
Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 157–168
Copenhagen, Denmark, September 711, 2017. c©2017 Association for Computational Linguistics

Guiding Neural Machine Translation Decoding with External Knowledge

Rajen Chatterjee(1,2), Matteo Negri(2), Marco Turchi(2),
Marcello Federico(2), Lucia Specia(3), and Frédéric Blain(3)

(1)University of Trento, Trento, Italy
(2)Fondazione Bruno Kessler, Trento, Italy
(3)University of Sheffield, Sheffield, UK

{chatterjee,negri,turchi,federico}@fbk.eu
{l.specia,f.blain}@sheffield.ac.uk

Abstract

Differently from the phrase-based
paradigm, neural machine translation
(NMT) operates on word and sentence
representations in a continuous space.
This makes the decoding process not only
more difficult to interpret, but also harder
to influence with external knowledge. For
the latter problem, effective solutions like
the XML-markup used by phrase-based
models to inject fixed translation options
as constraints at decoding time are not
yet available. We propose a “guide”
mechanism that enhances an existing
NMT decoder with the ability to prioritize
and adequately handle translation options
presented in the form of XML annotations
of source words. Positive results obtained
in two different translation tasks indicate
the effectiveness of our approach.

1 Introduction

The need to enforce fixed translations of certain
source words is a well known problem in machine
translation (MT). For instance, this is an issue
in application scenarios in which the translation
process has to comply with specific terminology
and/or style guides. In such situations it is gen-
erally necessary to consider external resources to
guide the decoder in order to ensure consistency
or meet other specific requirements. Terminology
lists, which provide the decoder with the expected
translations of specific words or phrases, are a typ-
ical example of external knowledge used to guide
the process to meet such constraints. Meeting pre-
defined constraints, however, does not represent
the only case in which an external guidance can
support decoding. In ensemble MT architectures,
for example, the output of a translation system

specialised in handling specific phenomena (e.g.
numbers or dates) can be used to guide another
decoder without changing its underlying model.

Phrase-based statistical MT (PBSMT), which
explicitly manipulates symbolic representations of
the basic constituents (phrases) in the source and
target languages, provides solutions to address
these needs. For instance, the XML markup im-
plemented in the Moses toolkit (Koehn et al.,
2007) allows one to supply the expected transla-
tions to the decoder in the form of tags surround-
ing the corresponding source phrases.

To our knowledge, solutions to this problem are
not yet available for neural machine translation
(NMT), which has recently emerged as the dom-
inant approach for MT. In particular, no work has
been done to address the needs of the translation
industry, in which language service providers usu-
ally receive translation requests that must be sat-
isfied in short time, often taking into account ex-
ternal knowledge that defines specific customers’
constraints. In this case, the time-consuming re-
training routines of NMT are not viable, thus mak-
ing methods to inject external knowledge without
retraining of paramount importance.

To address this gap, we investigate problems
arising from the fact that NMT operates on im-
plicit word and sentence representations in a con-
tinuous space, which makes influencing the pro-
cess with external knowledge more complex. In
particular, we attempt to answer the following
questions: i) How to enforce the presence of a
given translation recommendation in the decoder’s
output? ii) How to place these word(s) in the right
position? iii) How to guide the translation of out-
of-vocabulary terms?

Our solution extends an existing NMT de-
coder (Sennrich et al., 2016a) by introducing the
possibility to guide the translation process with
constraints provided as XML annotations of the

157

source words with the corresponding translation
options. The guidance mechanism supervises the
process, generating the final output with the ex-
pected translations, in the right place, including
cases of external words unknown to the model.

To test our approach, we experiment in two sce-
narios that pose different challenges to NMT. The
first one is a translation task in which source sen-
tences contain XML-annotated domain-specific
terms. The presence of few annotated terms poses
fewer constraints to the decoder in generating the
output sentence. The second scenario is an auto-
matic post-editing (APE) task, in which the NMT
model is trained to translate “monolingually” from
draft machine-translated sentences into human-
quality post-edits. The external guidance is pro-
vided by word-level quality judgements (Blatz
et al., 2004) indicating the “good” words in the
machine-translated sentence that should be kept in
the final APE output. In this case, the large num-
ber of “good” words already present in the original
MT output poses more constraints to the decoding
process. In both scenarios, our guidance mecha-
nism achieves significant performance gains over
the original NMT decoder.

2 Related Work

In PBSMT, the injection of external knowledge
in the decoder is usually handled with the so-
called XML markup, a technique used to guide the
decoder by supplying the desired translation for
some of the source phrases. The supplied trans-
lation choice can be injected in the output by us-
ing different strategies, all rather straightforward.
Examples include manipulating the phrase table
by either replacing entries that cover the specific
source phrase, or adding the alternative phrase
translations to it, so that they are in competition.

