Predicting Pronouns with a Convolutional Network and an N-gram Model

Christian Hardmeier
Uppsala University
Department of Linguistics and Philology
751 26 Uppsala, Sweden

Abstract

This paper describes the UU-HARDMEIER
system submitted to the DiscoMT 2017
shared task on cross-lingual pronoun pre-
diction. The system is an ensemble of con-
volutional neural networks combined with
a source-aware n-gram language model.

1 Overview

For the 2017 cross-lingual pronoun prediction
shared task, we chose to create a system that could
be implemented very quickly while still provid-
ing an interesting comparison to the other systems
we expect to participate in the shared task. The
core components of our system are a convolutional
neural network that evaluates the context of the
source and target context of the examples. As in
our systems from the previous year (Hardmeier,
2016; Loadiciga et al., 2016), we also use a source-
aware n-gram language model as a complementary
component. In contrast to 2016, our neural net-
work classifier does not attempt to model pronom-
inal anaphora explicitly. This change was made
to simplify the model and avoid the heavyweight
preprocessing that our earlier systems required. In-
stead, we focused on implementing a more sophis-
ticated system combination method that permits
the construction of a larger ensemble of models.

2 Convolutional neural network

The neural network architecture of our pronoun
prediction model is loosely inspired by the winning
system of the WMT 2016 shared task on cross-
lingual pronoun prediction (Luotolahti et al., 2016).
However, since we expected a large proportion of
the participating systems to use recurrent neural
networks, we decided to use a simpler convolu-
tional architecture instead. The implementation of
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the network uses the Keras library (Chollet et al.,
2015).

The network independently scans four different
input areas for each example: left source, left tar-
get, right source and right target. All four areas
are defined with respect to the position of the el-
ement to be predicted, which is a placeholder to
be filled on the farget side aligned to a pronoun on
the source side. The left areas cover the context
preceding the pronoun or placeholder, up to the
beginning of the previous sentence or at most 50 to-
kens to the left of the anchoring position, whichever
is shorter. The right areas cover the context follow-
ing the pronoun or placeholder, up to the end of
the current sentence or at most 50 tokens if the sen-
tence is longer. The context size limit of 50 tokens
is large enough to have no effect in most cases,
but it ensures that the training efficiency does not
suffer from a few overlong sentences. The source
language pronoun aligned to the placeholder is in-
cluded in both the left and right source context
area, whereas the placeholder on the target side is
excluded from the context areas.

The words of the source and target language are
encoded as one-hot vectors using the vocabulary of
the IWSLT part of the official training data. Words
occurring only once in the IWSLT training set are
excluded from the vocabulary and treated as un-
known words instead. The part-of-speech tags pro-
vided in the training data are ignored. The one-hot
vectors are mapped to dense embeddings through
an embedding layer with fanh activation, whose
weights are initialised randomly at training time.

The dense word embeddings form the input of
one convolutional layer per input area. The output
of the convolutional layers undergo max pooling in
a single step over the entire length of the input area.
Then the vectors resulting for the four input areas
are concatenated together and used as the input of
a densely connected layer with softmax activation
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Network properties Epochs included
Training Weighting Optimiser Minibatch Conv. filters de-en en-de en-fr es-en
A all - Adam 100 100 1 3 3 -
B IWSLT + Adam 100 100 15 20 20 20
C IWSLT - Adam 100 100 - - - 20
D IWSLT + rmsprop 20 50 - - - 20
E IWSLT + Adam 20 50 - - - 20

Table 1: Properties of the convolutional neural networks included in our submissions

that predicts the class of the example.

We trained the convolutional neural network in
different configurations. Five configurations were
included in some form in our submissions to the
shared task. Unfortunately, we worked under very
strong time pressure, and the selection of the in-
cluded systems and the exploration of the param-
eter space is not as systematic as we should have
wished. We here describe the systems as submit-
ted, without making any specific claims regarding
the usefulness of the parameter settings we tested.
Also, we did not have time to train the selected
systems to convergence. Instead, we saved a snap-
shot of the network weights after each completed
training epoch and ran all these snapshots on the
test data. Then we left it to the system combination
procedure described in Section 4 to assign weights
to all the different snapshots according to their use-
fulness measured on the development set.

