Linguistic The-
ory and Studies in Probability at the University of Gothen-
burg.

(Steen, 2014). Metaphor is thus often taken into
consideration qualitative stylistic analyses (Fahne-
stock, 2009). Nonetheless, it is still very diffi-
cult to take metaphors into account in computa-
tional stylistics due to the complexity of automatic
metaphor identification (Neuman et al., 2013; Kle-
banov et al., 2015), which is the task of identifying
metaphorical usages of text, sentences or subsen-
tential fragments.

This paper’s focus of interest is the automatic
detection of adjective-noun (AN) pairs like the fol-
lowing:

(1) Clean floor / clean performance

(2) Bright painting / bright idea

(3) Heavy table / heavy feeling

The above examples illustrate that adjectives
“normally” used to describe physical characteris-
tics, e.g. a feature that can be perceived through
senses like size or weight, are reused to describe
more abstract properties. Thus, both a painting
and an idea can be bright, both a table and a feel-
ing can be heavy. We will not provide a mean to
retrieve AN metaphors in unconstrained texts (e.g.
we won’t focus on segmentation) but we will study
ways to detect metaphoricity in given pairs. The-
oretical work on metaphor in the linguistics litera-
ture goes back a long way and spans different the-
oretical paradigms. One of the earliest and most
influential works is Conceptual Metaphor The-
ory (CMT) (Lakoff and Johnson, 2008) (originally
published in 1981) and subsequently elaborated in
a couple of papers (Lakoff, 1989, 1993). Accord-
ing to CMT, metaphors in natural language can
be seen as instances of conceptual metaphors. A
conceptual metaphor roughly corresponds to un-
derstanding a concept or an idea via association
or relation with another idea or concept. Other in-
fluential linguistic approaches to metaphor include
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pragmatic approaches cast within frameworks like
relevance theory (Romero and Soria, 2014; Wil-
son, 2011), and also approaches where some sort
of formal semantics is used (Vogel, 2001). The
common denominator in all these approaches is
the recognition that there is systematicity in the
way metaphorical meanings arise and also that
the process of metaphor construction is extremely
productive. Thus, given these properties, one
would expect metaphors to be quite common in
Natural Language (NL). Evidence from corpus
linguistics seems to support this claim (Cameron,
2003).

Metaphor detection in statistical NLP has been
attempted through several different frames, such
as topic modeling (Li and Sporleder, 2010b),
semantic similarity graphs (Li and Sporleder,
2010a), distributional clustering (Shutova et al.,
2010), vector space based learning (Gutiérrez
et al., 2016) and, most of all, feature-based classi-
fiers (Tsvetkov et al., 2014). In the latter case, the
challenge consists in selecting the right features to
annotate the training data with, and to review their
”importance” or weight based on machine learn-
ing results.

In this paper we show how using a single-
layered neural network combined with pre-trained
distributional embeddings can outperform the
state of the art in an AN metaphor detection task.

More specifically, this paper’s contributions are
the following:

• We introduce a system to predict AN
metaphoricity and test it on the corpus intro-
duced by (Gutiérrez et al., 2016), showing a
significant improvement in accuracy.

• We explore different variations of this model
based on ideas found in the literature for
composing distributional meaning and we
evaluate them under different constraints.

The paper is structured as follows: in Section 2
we present the background on AN metaphor de-
tection and we detail the dataset we use to train
our model. In Section 3 we describe our approach,
giving a general overview and further describing
three alternative architectures on the same model.
In Section 4 we present several evaluations of our
model. Table 1 and Table 2 synthesize some of our
findings. In Section 5 we discuss our findings and
possible future applications of the work described
in this paper.

2 Background

In the specific task of detecting metaphoricity for
AN pairs we find four relevant works that seem
to represent the main stages in figurative language
detection until now.

The oldest work of the series, (Krishnakumaran
and Zhu, 2007), strongly relies on external re-
sources. They adopt a WordNet based approach
to recognize Noun-Noun (NN), Noun-Verb (NV)
and AN metaphors. Their work is mainly based
on qualitative analyses of specific examples and
shows that, while they can be useful in such a
task, hyponym/hypernym relations are not enough
to distinguish metaphors from literal expressions.