This problem has only recently started to be
explored in NMT and, in most of the cases, the
proposed solutions integrate external knowledge at
training stage. Time-consuming training routines,
however, limit the suitability of this strategy for
applications requiring real-time translations. In
Gulcehre et al. (2015), monolingual data is used
to train a neural language model that is integrated
in the NMT decoder by concatenating their hidden
states. In Arthur et al. (2016), the probability of
the next target word in the NMT decoder is biased
by using lexicon probabilities computed from a
bilingual lexicon. When the external knowledge is

in the form of linguistic information, such as POS
tags or lemmas, Sennrich and Haddow (2016) pro-
pose to compute separate embedding vectors for
each linguistic information and then concatenate
them, without altering the decoder. Other solu-
tions exploit the strengths of PBSMT systems to
improve NMT by pre-translating the source sen-
tence. In Niehues et al. (2016), the NMT model is
fed with a concatenation of the source and its PB-
SMT translation. Some of these solutions lead to
improvements in performance, but they all require
time-intensive training of the NMT models to use
an enriched input representation or to optimize the
parameters of the model. (Stahlberg et al., 2016)
proposed an approach which can be used at decod-
ing time. A hierarchical PBSMT system is used
to generate the translation lattices, which are then
re-scored by the NMT decoder. During decoding,
the NMT posterior probabilities are adjusted using
the posterior scores computed by the hierarchical
model. However, by representing the additional
information as a translation lattice, this approach
does not allow the use of external knowledge in the
form of bilingual terms or quality judgements as
we do in §5 and §6. A different technique is post-
processing the translated sentences. Jean et al.
(2015) and Luong and Manning (2015) replace the
unknown words either with the most likely aligned
source word or with the translation determined by
another word alignment model.

The closest approach to ours is the one by
(Hokamp and Liu, 2017). They explore all the
possible constraints (or translation options) at each
time step making sure not to generate a constraint
that have already been generated in the previous
timestep. Their approach generates all the con-
straints in the final output, thus implicitly it as-
sumes that only one translation options is pro-
vided as constraint for a given source word/phrase.
However, in a more realistic scenario (e.g. in pres-
ence of a termbase or when the target language is
more inflected than the source language), a source
word can have multiple translation options from
which the decoder should decide the best one on-
the-fly depending on the source context. Our ap-
proach can handle both scenarios thus being more
suitable in practice. In this paper we consider the
possibility of having multiple translation options
for a single word. For this reason, we can not com-
pare the guided decoder against the approach pro-
posed in (Hokamp and Liu, 2017). In addition to

158

the application in MT to customize NMT output
to meet customer-specific needs (Task 1), our ap-
proach can also be used to add quality judgements
within NMT at decoding time (Task 2).

3 NMT decoding

In this section we first provide a general introduc-
tion to NMT as it is currently commonly imple-
mented in systems like the one used in our exper-
iments. Then, we discuss its limitations with re-
spect to our problem: guiding decoding with ex-
ternal knowledge.

Figure 1: Overview of NMT decoding.

As shown in Figure 1, NMT starts by mapping
all words of the source sentence into a continu-
ous space, through an embedding layer. The word
embeddings are processed by a bidirectional recur-
rent layer, implemented with gated recurrent units
(GRUs) (Cho et al., 2014), which encodes each
source word together with its left and right con-
text in a sequence of hidden states. Once all the
hidden states of the encoder are computed, the de-
coder starts generating the target string one word
at the time. The decoder layer is implemented
as a unidirectional GRU-based RNN.1 The de-
coder hidden state at time t (st) is recursively up-
dated via the previous hidden state (st−1), the em-
bedding of the previously generated target word
(yt−1), and the input context (ct). The context is
generated as a convex combination of the encoder
hidden states, whose weights (αt,j) are computed
by a so-called attention model (Bahdanau et al.,
2014). The attention model weights αt,j are com-
puted with a feed-forward neural network and can
be interpreted as probability distributions over the

1The implementation in Nematus (Sennrich et al., 2016a)
we are building on deploys two GRUs, but this variation does
not play any important role here.

source positions (j = 1, . . . ,m).
Finally, the decoder linearly combines the em-

bedding of yt−1, st, and ct and applies a softmax
transformation to compute a language model over
the target vocabulary which, through st, is actu-
ally conditioned on all the previous target words
y0, . . . , yt−1 (where y0 is a conventional sentence
delimiter symbol). This language model is used
to sample the new target word yt, which is fed
back to the decoder layer to continue the process
of generating target words until the sentence de-
limiter word is produced. When a beam search
strategy is employed, the most probable K target
words (yt,i i = 1, . . . ,K) are sampled instead, and
used as alternative hypotheses for the next decod-
ing step. The process does not diverge because
only K best target words are again selected from
the resulting K target language model distribu-
tions. Through simple bookkeeping, the best tar-
get word sequence is computed that maximises the
product of all the corresponding language model
scores.