Table 1 shows an overview of the properties
distinguishing the five systems used in the sub-
missions and the number of epochs per system
included for each language pair (limited by the
available training time). Parameters common to all
systems are not listed in the table. These include
the word embedding in the source and target lan-
guages, which were set to 100, and the kernel size
in the convolutional layer, which was set to 10.

System A was trained on all training data pro-
vided by the organisers, but could only complete
a small number of training iterations. The other
systems are trained on IWSLT data only. Systems
B, D and E use an example weighting scheme that
attempts to assign equal weight to all classes in the
data regardless of their frequency. Systems A, B, C
and E were trained with the Adam optimiser using
the default settings in Keras (learning rate 0.001),
whilst system D was trained with rmsprop and a
learning rate of 0.01. The minibatch sizes were
100 and 20 for different systems, and the number
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of convolutional filters were 100 and 50.

3 Source-aware language model

In our submissions to the WMT 2016 shared task
on cross-lingual pronoun prediction (Hardmeier,
2016; Lodiciga et al., 2016), we found that a sim-
ple n-gram language model extended with access
to the identity of the source pronoun achieved quite
good results in comparison to our more sophisti-
cated neural network classifier. The information
captured by this model seemed to be complemen-
tary to that encoded in the neural network, so that
additional gains could be realised by combining
the two models. This year, we again use a source-
aware language model as a component in our work.
The following description follows our earlier sys-
tem description paper (Hardmeier, 2016) and is
repeated here for reference.

Our source-aware language model is an n-gram
model trained on an artificial corpus generated from
the target lemmas of the parallel training (Figure 1).
Before every REPLACE tag occurring in the data,
we insert the source pronoun aligned to the tag
(without lowercasing or any other processing). The
alignment information attached to the REPLACE
tag in the shared task data files is stripped off.
In the training data, we instead add the pronoun
class to be predicted. The n-gram model used for
this component is a 6-gram model with modified
Kneser-Ney smoothing (Chen and Goodman, 1998)
trained with the KenLM toolkit (Heafield, 2011)
on the complete set of training data provided for
the shared task.

To predict classes for an unseen test set, we first
convert it to a format matching that of the training
data, but with a uniform, unannotated REPLACE tag
used for all classes. We then recover the tag anno-
tated with the correct solution using the disambig
tool of the SRILM language modelling toolkit (Stol-
cke et al., 2011). This tool runs the Viterbi algo-



Source:

Target lemmas:
Solution: ils
LM training data:
LM test data:

It ’s got these fishing lures on the bottom .
REPLACE _( avoir ce leurre de péche au-dessous .

It REPLACE._ils avoir ce leurre de péche au-dessous .
It REPLACE avoir ce leurre de péche au-dessous .

Figure 1: Data for the source-aware language model

rithm to select the most probable mapping of each
token from among a set of possible alternatives.
The map used for this task trivially maps all tokens
to themselves with the exception of the REPLACE
tags, which are mapped to the set of annotated RE-
PLACE tags found in the training data.

In addition to being included as a component
in our primary ensemble systems, we submitted
the output of the standalone source-aware language
model as a secondary submission for all languages.

4 System combination

To combine the neural predictor with the source-
aware language model, we linearly interpolated the
probabilities assigned to each class by each model.
The class finally predicted was the one that scored
highest according to the interpolated probability
distribution.

The neural network prediction probabilities are
obtained trivially as the posterior distribution of the
final softmax layer of the convolutional network.
For the source-aware language model, we run
SRILM’s disambig tool with the -posteriors
option, which causes it to output an approximate
posterior distribution derived from information col-
lected during the Viterbi decoding pass. For all
classes c, the probability predicted by the com-
bined model is defined as a convex combination
of the probabilities p;(c) predicted by each model
individually:

p(e;d) =Y Aipile) (1)

To estimate the parameter vector A, we max-
imise the log-likelihood of the interpolated model
on a development set. The log-likelihood is defined
as follows:

L(A) = ZD"C log p(c; ) (2)

Here, the index i ranges over the examples in the
development set and c ranges over the classes. The
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indicator variable #;. equals 1 if class c is the correct
prediction for example i and O otherwise.