More recently, Turney et al. (2011) adopt a two-
stage machine learning approach. They first try to
learn the words’ degree of concreteness and then
use this knowledge to detect whether an AN cou-
ple is metaphorical or not. They measure their
performance on 100 phrases involving 5 adjectives
and reach an accuracy of 0.79. It is worth noting
that this choice is not random: the authors select
the abstract/concrete polarity based on psycholin-
guistic findings that seem to validate the hypoth-
esis that some kinds of metaphorical expressions
are processed as abstract elements.1

These results were outperformed by Tsvetkov
et al. (2014) through a random forest classifier
using DSM vectors, WordNet senses and several
accurately selected features, such as abstractness.
They also introduce a new set of 200 phrases, on
which they declare an F-score of 0.85.

Finally, Gutiérrez et al. (2016) train a distribu-
tional model on a corpus of 4.58 billion tokens
and test it on an annotated dataset they introduce
consisting of 8592 AN phrases. This is the same
dataset we are using in this paper and the largest
available to date.

They first train distributional vectors for the
words in the dataset using positive pointwise mu-
tual information. Then, for each adjective present
in the dataset, they divide the literal phrases the
adjective occurs in from the metaphorical phrases
the same adjective appears in. Then, three differ-
ent adjective matrices are trained: one to model
the adjective’s literal sense, one to model its
metaphorical sense, and one trained on all the
phrases containing this adjective, both literal and
metaphorical. They then develop a system to “de-

1For a more recent study on this issue see (Forgács et al.,
2015).
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Accuracy Feature engineering Annotated dataset Embedding
(Turney et al., 2011) 0.79 Yes 100 LSA
(Tsvetkov et al., 2014) 0.85 Yes 200 -
(Gutiérrez et al., 2016) 0.81 No 8592 DSM
Our model 0.91 No 8592 Word2Vec

Table 1: The reported accuracy from previous words on AN metaphor detection. The first two studies
used different datasets. We are using larger pre-trained vectors than Gutiérrez et al. (2016); at the same
time, we don’t need a parsed corpus to build our vectors and we don’t use adjectival matrices. Given
these differences, this comparison should not be considered a “competition”.

Random W Trained W
cat-linear 0.8973 0.9153
cat-relu 0.8763 0.9228
sum-linear 0.8815 0.9068
sum-relu 0.8597 0.9150
mul-linear 0.7858 0.8066
mul-relu 0.7795 0.8186

Table 2: The accuracy results after training the
model based on each architecture. In all setups,
we trained on 500 samples in 20 epochs. Using
a random W is equivalent to preventing our net-
work from learning any form of compositionality
(we could consider it as a baseline for models with
trained W). As we discuss in the paper, the differ-
ence in accuracies with the “baseline” (not training
W) shows that training W is helpful.

cide” whether a particular occurrence of an adjec-
tive is more likely to relate to the “literal matrix”
or the “metaphorical matrix”. It is shown that, al-
though such matrices are trained on relatively few
examples, they can reach an accuracy of over 0.78.

2.1 Corpus/Experimental Data

The dataset we are using comes from (Gutiérrez
et al., 2016). 2 It contains 8592 annotated AN
pairs, 3991 being literal and 4601 being metaphor-
ical. The dataset focuses on a set of 23 adjectives
that: a) can potentially have both metaphorical and
literal meanings, and b) are fairly productive.

The choice of adjectives was based on the test
set of (Tsvetkov et al., 2014) and focuses on 23
adjectives.

In details, all adjectives belong to one of the fol-
lowing categories:

1. temperature adjectives (e.g. cold)
2The dataset is publicly available here:

http://bit.ly/1TQ5czN

2. light adjectives (e.g. bright)

3. texture adjectives (e.g. rough)

4. substance adjectives (e.g. dense)

5. clarity adjectives (e.g. clean)

6. taste adjectives (e.g. bitter)

7. strength adjectives (e.g. strong)

8. depth adjectives (e.g. deep)

The corpus was carefully built in order to avoid
non-ambiguous elements: all the AN phrases
present in this dataset were extracted from large
corpora and all phrases that seemed to require a
larger context for their interpretation were filtered
out in order to eliminate potentially ambiguous id-
iomatic expressions such as bright side.

In other terms, the corpus was designed to con-
tain elements whose metaphoricity could be de-
duced by a human annotator without the need of
a larger context.

More details about the construction of the
dataset and annotation methodology can be found
in (Gutiérrez et al., 2016).