In this NMT workflow, there is no easy way to
integrate partial translations provided by an exter-
nal resource, such as a bilingual dictionary. Dif-
ferently from a PBSMT decoder that is aware of
which source phrase is translated at each step,
the NMT decoder does not have this information.
The only indirect connection between the target
word yt generated at time t and the corresponding
source positions (words) is represented by the at-
tention model weights αt,j , which are used to cre-
ate the context vector ct from the encoder hidden
states. Moreover, differently from decoding in PB-
SMT, the NMT architecture described above does
not apply any coverage constraint on the source
positions. Thus, there is no guarantee that the out-
put generated by NMT covers (i.e. translates) each
source word exactly once.

4 Guided NMT decoding

To overcome the aforementioned problems, we
present a novel technique called “guided decod-
ing” that forces the decoder to generate particular
translations given as external knowledge. Transla-
tion hints are provided in the form of annotations
of individual source words in the input text. Our
decoder accepts input in an XML format similar
to the one adopted in the Moses toolkit,2 which
contains the source sentence and its annotations

2goo.gl/ObB6QL

159

as shown below (for English-German):
<seg id="1702"> enter the <n transla-
tion=“Benutzer”> user</n> name and password
</seg>
The annotations are placed in a “n” tag that has
the attribute “translation” to hold the translation
recommendation for the corresponding source
word. The decoder parses the XML input and
creates two parallel input streams: one that
contains source words and another that contains
the corresponding suggestions or the empty string.
Then, the overall process is carried out similarly
to the previously described NMT system but with
a different interaction between the beam search
and the network. In particular, after a new beam
of K-top target words is generated, the “guide”
mechanism checks the K hypotheses and their
attention model weights to possibly influence
the beam search with the external suggestions.
This is done by: i) prioritizing the hypotheses
that can generate the suggestions provided (§4.1);
ii) performing look-ahead steps with the beam
search to evaluate the current hypothesis (§4.2)
and iii) applying different strategies to manage
out-of-vocabulary (OOV) terms (§4.3).

4.1 Forcing the presence of a given term

In PBSMT, XML markups can be easily han-
dled: when looking for translation options for each
source phrase, the decoder checks both the exter-
nal suggestions and the options in the phrase table.
However, the NMT process is too complex to fol-
low a similar approach. When generating a target
word, NMT assumes a continuous representation
of the whole source sentence through a context
vector. In particular: i) all the source words can
in principle contribute to generate a target word,
and ii) different hypotheses may focus on different
source words in the same decoding step. Thus, it is
not guaranteed that the output at a given time step
is solely dependent on a particular source word
and, in turn, it is not clear how the external sug-
gestions could be used. We tackle this issue by
using the probability distribution of the source po-
sitions obtained from the attention model used to
create the context vector. At each step of the beam
search, for each of the K generated target words
we look for the most probable source position pro-
vided by the attention model. If the corresponding
source word has a suggestion, then we replace the
target word by the given suggestion and update the

score of the hypotheses; otherwise, we keep the
original target word.

4.2 Placing the term in the right position

The guiding mechanism in §4.1 allows the decoder
to generate a given translation by replacing op-
tions inside the beam. However, the method does
not consider cases in which one source word po-
sition is involved in the generation of multiple tar-
get words. This may happen when the decoder has
its attention on a particular source word more than
once (e.g. an article and a noun in the target re-
ferring to the same noun in the source). In these
situations, it could happen that valid translation
options are erroneously replaced and the external
suggestion is reproduced multiple times in the out-
put. For instance, in Figure 2, the source word
“application” which the attention model refers to
for both “die” and “Anwendung” would be trans-
lated as “Anwendung Anwendung”.

To address this problem and to make our ap-
proach more robust to possible attention model nu-
ances, we relax the hard replacement of a trans-
lation option if it differs from the provided sug-
gestion. In particular, if the conditions for a re-
placement occur, we also check if the beam search
would nevertheless generate the suggestion from
the current word, within a small number of steps.
If this happens, we keep the current word in place
since we know that the actual suggestion will be
generated in the short future. If the suggestion is
not reachable, then we force the replacement.