The parameter vector A is then obtained as the
solution of the following constrained optimisation
problem:

Maximise L(A)
subject to Y, A4x = 1 and A; > O for all k.

To solve this problem, we apply the sequential least
squares programming (SLSQP) algorithm (Kraft,
1988) as implemented in the SciPy library'. The re-
sulting weights are then rounded to 4 decimals and
component systems whose weight after rounding
equals zero are discarded.

5 Results

The results of the official evaluation are shown
in Table 2. In this paper, we concentrate on dis-
cussing our own systems. For an overview of the
shared task results, see the report by Lodiciga et al.
(2017). We note that the ensemble system improves
over the source-aware n-gram model for all lan-
guage pairs. The gap in macro-averaged recall
exceeds 10 percentage points for German—English
and Spanish—English. For English-French, it is
about 4 points, and for English—-German about 1.5.
The results in terms of accuracy show a similar
pattern. In Table 3, we find the weights assigned
to the individual systems by the system combina-
tion procedure. Recall that the ensemble contains
multiple instantiations of each of these models (see
Table 1); here, the weights are summed over all
epochs of a particular model. We observe that the
interpolation method assigns appreciable weights
to both the neural and the n-gram components in all
languages, so that both models make a contribution
to the final prediction. The English—-German sys-
tem has the highest language model weight, which
partly explains the similar performance of the pri-
mary and the contrastive system for this language
pair.

"http://www.scipy.org/



Macro-R Accuracy
prim. contr. prim. contr.
de-en 62.18 51.12 79.49 69.23
en-de 5841 56.80 71.20 69.02
en-fr 62.86 5895 7348 71.82
es-en 5232 42.19 54.10 4645

Table 2: Official evaluation results for primary
(ensemble) and contrastive (n-gram) systems

de-en  en-de en-fr es-en
LM 0.5437 0.7676 0.4552 0.2931
A 0.1886 0.0062 0.2957 -
B 02677 0.2262 0.2490 0.1825
C - - - 0.3339
D - — - 0.0674
E - - - 0.1230

Table 3: Weights summed over all epochs for
individual systems

Figure 2 shows the development performance
of the individual neural networks included in the
ensemble for German—English. The size of the dots
on the accuracy curve is proportional to the inter-
polation weight. The figure suggests that system B,
which is trained on IWSLT data only, is overfitting
the training set and probably needs more regular-
isation. On the other hand, the performance of
system A, trained on the full data set, still improves
after 3 epochs, and it is likely that we could have
achieved better results with more time for training.

A look at the confusion matrices for the different
language pairs (not shown for space reasons) sug-
gests that the convolutional neural networks man-
age to capture some relevant linguistic information
from the context that the n-gram model misses.
In particular, the ensemble systems for German—
English and English-French are much more suc-
cessful at distinguishing pronoun classes that re-
quire knowledge of the antecedent. In previous
work (Hardmeier et al., 2013; Hardmeier, 2014),
we used performance on the French pronouns ils
and elles as an indicator of a system’s capacity
to reason about antecedents. Both pronouns are
straightforward translations of the English pronoun
they, differing in gender only. Our English—French
ensemble achieves class F-scores of 76.19% (elles)
and 83.54% (ils) on these classes, as opposed to
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Figure 2: Development set performance of individ-
ual snapshots for German—English

35.29% and 79.01% for the n-gram system; this
is a large improvement especially for elles. The
German—English system faces similar difficulties
for the pronouns they vs. she (Hardmeier and Fed-
erico, 2010) and likewise improves from 24.00%
(she) and 56.18% (they) to 66.67% and 76.60%.
In the other two language pairs, we find no such
clear patterns. The predictions for English—-German
are almost the same in both systems, and Spanish—
English improves much more uniformly over all
classes.

6 Conclusions

The system described in this paper was created
to provide an additional point of comparison in
the shared task evaluation. It uses a very simple
convolutional neural network architecture that can
be contrasted with the more sophisticated neural
models seen in the previous edition of the shared
task. The source-aware n-gram model is another
approach that achieved reasonable results in the
previous evaluation. In comparison with last year,
we now apply a better system combination proce-
dure that permits the integration of a large number
of systems in the final ensemble.
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