3 Describing our approach

3.1 The model framework

Our objective is to build a classifier that disam-
biguates between metaphoric and literal AN com-
positions by providing a probability measure be-
tween 0 and 1. We based the framework of the
model on the following ideas:

1. Transfer learning: we use pre-trained word-
vectors to represent AN pairs as input.

2. A neural network as a model of composi-
tion for the AN phrase: our model represents
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phrases with vectors, then based on this rep-
resentation predicts a metaphoricity score as
output. Although we are going to present sev-
eral variations of this framework, it’s impor-
tant to remember that the basic model is al-
ways a standard NN with a single fully con-
nected hidden layer we will call p.

Our approach is thus based on the idea that well-
trained distributional vectors contain more valu-
able information than their reciprocal similarity
and, furthermore, that it is possible to treasure
such information through machine learning in dif-
ferent tasks. We use 300-dimensional word vec-
tors trained on different corpora (see Evaluation
for more details) . Our approach can be considered
as a way of transferring the learned representation
from one task to another. Although it is not pos-
sible to point out an explicit mapping between the
word-vector learning task (e.g. Word2Vec model)
and our metaphoricity task, as it is pointed out by
Torrey and Shavlik 2009, we use neural networks
which automatically learn how to adapt the feature
representations between two tasks (Bengio et al.,
2013). In this way we stretch the original embed-
dings, trained in order to learn lexical similarity, to
identify AN metaphors.

Our neural network, being a parameterized
function, follows the generalized architecture of
word-vector composition similar to (Mitchell and
Lapata, 2010):

p = f(u,v; θ) (4)

where u and v are two word vector representa-
tions to be composed, while p is the vector rep-
resentation of their composition with the same di-
mensions. The function f in our model is param-
eterized by θ, a list of parameters to be learned as
part of our neural network architecture.

Based on the argument by (Mitchell and Lapata,
2010), parameters such as θ are encoded knowl-
edge required by the compositional process. In
our case, the gradient based learning in neural net-
works will find these parameters as an optimiza-
tion problem where p is just an intermediate rep-
resentation in the pipeline of the neural network,
which ends with a prediction of a metaphoricity
score.

In other words, in order to predict the degree
of metaphoricity, we end up learning a specific
semantic space for phrase representations p and
a vector q which actually does not represent a

phrase itself, but rather the maximal possible level
of metaphoricity given our training set.

The degree of metaphoricity of a phrase can
thus be directly computed as cosine similarity be-
tween this vector and the phrase vector. However,
in the network we used a sigmoid function to pro-
duce the measure:

ŷ = σ(p·q + b1) =
1

1 + e−p·q+b1
(5)

where q and b1 are parameters of the final
layer and work as metaphoricity indicators, while
ŷ is the predicted score (metaphoric or literal)
for the composition p. Given a dataset of D =
{(xt, yt)}t∈{1,...,T}, the composition p can be for-
malized as a model for Bernoulli distribution:

yt = Pr(xt being metaphorical|D) ∈ {0, 1}
ŷt = σ(pt·q + b1)
≈ Pr(xt being metaphorical) ∈ (0, 1)

(6)
where each xt is an AN pair in the training

dataset labeled with a binary value yt (0 or 1).
Given the labels in D, we interpret yt as a categor-
ical probability score: the probability of a given
phrase being metaphorical. Then, for each pair of
words in xt, we use pre-trained word-vector repre-
sentations such as ut and vt in the Equation 4 to
produce pt and, consequently, the score ŷt.

In this formulation, the objective is to minimize
the binary cross entropy distance between the es-
timated ŷt and the given annotation yt. Adding q
and b1 in the list of parameters Θ, we fit all param-
eters with a small annotated data size T :

x = (x1, ...xT )
y = (y1, ...yT )
Θ = (θ,q, b1)

(7)

L(Θ; x,y) = −∑T
t=1(yt log(ŷt)+

(1− yt) log(1− ŷt))
(8)

where, on each iteration, we update the param-
eters in Θ using Adam stochastic gradient descent
(Kingma and Ba, 2014), with a fixed number of
iterations over x and y to minimize L.

In this paper, we describe three alternative ar-
chitectures to implement this framework. All
three, with small variations, show a robust ability
to generalize on the dataset and perform correct
predictions.
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3.2 First Architecture
One possible formulation of this frame is similar
to additive composition as described in (Mitchell
and Lapata, 2010), but instead of performing a
scalar modification of each vector, a weight ma-
trix modifies all feature dimensions at once:

p = W T
adju +W T

nounv + b (9)

W =

[
Wadj

Wnoun

]
(10)

where the composition function in equation (4)
now has θ = (W, b).