Algorithm 1 illustrates the modified beam
search process that generates the K best hypothe-
ses for the next target word. Starting from the
beam at time t− 1, a new state St is computed
and returned. The state contains the best K tar-
get words (yt), their corresponding decoder hidden
states (st), cumulative language model scores (qt),
backtracking indexes to the parent entries in the
previous state (bt), and source indexes having the
largest attention weight (αt). In addition, the mod-
ified beam search algorithm maintains, for each of
theK entries, the list of suggestions (Lt) that have
been generated within that hypothesis so far. The
algorithm accesses the global variable ỹ[j], which
contains for each source position j either a pro-
vided target word suggestion or the empty word
∅. The algorithm proceeds by computing the nor-
mal beam search step (line 14) and initializing the
lists of generated suggestions with the list of the

160

Algorithm 1 Guided Beam Search Step
1: . K: size of beam
2: . Lt: K lists of generated suggestions
3: . N : look-ahead step to check reachability
4: . St = [yt, st, qt, bt, αt]: state information
5: . yt: K target words
6: . st: K decoder layer hidden states
7: . qt: K cumulative language model scores
8: . bt: K backtracking indexes
9: . αt: K highest-attention-indexes

10: . Global variable with suggestions:
11: . ỹ[j]: target word for source position j
12: procedure GUIDEDBEAMSEARCH(K ,Lt−1 ,N ,St−1)
13: . Perform a step of beam search
14: St:= BeamSearchStep(St−1)
15: . Copy generated suggestions from parent
16: Lt:=UpdateLists(bt, Lt−1)
17: . for each entry of the beam
18: for k ∈ {1, . . . ,K} do
19: . Check suggestion for source word αt,k

20: if ỹ[αt,k] 6= ∅ ∧ αt,k /∈ Lt,k then
21: ỹ := ỹ[αt,k]
22: if yt,k 6= ỹ then
23: . if ỹ is not generated by N steps
24: if !Reachable(St, ỹ, k,N) then
25: . Force suggestion in beam
26: yt,k = ỹ;
27: . Update suggestion list
28: Add(αt,k, Lt,k)
29: end if
30: else
31: . Suggestion is generated
32: Add(αt,k, Lt,k)
33: end if
34: end if
35: end for
36: return (Lt, St)
37: end procedure

corresponding parents (line 16) that are accessible
through the backtracking indexes. The main loop
(line 18) checks, for each beam entry, the source
position that received the highest weight by the
corresponding attention model. If this source po-
sition (αt′k) corresponds to a non-empty sugges-
tion and if the suggestion has not been generated
by one of the predecessors of this entry, then the
algorithm decides whether or not this suggestion
(ỹ) has to be forced in the beam. In particular,
there are two cases for which action is taken. First,
if the suggestion is different from the word in the
beam (line 22) and the suggestion will not be gen-
erated by one of its next N successors, then the
suggestion will replace the current word (line 26).
The list of generated suggestions by this hypoth-
esis is updated accordingly. Second, if the sug-
gestion is equal to the word in the beam (line 30),
then the suggestion has been generated directly by
the beam search and the corresponding list is up-
dated (line 32). The algorithm finally returns the

updated lists of generated suggestions and the up-
dated beam search state.

This algorithm can generate both continuous
and discontinuous target phrases:

Continuous phrases are those in which con-
secutive target words are pointed by the same
source word. The phrase pair (“application”,
“die Anwendung”) in Figure 2 falls in this cat-
egory. With a look-ahead window set to 1 in the
algorithm, the decoder will be able to generate bi-
gram phrases (such as “die Anwendung”). With
larger look-ahead windows, longer phrases can be
generated.

Discontinuous phrases are those in which tar-
get words pointed by the same source word are
intermingled with other words for which the at-
tention points elsewhere. The phrase pair (“quit”,
“haben verlassen”) in Figure 2 falls in this cat-
egory. In these cases, the guided beam search
should look at least two steps in the future. The
time step value maps the distance (number of
words) between the left and right sub-parts of the
target phrase. In our example, the distance is 4
(i.e. 4 steps are needed to reach “verlassen”
from “haben”) so, if we set the look-ahead win-
dow to 4, the decoder can generate the annotation
“verlassen” after emitting “haben”.

Figure 2: An example showing continu-
ous (“die Anwendung”) and discontinuous
(“haben...verlassen”) target phrases.

4.3 Guiding the translation of OOV terms

The last problem is dealing with suggestions that
are OOV words. In NMT, it is common practice to
replace OOV words by the unknown token (UNK)
and use its corresponding embedding. The ques-
tions are: i) if an OOV suggestion is given by
the external resource, should the modified beam
search force it into the beam?, and ii) which tar-
get word embedding should be used in the next
step? To answer these questions, we implemented
a lookup table to store all the OOV suggestions

161

along with their unique id before initializing the
decoder. These ids are used for OOV suggestions
by the beam search instead of the id associated by
default to the UNK token. To get the embeddings
for OOV suggestions, we tested different strate-
gies, which are discussed in §5.2 and §6.2.

