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Abstract

The field of Quality Estimation (QE) has
the goal to provide automatic methods
for the evaluation of Machine Translation
(MT), that do not require reference transla-
tions in their computation. We present our
submission to the sentence level WMT17
Quality Estimation Shared Task. It com-
bines tree and sequence kernels for pre-
dicting the post-editing effort of the tar-
get sentence. The kernels exploit both
the source and target sentences, but also
a back-translation of the candidate transla-
tion. The evaluation results show that the
kernel approach combined with the base-
line features brings substantial improve-
ment over the baseline system.

1 Introduction

The evaluation of Machine Translation (MT) out-
put is a sub-field of MT research that has experi-
enced a great amount of interest in the past years.
The process of MT evaluation involves three fac-
tors: an input segment in a source language, the
candidate translation (also known as target sen-
tence) which represents the output of a MT sys-
tem when translating from the source language to
the target language and a reference translation in
the target language. The assessment of MT qual-
ity can be divided into two categories depending
on whether it requires the presence of a reference
translation or not. The reference-based evaluation
scores the candidate translation by comparing it to
the reference translation.

On the other hand, the reference-free evalua-
tion, also known as quality estimation (QE), pre-
dicts the quality of a candidate translation based
solely on the information contained in the source
and target sentences. QE can be performed at

different levels of granularity: word, sentence or
phrase and it involves classifying, ranking or pre-
dicting scores for the candidate translations. A
sentence-level QE system is conventionally con-
structed based on a set of features encoding the in-
formation contained in the source and target sen-
tences, which are used for learning a prediction
model. The features employed for this task can be
of different types, like surface features, language
model features or linguistic features. The positive
influence of syntactic features on the performance
of QE systems has been extensively studied, in-
cluding in Rubino et al. (2012), Avramidis (2012)
or more recently in Kozlova et al. (2016). How-
ever, the process of identifying the best perform-
ing set of features, is a task that is both expensive
and requires a considerable amount of engineering
effort (Hardmeier, 2011). On the other hand, ker-
nel methods do not require the explicit definition
of the features, and rely on the scalar product be-
tween vectors for capturing the similarity shared
by the sentence pairs.

In this paper we present our submission to the
WMT17 Shared Task on sentence level Quality
Estimation, that makes use of sequence and tree
kernels in predicting a continuous score represent-
ing the post-editing effort for the target sentence.
The novel contribution of our system is the combi-
nation of different types of kernels. Moreover, we
use a back-translation of the target sentence into
the source language as an additional data repre-
sentation to be exploited by the kernels, together
with the usual source and target sentences repre-
sentations. Furthermore, we construct additional
explicit features by applying the kernel functions
directly on the pair of source and back-translation
sentences, a method that to our knowledge has
not been used before. The evaluation performed
demonstrates that the combination of the kernel
approach and the baseline together with the newly
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introduced feature vectors brings consistent im-
provement over the baseline system.

This paper is organized as follows. The related
work is presented in Section 2, while the methods
employed and the implementation are described in
Section 3. The experimental setup and the evalua-
tion results are introduced in Section 4, while the
last section summarizes our findings and presents
future work ideas.

2 Related work

Kernel functions have been used in a variety
of NLP tasks, including Textual Similarity (e.g.
(Severyn et al., 2013)), Information Extraction
(e.g. (Culotta and Sorensen, 2004)), Semantic
Role Labeling (e.g. (Moschitti et al., 2008)) or
Textual Entailment (e.g. (Wang and Neumann,
2007)).

An approach for QE based on syntactic tree ker-
nels is introduced in (Hardmeier, 2011), where
a binary SVM classifier is trained to make pre-
dictions about the quality of the MT output.
The datasets are syntactically analyzed using con-
stituency and dependency parsers. The Subset
Tree Kernel (Collins and Duffy, 2001) is used
for the constituency trees, while the Partial Tree
Kernel (Moschitti, 2006a) (Moschitti, 2006b) was
judged as being more appropriate for the depen-
dency trees. The evaluation shows that the combi-
nation between baseline features and the tree ker-
nels achieves the best performance. These findings
are further validated in Hardmeier et al. (2012)
where a QE system is proposed based on a set of
82 explicit features combined with syntactic tree
kernels.

Syntactic tree kernels for QE are also explored
in Kaljahi et al. (2014), where a set of hand crafted
constituency and dependency based features to-
gether with subset tree kernels applied on the con-
stituency and dependency tree representations are
used. The evaluation results demonstrate that the
source constituency trees perform better than the
target sentence constituency trees. This work is
further extended in Kaljahi (2015), where multi-
ple QE systems based on syntactic and semantic
features are introduced.