This formulation is very similar to the compo-
sition model in (Socher et al., 2011) without the
syntactic tree parametrization. As such, instead of
the non-linearity function we have linear identity:

p = fθ(u,v) = W T

[
u

v

]
+ b (11)

In practice, this approach represents a simple
merging through concatenation: given two words’
vectors, we concatenate them before feeding them
to a single-layered, fully connected Neural Net-
work.

As a consequence, the network learns a weight
matrix that represents linearly the AN combina-
tion. To visualize this concept, we could say that,
since our pairs always hold the same internal struc-
ture (adjective in first position and noun in sec-
ond position), the first half of the weight matrix
is trained on adjectives and the second half of the
weight matrix is trained on nouns.

By using 300 dimension pre-trained word vec-
tors, the parameter space for this composition
function will be as following: W ∈ IR300×600 and
b ∈ IR300.

3.3 Second architecture
The second architecture we describe has the ad-
vantage of training a smaller set of parameters
with respect to the first. In this model, the weight
matrix is shared between the noun and the adjec-
tive:

p = fθ(u,v) = W Tu +W Tv + b (12)

Notice that in the case of comparing the vec-
tor representations of two different AN phrases,
b will be essentially redundant. An advantage of

this model is that the learned composition func-
tion f can also map all words’ vectors, regardless
of the part of speech these words belong to, in the
new vector space without losing accuracy in the
original task. In this new vector space, a simple
addition operator composes two vectors:

u′ = W Tu (13)

v′ = W Tv (14)

p = u′ + v′ (15)

Compared to the first architecture, in this archi-
tecture we don’t assume the need of distinguish-
ing the weight matrix for the adjectives from the
weight matrix for the nouns.

It is rather interesting, then, that this architec-
ture doesn’t present significant differences in per-
formance with respect to the first one. The num-
ber of parameters, however, is smaller: W ∈
IR300×300 and b ∈ IR300.

3.4 Third Architecture
The third architecture, similarly to the second, fea-
tures a shared composition matrix of weights be-
tween the noun and the adjective, but we perform
elementwise multiplication between the two vec-
tors:

p = fθ(u,v) = (u× v)W + b (16)

The number of parameters in this case is similar
to previous architecture: W ∈ IR300×300 and b ∈
IR300.

3.5 Other Architectures
In all three previous architectures we saw that a
weight matrix W can be learned as part of the
composing function. Throughout our exploration,
we found that W can be a random and a constant
uniform matrix (not trained in the network) and
still being able to learn q unless we use a non-
linear activation functions over the AN composi-
tions.

p = g(fθ(u,v)) (17)

An intuition is to take W as an identity matrix
in Second architecture, the network will take the
sum of pre-trained vectors to as features and learn
how to predict metaphoricity. A fixed uniform W
basically keeps the information in input vectors.
For a short overview of all these alternative archi-
tectures see Table 2.
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4 Evaluation

Our classifier achieved 91.5% accuracy trained on
500 labeled AN-phrases out of 8592 in the corpus
and tested on the rest. Training on 8000 and test-
ing on the rest gave us accuracy of 98.5%.3

We tested several combinations of the architec-
tures we described in the paper. For each of the
three architectures, we also tested the Rectified
linear unit (ReLU) as the non-linearity mentioned
in Section 3.5. Our test also shows that a random
constant matrixW is enough to train the rest of the
parameters (reported in Table 2). In general, the
best performing combinations involve the use of
concatenation (the first architecture), while multi-
plication led to the lowest results. In any case, all
experiments returned accuracies above 75% 4.

To test the robustness of our approach, we have
evaluated our model’s performance under several
constraints:

• Total separation of vocabulary in train and
test sets (Table 3) in case of out of vocabu-
lary words.

• Use of different pretrained word embeddings
(Figure 3).

• Cross validation (Figure 1).

• Qualitative selection of the training data
based on the semantic categories of adjec-
tives (Figure 2).

Finally, we will provide some qualitative insights
on how the model works.

Our model is based on the idea of transfer learn-
ing: using the learned representation for a new
task, in this case the metaphor detection. Our
model should generalize very fast with a small
set of samples as training data. In order to test
this matter, we have to train and test on totally
different samples so vocabulary doesn’t overlap.
The splitting of the 8592 labeled phrases based
on vocabulary gives us uneven sizes of training
and test phrases5. In Table 3 using the pretrained

3These results are based on the first architecture, the per-
formance of other architectures are not very different in this
simple test. The sample code is available on https://gu-
clasp.github.io/anvec-metaphor/

4The number of parameters in case of using concatenation
(as in first architecture) is 180 601 and other compositions,
including addition and multiplication, number of parameters
is almost the half: 90 601.