5 Task 1: Machine Translation

In our first experiment, we use guided decoding in
a standard MT setting. Our goal is to improve MT
performance by exploiting prior knowledge sup-
plied as translation recommendations for domain-
specific terms. The suggested terms (i.e. the con-
straints posed to the decoder) are usually few, thus
leaving a large degree of freedom to the NMT de-
coder while generating the output.

5.1 Experimental setting
NMT models. We evaluate guided decoding in
its ability to improve the performance of two dif-
ferent English to German NMT models, both ob-
tained with the Nematus toolkit (Sennrich et al.,
2016a). The first system operates at word level
and it is trained by using part of the JRC-Acquis
corpus (Steinberger et al., 2006), Europarl (Koehn,
2005) and OpenSubtitles2013 (Tiedemann, 2009),
which results in at total of about 1.8M parallel
sentence pairs. The size of the vocabulary, word
embedding, and hidden units is respectively set to
40K, 600, and 600, and parameters are optimised
with Adagrad (Duchi et al., 2011) using a learning
rate of 0.01. The batch size is set to 100, and the
model is trained for 300K updates (∼17 epochs).
At test stage, the word-level system is supplied
with terminology lists containing term recommen-
dations at the level of granularity of full words.
The second system is trained on sub-word units
by using the Byte-Pair Encoding (BPE) technique
(Gage, 1994), which has been proposed by Sen-
nrich et al. (2016b) as a successful way to reduce
the OOV rate. The system used in our evaluation
is the pre-trained model built for the best English-
German submission (Sennrich et al., 2016a) at the
News Translation task at WMT’16 (Bojar et al.,
2016). At test stage, it is supplied with termi-
nology lists containing term recommendations in
BPE format. In all the experiments we use a de-
fault beam size of 12.

Test data. We experiment with two domain-
specific English-German test sets containing 850
segments each: i) a subset of the EMEA corpus

(Tiedemann, 2009) for the medical domain and ii)
an information technology corpus extracted from
software manuals (Federico et al., 2014). Word-
level term lists for both domains are obtained by
processing the test data with the “Terminology as
a Service” platform,3 a cloud-based system that
supports automatic bilingual term extraction from
user uploaded documents. The BPE-level ver-
sion of each word-level term list is obtained as
follows. First, each entry is segmented with the
BPE rules available along with the pre-trained Ne-
matus model. Then, the segmented entries are
aligned by running MGiza++ (Gao and Vogel,
2008) trained on the BPE-level WMT’16 training
data. Finally, all the one-to-one aligned sub-units
are extracted to form the sub-word level bilingual
term dictionaries. The word and sub-word bilin-
gual dictionaries are used to annotate the respec-
tive test sets. This results in the annotation of
∼5K words and ∼7.5K sub-words. The term rate
(#Term/#Tokens) in the two test sets is respec-
tively 18.9% (IT: 21.5% and Medical: 17.7%) and
20.1% (IT: 23.2% and Medical: 18.0%).

5.2 Results and discussion

Our results on the MT task are reported in Ta-
ble 1, which shows system performance on the
concatenation of the test sets from the two target
domains. Performance is measured with BLEU
(Papineni et al., 2002), and statistical significance
is computed with bootstrap resampling (Koehn,
2004). The result of the word-level baseline sys-
tem is computed after post-processing its output
following the approach of Jean et al. (2015), which
was customized to our scenario. This method (see
§2) is driven by the attention model to replace the
UNK tokens in the output with their corresponding
recommendation supplied as external knowledge.
This post-processing strategy is not used for the
BPE-level baseline because it implicitly addresses
the problem of OOVs.

We evaluate our guided decoder incrementally,
by adding one at a time the mechanisms described
in §4. In the discussion, we do not compare the
performance of BPE-based and word-based mod-
els because the former were trained and optimized
with larger training data for the news translation
task at WMT’16. Results, instead, will be dis-
cussed in terms of the contribution yield by each
mechanism on top of previous best results.

3http://www.taas-project.eu

162

The baseline decoder (Baseline) per-
forms better than our basic guided decoder
(GDec_base), which considers translation
recommendations only in the case of known
terms as described in §4.1. This indicates that the
problem of constraining the NMT output using
a bilingual dictionary can not be addressed by
simply emitting the recommendations whenever
the corresponding source term has the highest
attention.

words BPE
Baseline 22.62 25.64
GDec_base 21.68 25.25
GDec_base+oov 23.04† 25.66
GDec_base+oov+reach 25.51† 28.42†

Table 1: BLEU results of different decoders on
the MT task (“†” indicates statistically significant
differences wrt. Baseline with p<0.05).