The work presented in this paper differs from
previous kernel approaches for QE by the inno-
vative use of sequence kernels in addition to the
previously utilized tree kernels. We extend on
the previous kernel QE research by also making

use of a back-translation of the target sentence
in the computation of the kernels. While back-
translations features have been previously utilized
for QE (e.g.(Bechara et al., 2016)), their potential
as an additional structural input representation for
kernels has never been studied before. Further-
more, we exploit the potential of the scores of the
kernel functions applied on the source and back-
translation sentences as additional hard-coded fea-
tures.

3 Methods and implementation

In this section details about the methodology and
the implementation will be presented. First, tree
and sequence kernels will be introduced, followed
by the description of the implementation of these
kernels in the context of QE. Finally, the machine
learning platform used for implementing the QE
systems will be presented.

3.1 Kernels for Quality Estimation

A kernel function computes the similarity between
two structural representations without requiring
the identification of the entire feature space (Mos-
chitti, 2006a). To achieve this, the scalar prod-
uct between vectors of substructure counts is com-
puted in a vector space with a possibly infinite
number of dimensions (Nguyen et al., 2009). Dif-
ferent kernel functions, depending on the type of
structural input data they require, have been pro-
posed including sequence, tree or graphs kernels.
Tree kernels make use of tree representations for
their computation, while sequence kernels calcu-
late the similarity between the input sequence rep-
resentations based on the number of common sub-
sequences they share.

In the case of tree kernels, a series of algo-
rithms have been proposed, e.g. in Collins and
Duffy (2001) or Moschitti (2006a), based on the
type of tree fragments (e.g. subsets, subtrees or
partial trees) they take into consideration in their
computation. On the other hand, sequence kernels
have also been extensively studied in Bunescu and
Mooney (2005) or Nguyen et al. (2009).

In this paper, we focus on the Partial Tree Ker-
nel (Moschitti, 2006a) and the Subsequence Ker-
nel (Bunescu and Mooney, 2005). The Partial Tree
Kernel (PTK) was chosen because it is more flex-
ible than the subtree or subset kernels in its calcu-
lation by taking partial subtrees into account. The
Subsequence Kernel (SK) uses a dynamic pro-
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baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.408 0.145 0.416 0.143 0.413 0.144 0.422 0.143
SK src+mt 0.481 0.139 0.477 0.138 0.484 0.139 0.480 0.136
SK src+mt+mtbk 0.491 0.138 0.496 0.137 0.493 0.138 0.497 0.137
PTK src 0.449 0.137 0.452 0.138 0.459 0.137 0.463 0.137
PTK src+mt 0.495 0.133 0.499 0.133 0.50 0.133 0.505 0.132
PTK src+mt+mtbk 0.503 0.133 0.505 0.133 0.506 0.133 0.509 0.133
(PTK src+mt) + (SK src+mt) 0.488 0.137 0.487 0.136 0.490 0.137 0.488 0.136
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.499 0.136 0.503 0.135 0.50 0.136 0.504 0.135
Baseline WMT 0.169 0.146

Table 1: Evaluation results for the DE-EN dev set.

baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.433 0.141 0.440 0.139 0.437 0.141 0.443 0.139
SK src+mt 0.478 0.138 0.483 0.137 0.480 0.138 0.484 0.139
SK src+mt+mtbk 0.466 0.142 0.478 0.140 0.467 0.142 0.479 0.140
PTK src 0.450 0.136 0.456 0.135 0.458 0.136 0.465 0.135
PTK src+mt 0.506 0.132 0.523 0.130 0.510 0.132 0.537 0.130
PTK src+mt+mtbk 0.491 0.137 0.501 0.137 0.493 0.137 0.503 0.137
(PTK src+mt) + (SK src+mt) 0.493 0.136 0.502 0.135 0.494 0.136 0.503 0.135
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.478 0.141 0.488 0.140 0.479 0.141 0.489 0.140
Baseline WMT 0.260 0.140

Table 2: Evaluation results for the DE-EN test set.

gramming approach to determine the number of
common patterns between the two input sentences.
In our experiments, the patterns taken into account
were composed of the lexical items.

In order to use the tree kernel functions, the
source and the target sentences were parsed us-
ing the Bohnet graph-based dependency parser
(Bohnet, 2010), which was chosen because of its
high accuracy. The data was first preprocessed by
performing lemmatization and pos-tagging. Pub-
licly available 1 pre-trained models were used for
analyzing the source, target and back-translation
sentences.