5We chose the vocabulary splitting points for every 10%
from 10% to 90%, then we applied the splitting separately on
nouns and adjective

Word2Vec embeddings trained on Google News
(Mikolov et al., 2013) we examined the accuracy,
precision and recall of the our trained classifier.

We have used three different word embeddings:
Word2Vec embeddings trained on Google News
(Mikolov et al., 2013), GloVe embeddings (Pen-
nington et al., 2014) and Levy-Goldberg embed-
dings (Levy and Goldberg, 2014).

These embeddings are not up-dated during the
training process. Thus, the classification task is
always performed by learning weights for the pre-
existing vectors.

The results of our experiment can be seen in
Figure 3. All these embeddings have returned sim-
ilar accuracies both when trained on scarce data
(100 phrases) and when trained on half of the
dataset (4000 phrases).

Training on 100 phrases indicates the ability of
our model to learn from scarce data. One way of
checking the consistency of our model under data
scarcity is to perform flipped cross-validation: this
is a cross-validation where, instead of training our
model on 90% of the data and testing it on the re-
maining 10%, we flipped the sizes train it on 10%
of the data and test it on the remaining 90%. Re-
sults for both classic cross-validation and flipped
cross-validation can be seen in Figure 1. Training
on 10% of the data proved to consistently achieve
accuracies not much lower than 90%. In other
terms, a model trained on 90% of the data does
not do much better than a model trained on 10%.

Finally, we tried training our model on only one
of the semantic categories we introduced at the be-
ginning of the paper and testing it on the rest of the
dataset. Results can be seen in Figure 2.

We can wonder “why” our system is working:
with respect to more traditional machine learn-
ing approaches, there is no direct way to evaluate
which features mostly contribute to the success of
our system. One way to have an idea of what is
happening in the model is to use the “metaphoric-
ity vector” we discussed in Section 3. Such vector
represents what is learned by our model and can
help making it less opaque for us.

If we compute the cosine similarity between
all the nouns in our dataset and this learned vec-
tor, we can see that nouns tend to polarize on an
abstract/concrete axis: abstract nouns tend to be
more similar to the learned vector than concrete
nouns.

It is likely that our model is learning nouns’
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Test Train Accuracy Precision Recall
6929 72 0.83 0.89 0.77
5561 299 0.89 0.86 0.93
4406 643 0.91 0.92 0.90
3239 1203 0.90 0.91 0.88
2253 1961 0.91 0.92 0.92
1568 2763 0.89 0.90 0.90
707 4291 0.91 0.94 0.91
313 5494 0.93 0.92 0.95
148 6282 0.93 0.94 0.92

Table 3: This table shows consistent results in ac-
curacy, precision and recall of the classifier trained
with different split points of vocabulary instead of
phrases. Splitting the vocabulary creates different
sizes of training phrases and test phrases.

level of abstractness as a mean to determine phrase
metaphoricity. In Table 4 we show the 10 most
similar and the 10 least similar nouns obtained
with this approach. As can be seen, a concrete-
abstract polarity is apparently learned in training.

This factor was amply noted and even used in
some feature-based metaphor classifiers, as we
discussed in the beginning: the advantage of using
continuous semantic spaces probably relies on the
possibility of having a more nuanced and complex
polarization of nouns along the concrete/abstract
axes than using hand-annotated resources.

1 2 3 4 5 6 7 8 9 10

0.92

0.93

0.94

0.95

0.96

CV

Flipped-CV

Figure 1: Accuracies for each fold over two com-
plementary approaches: cross-validation (CV) and
flipped cross-validation (“flipped-CV”). Flipped
cross-validation takes 90% of our dataset for train-
ing. The graph shows that both methods yield
good results: in other words training on just 10%
of the dataset yields results that are just few points
lower than normal cross-validation.
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Figure 2: Accuracy training on different categories
of adjectives. In this experiment, we train on
just one category of the dataset and test on all
the others. In general, training on just one cate-
gory (e.g.temperature) and testing on all other cat-
egories still yields high accuracy. While the power
of generalization of our model is still unclear, we
can see that it can detect similar semantic mecha-
nisms even without any vocabulary overlap. The
category taste is a partial exception: this category
seems to be a relative “outlier”.