GDec_base+oov extends GDec_base with
the mechanism to handle OOV annotations as de-
scribed in §4.3. In order to generate word embed-
dings for OOV terms, we tested several strategies:
i) using the embedding of the unknown word, ii)
using the embedding of the best target word in
the beam, iii) using the embedding of the previ-
ous word (yt−1), and iv) using the average of the
embeddings of all the previous words (y1,..,t−1).
The best results are obtained when using the em-
bedding of the unknown word which, on further
investigation, resulted to be close to rare words in
terms of cosine similarity. As of now, this prox-
imity to rare words suggests that it can model
OOVs better than the other strategies, but deeper
investigations on this aspect are certainly an in-
teresting topic for future analysis. The ability to
handle OOVs yields statistically significant im-
provements (+0.4 BLEU) over the baseline for the
word-based model. In contrast, since the BPE-
based systems can implicitly mitigate the OOV
problem (as discussed in §5.1), our strategy results
in marginal improvements over the BPE baseline.

Finally, GDec_base+oov+reach combines
OOV handling with the method to avoid repeti-
tions and to manage the insertion positions de-
scribed in §4.2. Since it uses a look-ahead (LA)
hyper-parameter in order to validate the transla-
tion options, we experimented with different val-
ues ranging from 1 to 9. By varying the LA win-
dow, performance increases both for the word-

level and the BPE-level models up to the highest
scores achieved with LA=6. Increasing LA be-
yond 6 does not yield further gains. Using LA=1
performs slightly worse (-0.4 BLEU) than LA=6,
indicating that this mechanism is already effec-
tive even at small values (i.e. on our data, a large
number of problematic cases involve continuous
phrases like the example in Figure 2). This full-
fledged guided decoder achieves a statistically sig-
nificant improvement of ∼3 BLEU points over
both word-level and BPE-level baselines. A per-
domain results’ analysis shows similar gains over
the Baseline for word-based (IT: +4.3, Med-
ical: +2.6) and for BPE-based NMT (IT: +3.9,
Medical: +2.0).

To better understand the behaviour of our
decoder, we further analysed its output. First,
the percentage of translation recommendations
produced in the MT output (#TermsInTranslation

#AnnotatedTerms)
was computed both for the Baseline,
and for the GDec_base+oov+reach de-
coders. As expected, the Baseline achieves
lower results (BPE-level: 70.81%, Word-
level: 65.38%) compared to the full-fledged
GDec_base+oov+reach (BPE-level: 94.08%,
Word-level: 87.19%). Indeed, as a generic NMT
system, it is not able to properly handle domain-
specific terms (the BPE representation helps to
reduce OOVs but does not guarantee correct
realizations in the target language). Second, a
preliminary error analysis was carried out by
looking at the word alignments returned by the
attention model. This revealed that the majority of
the errors produced by our decoder can be found
in sentences in which the annotated source words
never receive the highest attention, thus making
the corresponding recommendations unreachable.

Manual Analysis: We manually analyzed some
samples to understand the effect of using GDec in
the translation task. We observe that when fed
with a list of translation options in the form of
xml annotations, GDec is able to generate the cor-
rect terms. Moreover, these local improvements
also help GDec to fix other parts of the translation.
Examples illustrating these effects are provided in
Table 2. Example 1 shows that the baseline sys-
tem (Base) translates the word "browse" in the
source sentence (Src) to “stöbern” (En: “rummage
around”) but the post-editors prefers to use in the
reference “durchsuche” (En: “search”) which is
then generated by the GDec. Example 2 illustrates

163

a case where post-editors prefer to preserve the
terms in the source language rather than translat-
ing them. The baseline system translates “plastics
labs” to “Kunststofflabore” (En: “Plastic laborato-
ries”), however, it should be preserved as-is in the
final output as done by GDec. Another interesting
example highlighting the effect of choosing a cor-
rect term on the overall translation quality is pro-
vided in example 3. The term “zugewiesen” trans-
lation of the source word "assigned" helps GDec to
correct other parts of the final translation, like gen-
erating “es gibt keine” (En: “There is no”) which
is otherwise missing in the baseline translation.

6 Task 2: Automatic Post-Editing

In our second experiment, we apply guided decod-
ing in an automatic post-editing task. The goal
of automatic post-editing (APE) is to correct er-
rors in an MT-ed text. The problem is typically
approached as a “monolingual translation” task,
in which models are trained on parallel corpora
containing (MT_output, MT_post-edit) pairs, with
MT post-edits coming from humans (Simard et al.,
2007; Chatterjee et al., 2015b, 2017). In their at-
tempt to translate the entire input sentence, APE
systems usually tend to over-correct the source
words, i.e. to use all applicable correction op-
tions. This can happen even when the input is
correct, often resulting in text deterioration (Bojar
et al., 2015). To cope with this problem, neural-
based APE decoders would benefit from external
knowledge indicating words in the input which
are correct and thus should not be modified dur-
ing decoding. For that we propose to use word-
level binary quality estimation labels (Blatz et al.,
2004; de Souza et al., 2014) to annotate the “good”
words that should be kept. Due to the relatively
high quality of the MT outputs (62.11 BLEU),
source sentences will usually contain many terms
annotated as “good”. This, compared to the MT
task, poses more constraints on the decoder.