For learning using the Partial Tree Kernel, a
transformation of the dependency parse tree is
required, as introduced in Croce et al. (2011).
We followed the lexical-centered-tree approach,
where the grammatical relation and the pos-tag are
encoded as the rightmost children of a dependency
tree node. In the case of sequence kernels, the
only preprocessing step applied was the tokeniza-
tion of the input sentences. In order to investigate
if prior lemmatization of the input sentences influ-
ences the results, we created two variants for each
structural representation: an exact one containing
the actual lexical items and a simplified non-exact

1https://code.google.com/archive/p/mate-
tools/downloads

one consisting of their corresponding lemmas.
Furthermore, we incorporated a back-

translation of the target sentence as an additional
structural input representation for both the tree
kernels and the sequence kernels. The back-
translation was obtained using the free online
Google Machine Translation system 2. We also
exploited the full capability of the kernel functions
by utilizing their explicit scores when applied
on the source and back-translation sentences.
We computed the scores for both the non-exact
representations, and the exact ones. The scores
were normalized using the formula from Croce
et al. (2011)

score =
K(T1, T2)√

K(T1, T1) ? K(T2, T2)

with T1 and T2 denoting the structural represen-
tations and K the type of kernel function applied.

3.2 KeLP (Kernel-based Learning Platform)
In our implementation, we applied the Partial
Tree Kernel3 and the Sequence Kernel 4 together
with the epsilon-regression SVM implementations
made available in the KeLP package (Filice et al.,
2015b) (Filice et al., 2015a). KeLP (Kernel-based

2https://translate.google.com
3based on (Moschitti, 2006a)
4based on (Bunescu and Mooney, 2005)
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baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.446 0.137 0.434 0.140 0.450 0.137 0.436 0.140
SK src+mt 0.496 0.133 0.491 0.134 0.499 0.133 0.493 0.134
SK src+mt+mtbk 0.508 0.131 0.497 0.134 0.499 0.133 0.499 0.137
PTK src 0.467 0.134 0.469 0.134 0.476 0.134 0.477 0.133
PTK src+mt 0.516 0.130 0.524 0.129 0.480 0.134 0.530 0.129
PTK src+mt+mtbk 0.520 0.130 0.523 0.130 0.524 0.130 0.526 0.130
(PTK src+mt) + (SK src+mt) 0.508 0.131 0.516 0.132 0.510 0.131 0.518 0.132
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.515 0.131 0.515 0.132 0.516 0.131 0.516 0.132
Baseline WMT 0.359 0.140

Table 3: Evaluation results for the EN-DE dev set. The highlighted numbers correspond to the systems
submitted to the shared task.

Learning Platform) is a Java Machine Learning
library that provides the venue for implementing
kernel based machine learning algorithms together
with kernel functions. KeLP provides built-in sup-
port for multiple vectorial or structured data rep-
resentations, which can be leveraged at the same
time by combining different kernels into a single
model. The package has a series of advantages,
among them platform-independence, flexibility of
use and its modularity that makes it easily exten-
sible. The training of the QE prediction models
was performed using the Support Vector Machine
epsilon-Regression implementation with default
parameters from the KeLP package. For the base-
line systems a radial basis function (rbf) kernel
was chosen, while for the other implemented QE
systems the linear combination between the base-
line features rbf kernel and the additional struc-
tural kernels was used.

4 Evaluation and results

4.1 Experimental setup

The evaluation was performed using the datasets
released for the QE sentence-level shared task by
the Second Conference On Machine Translation
(WMT17) 5. The data consists of tuples, contain-
ing the source segment, the target sentence and
a manually post-edited version of the target sen-
tence, together with their associated post-editing
score.

The WMT17 dataset is composed of both
English-German and German-English tuples. The
English-German dataset, pertaining to the IT do-
main, consists of 23000 tuples for training, with
additional 1000 instances for development. Two
sets, comprised of 2000 units each, were made

5http://www.statmt.org/wmt17/quality-estimation-
task.html

available for testing. On the other hand, the
German-English dataset provides 25000 tuples for
training, 1000 units for development and a test
set consisting of 2000 instances, with the gen-
eral domain categorized as Pharmaceutical. The
QE baseline systems used for evaluation are based
on the sets of 17 baseline features made avail-
able by the QE sentence-level shared task. They
consist of surface features (e.g the number of to-
kens/punctuation marks in the source sentence),
language model features (e.g LM probability of
the source/target sentences), but also n-gram based
features (e.g percentage of unigrams in quartile 4
of frequency (higher frequency words) in a corpus
of the source language).