5 Discussion and future work

In this paper we have presented an approach
for detecting metaphoricity in AN pairs that out-
performs the state of the art without using human
annotated data or external resources beyond pre-
trained word embeddings. We treasured the infor-
mation captured by Word2Vec vectors through a
fully connected neural network able to filter out
the ”noise” of the original semantic space. We
have presented a series of alternative variations
of this approach and evaluated its performance
under several conditions - different word embed-
dings, different training data and different training
sizes - showing that our model can generalize ef-
ficiently and obtain solid results over scarce train-
ing data. We think that this is one of the central
findings in this paper, since many semantic phe-
nomena similar to metaphor (for example other
figures of speech) are under-represented in current
NLP resources and their study through supervised
classifiers would require systems able to work on
small datasets.

The possibility of detecting metaphors and as-
signing a degree of “metaphoricity” to a snippet
of text is essential to automatic stylistic programs
designed to go beyond “shallow features” such
as sentence length, functional word counting etc.
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Figure 3: Accuracy on different kinds of embeddings, both training on 100 phrases and 4000 phrases.

Top ten reluctance, reprisal, resignation,
response, rivalry, satisfaction,
storytelling, supporter, surveil-
lance, vigilance

Bottom ten saucepan, flour, skillet, chimney,
jar, tub, fuselage, pellet, pouch,
cupboard

Table 4: 10 most similar and 10 least simi-
lar terms with respect to the “metaphoricity vec-
tor”, concatenated using an all-zeros vector for the
adjective. In practice, this is a way to explore
which semantic dimensions are particularly use-
ful to the classifier. A concrete/abstract polarity
on the nouns was apparently derived

While such metrics have already allowed powerful
studies, the lack of tools to quantify more com-
plex stylistic phenomena is evident (Hughes et al.,
2012; Gibbs Jr, 2017). Naturally, this work is in-
tended as a first step: the “metaphoricity” degree
our system is learning would mirror the kinds of
combination present in this specific dataset, which
represents a very specific type of metaphor.

It can be argued that we are not really learn-
ing the defining ambiguities of an adjective (e.g.
the double meaning of “bright”) but that we are
probably side-learning nouns’ degree of abstrac-
tion. This would be in harmony with psycholin-
guistic findings, since detecting nouns’ abstraction
seems to be one of the main mechanisms we re-
cur to, when we have to judge the metaphoricity
of an expression (Forgács et al., 2015) and is used
as a main feature in traditional Machine Learning
approaches to this problem. In other terms, our
system seems to detect when the same adjective is
used with different categories of words (abstract

or concrete) and generalize over this distinction; a
behavior that might not be too far from the way a
human learns to distinguish different senses of a
word.

An issue that we would like to further test in
the future is metaphoricity detection on different
datasets, to explore the ability of generalization
of our models. Researching on different datasets
could also help us gaining a better insight about
the model’s learning.

An obvious option is to test verb-adverb pairs
(VA, e.g. think deeply) using the same approach
discussed in this paper. It would then be inter-
esting to see whether having a common training
set for both the AN and the VA pairs will allow
the model to generalize for both cases or differ-
ent training on two training sets, one for AN and
one for VA, will be needed. Other cases to test
include N-N compounds or proposition/sentence
level pairs.

Another way such an approach can be extended,
is to investigate whether reasoning tasks typically
associated with different classes of adjectives can
be performed. One task might be to distinguish
adjectives that are intersective, subsective or none
of the two. In the first case, from A N x one should
infer that x is both an A and an N (something that
is a black table is both black and a table), in the
second case one should infer that x is N only (for
example someone who is a skillful surgeon is only
a surgeon but we do not know if s/he is skillful
in general), and in the third case neither of the
two should be inferred. However, this task is not
as simple as giving a training set with instances
of AN pairs, to recognize where novel instances
of AN pairs belong to. Going beyond logical ap-
proaches by having the ability to recognize differ-
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ent uses of an adjective requires a richer notion of
context which extends way beyond the AN-pairs.

A further idea we want to pursue in the future
is the development of more fine grained datasets,
where metaphoricity is not represented as a binary
feature but as a gradient property. This means that
a classifier should have the ability to predict a de-
gree of metaphoricity and thus allow more fine-
grained distinctions to be captured. This is a theo-
retically interesting side and definitely something
that has to be tested since not much literature is
available (if at all) on gradient metaphoricity. It
seems to us that similar approaches, quantifying a
text’s metaphoricity and framing it as a supervised
learning task, could help having a clear view on
the influence of metaphor on style.
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