6.1 Experimental setting

NMT models. We use the pre-trained model
built for the best English-German submis-
sion (Junczys-Dowmunt and Grundkiewicz, 2016)
at the WMT’16 APE task. This available model
was trained with Nematus over a data set of ∼4M
back-translated pairs, and then adapted to the task-
specific data segmented using the BPE technique.

Test data. In this experiment, we use the
English-German data released at the WMT’16
APE shared task (Bojar et al., 2016). To anno-
tate the test set, instead of relying on automatic
quality, predictions, we exploit oracle labels in-
dicating “good” words (to be kept in the out-
put) and “bad” words (to be replaced by the de-
coder). To this aim, we first aligned each MT out-
put with the corresponding human post-edit using
TER (Snover et al., 2006). Then, each MT word
that was aligned with itself in the post-edit was an-
notated as “good”. This resulted in a high number
of “good” labels (on average, 79.4% of the sen-
tence terms). It is worth noting that, by construc-
tion, the resulting quality labels are “gold” anno-
tations that current word-level quality estimation
systems can only approximate. These make them
suitable for our testing purposes, as they allow us
to avoid the noise introduced by sub-optimal pre-
dictors. The BPE-level version of the test set is
obtained by projecting the word-level QE tags into
the sub-words (all sub-words of a word receive the
original word tag). If a sub-word was labelled as
“good”, then we annotate it with itself to indicate
that the decoder must generate the sub-word in the
output.

6.2 Results and discussion

Our results on the APE task are reported in Ta-
ble 3. Performance is measured with the two
WMT’16 APE task metrics, namely TER and
BLEU (Bojar et al., 2016). The statistical signif-
icance for BLEU is computed using paired boot-
strap resampling, while for TER we use stratified
approximate randomization (Yeh, 2000).

Our first baseline (Base-MT), the same used
at WMT, corresponds to the original MT output
left untouched. Our second baseline (Base-APE)
is a neural APE system that was trained on
(MT_output, MT_post-edit) pairs but ignores the
information from the QE annotations. Base-APE
improves the Base-MT up to 3.14 BLEU points.

Similar to §5.2, the evaluation of our guided de-
coder is performed incrementally. GDec_base
forces the “good” words in the automatic trans-
lation to appear in the output according to the
mechanism described in §4.1. This basic guid-
ance mechanism yields only marginal improve-
ments over the Base-MT and is far behind the
Base-APE. This can be explained by the large
number of constraints (i.e. “good” words to be

164

Src: <n translation="durchsuchen||Durchsuchen"> browse </n> all products
Base: stöbern alle Produkte
GDec: durchsuchen Sie alle Produkte
Ref: durchsuchen Sie alle Produkte
Src: <n translation="produkt||Produkt"> Product </n> 4 - <n translation="plastics||Plastics"> Plastics
</n> <n translation="labs||Labs"> Labs </n>
Base: Produkt 4 - Kunststofflabore
GDec: Produkt 4 - Plastics Labs
Ref: Produkt 4 - Plastics Labs
Src: There is no limit on the number of valve gates that can be <n translation="zugewiesen"> assigned
</n> to a model .
Base: die Anzahl der Ventiltore , die einem Modell zugeordnet werden können , ist nicht begrenzt .
GDec: es gibt keine Grenze für die Anzahl der Ventiltore , die einem Modell zugewiesen werden
können .
Ref: Es gibt keine Begrenzung für die Anzahl der Anschnitte , die zugewiesen werden können.

Table 2: Examples covering some cases where GDec improves over the baseline for the MT task

BLEU (↑) TER (↓)
Base-MT 62.11 24.76
Base-APE 65.25 23.67
GDec_base 62.68† 23.97†
GDec_base+OOV 62.69† 23.96†
GDec_base+OOV+reach 67.03† 22.45†

Table 3: Performance of different decoders on the
APE task measured in terms of TER (↓) and BLEU
score (↑) (“†” indicates statistically significant dif-
ferences wrt. Base-APE with p<0.05).