4.2 Results

The systems were evaluated based on their pre-
dicted scores using Pearson’s correlation coeffi-
cient and the Mean Average Error (MAE), with
the former being chosen as the primary method
of evaluation for the WMT17 sentence-level QE
task. We experimented with different model com-
binations and the results of the evaluation are pre-
sented in the tables that follow, where we have
highlighted our submissions to the sentence level
shared task. To better distinguish between models,
the following QE system notation scheme was uti-
lized: [Kernel [level]], where Kernel identifies the
type of kernel used: PTK or SK and level repre-
sents the input type of sentence the kernel was ap-
plied to: source (marked with src), target (marked
with mt) and back-translated target (marked with
mtbk). The linear combination between the dif-
ferent kernel functions was marked with the plus
sign. The systems can be categorized according to
multiple criteria. The first one considers the pres-
ence of the new kernel features, which divides the
systems into baseline features and baseline+new
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baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.448 0.131 0.443 0.132 0.456 0.131 0.451 0.132
SK src+mt 0.506 0.126 0.490 0.127 0.510 0.125 0.494 0.126
SK src+mt+mtbk 0.510 0.125 0.498 0.126 0.513 0.125 0.500 0.126
PTK src 0.461 0.129 0.439 0.130 0.474 0.128 0.452 0.129
PTK src+mt 0.508 0.124 0.500 0.124 0.515 0.124 0.508 0.123
PTK src+mt+mtbk 0.511 0.124 0.508 0.124 0.516 0.123 0.514 0.124
(PTK src+mt) + (SK src+mt) 0.517 0.125 0.508 0.125 0.520 0.126 0.511 0.125
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.522 0.124 0.515 0.124 0.524 0.124 0.517 0.124
Baseline WMT 0.345 0.136

Table 4: Evaluation results for the EN-DE 2016 test set

baseline features baseline+new features

exact not exact exact not exact

System Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓ Pearson↑ MAE ↓
SK src 0.422 0.138 0.420 0.138 0.427 0.138 0.427 0.137
SK src+mt 0.482 0.132 0.470 0.133 0.485 0.132 0.473 0.133
SK src+mt+mtbk 0.494 0.131 0.482 0.132 0.495 0.131 0.483 0.132
PTK src 0.444 0.133 0.440 0.136 0.452 0.132 0.449 0.133
PTK src+mt 0.496 0.129 0.493 0.129 0.502 0.129 0.499 0.129
PTK src+mt+mtbk 0.504 0.129 0.505 0.129 0.508 0.129 0.509 0.128
(PTK src+mt) + (SK src+mt) 0.497 0.131 0.494 0.131 0.499 0.131 0.496 0.131
(PTK src+mt+mtbk) + (SK src+mt+mtbk) 0.508 0.130 0.506 0.130 0.509 0.130 0.508 0.130
Baseline WMT 0.387 0.135

Table 5: Evaluation results for the EN-DE 2017 test set.

features systems. The second criterion is repre-
sented by the presence of the lemmatization in
the pre-processing pipeline of the input sentences,
which partitions the systems into exact and not ex-
act ones.

A series of preliminary experiments was con-
ducted which indicated that strictly structural ker-
nel based methods could not capture all the rele-
vant features for constructing a high performing
QE system. Therefore, a combination between
the baseline rbf kernel with additional structural
kernels was implemented for the reported QE sys-
tems.

We can notice that all the systems, correspond-
ing to both language pairs outperformed the base-
line systems in terms of Pearson correlation. Of
particular interest are the systems making use of
the new kernel features, which succeeded in sur-
passing the corresponding systems that only used
the baseline features.

The results also show that the addition of the
back-translation as additional input data, proved
on average beneficial for improving the correla-
tion scores over systems that make use of only the
source and target sentences as input data for the
kernel functions.

In addition, we can observe that the sequence
kernels based systems are highly performant in

terms of Pearson’s coefficient, albeit slightly
worse on average than the tree kernels based im-
plementations. This is a very important aspect, as
the integration of sequence kernels into QE sys-
tems does not require additional external tools and
therefore makes them well suited for low-resource
language pairs, that might lack high-quality syn-
tactic tools like parsers or taggers. Moreover, by
employing a sequence kernel, the parsing of MT
output is effectively bypassed. This constitutes an
advantage as the parsing of target sentences often
represents a challenging task due to the ungram-
maticality of the MT generated output.

5 Conclusions and future work

In this paper, we presented our submission to the
sentence level QE task, based on sequence and
tree kernels. We have also investigated the perfor-
mance of additional kernel-based features, as well
as the benefit of incorporating a back-translation
of the machine translation output as an additional
input data representation, which to our knowledge
has not been studied before. The results indicate
that both ideas contribute useful additions to the
baseline systems. We have also demonstrated that
sequence kernels are a high performing method for
predicting the quality of MT translations, that have
the advantage of not requiring additional resources
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for their computation.
We plan to further extend the current work by

using constituency trees besides dependency trees
for the computation of the tree kernels. We also
plan to investigate if the choice of the MT system
for the back-translation, affects the evaluation re-
sults. Lastly, more combination schemes between
the tree and sequence kernels will be explored to-
gether with additional datasets and language pairs.
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