kept), which drastically reduces the freedom of the
decoder to generate surrounding words. This is
confirmed by manual inspection: many original
MT segments were missing function words that
depended on the “good” words present in the sen-
tence. These insertions are easily performed by
the unconstrained Base-APE decoder but are un-
reachable by GDec_base, which is only able to
keep the annotated words.
GDec_base+OOV integrates the mechanism to

handle OOV annotations described in §4.3. Since
the model is trained on the BPE segment corpus,
the problem of OOV is already tackled by the
model itself. Thus, we do not observe a significant
contribution by this mechanism, which is in-line
with our results on BPE in the MT task.
GDec_base+OOV+reach is our full-fledged

system, which manages repetitions and insertion
positions as illustrated in §4.2. Its ability to bet-
ter model the surroundings of the annotated words
allows this technique to achieve statistically sig-
nificant improvements (+1.78 BLEU, -1.22 TER)

over the strong Base-APE decoder.
To better appreciate the ability of the APE de-

coder to leverage the QE labels and to avoid over-
correction, we compute the APE precision (Chat-
terjee et al., 2015a) as the ratio of the number of
sentences an APE system improves (with respect
to the MT output) over all the sentences it mod-
ifies. The GDec_base+OOV+reach decoder
gains 9 precision points over Base-APE (72% vs.
63%) confirming that guided decoding supported
by QE labels can improve also APE output quality.

Manual Analysis: Similar to the MT task we
performed a manual analysis of the outputs gen-
erated by different APE systems. Examples cap-
turing various aspects of the workings of GDec
in this task are provided in Table 4. The labels
Src, MT, Base, GDec, and Ref respectively repre-
sents the source sentence, machine translation out-
put, baseline APE output, GDec full-fledge output,
and the reference translation. Example 1 shows
the capability of GDec to preserve the MT words
in the final output that are correctly generated by
the MT system. In this example the word “Gibt”
(En: “Specifies”) is preserved by GDec which
is otherwise translated to “Legt” (En: “Sets”) by
the baseline system. Example 2 shows that guid-
ing the neural decoder by marking the MT word
“gewährleisten” (En: “ensure”) as “Good” not
only helps to preserve it in the final output but
also help to improve other parts of the translation
like “um ein ähnliches” (En: “a similar”) which is
otherwise untouched by the baseline APE system.

165

Src: Specifies the source for the glow .
MT: <n translation="gibt||Gibt">Gibt</n> die Quelle</n> für</n> das Glü@@ hen aus .
Base: Legt die Quelle für das Glühen fest .
GDec: Gibt die Quelle für das Glühen aus .
Ref: Gibt die Quelle für den Schein an .
Src: Map Japanese indirect fonts across platforms to ensure a similar appearance .
MT: ... zu einem ähnlichen Erscheinungsbild <n translation="gewährleisten"> gewährleisten </n> .
Base: ... " auf einem ähnlichen Erscheinungsbild an .
GDec: ... " auf , um ein ähnliches Erscheinungsbild zu gewährleisten .
Ref: ... zu , um ein ähnliches Erscheinungsbild zu gewährleisten .
Src: All values , even primitive values , are objects .
MT: alle Werte , auch Grund@@ werte , <n translation="handelt">handelt</n> <n trans-
lation="es">es</n> <n translation="sich">sich</n> <n translation="um">um</n> <n transla-
tion="Objekte">Objekte</n> .
Base: Alle Werte , auch Grundwerte , sind Objekte .
GDec: Alle Werte , auch Grundwerte , handelt es sich um Objekte .
Ref: Bei allen Werten , auch Grundwerten , handelt es sich um Objekte .

Table 4: Examples covering some cases where GDec improves over the baseline for APE task.

Example 3 illustrates that GDec can be very use-
ful to avoid the problem of over-correction. The
MT segment in this example is almost a correct
translation of the source sentence and should be
left untouched but the baseline APE system mod-
ifies it deteriorating the overall translation quality.
However, when the MT word is annotated to itself
by the xml tags, GDec is able to preserve this word
thereby avoiding over-correction and retaining the
translation quality.

7 Conclusion

We presented a novel method for guiding the be-
haviour of an NMT decoder with external knowl-
edge supplied in the form of translation recom-
mendations (e.g. terminology lists). Our approach
supervises the translation process, ensuring that
the final output includes the expected translations,
in the right place, including cases of added OOV
words. Evaluation results on two tasks indicate the
effectiveness of our proposed solution, which sig-
nificantly improves over a standard NMT decoder.

Acknowledgments

This work has been partially supported by the EC-
funded H2020 projects QT21 (grant agreement
no. 645452) and ModernMT (grant agreement no.
645487).

References
Philip Arthur, Graham Neubig, and Satoshi Nakamura.

2016. Incorporating Discrete Translation Lexicons
into Neural Machine Translation. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Austin, Texas.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. "neural machine translation by jointly
learning to align and translate". arXiv preprint
arXiv:1409.0473 .

John Blatz, Erin Fitzgerald, George Foster, Simona
Gandrabur, Cyril Goutte, Alex Kulesza, Alberto
Sanchis, and Nicola Ueffing. 2004. Confidence Es-
timation for Machine Translation. In Proceedings of
the 20th International Conference on Computational
Linguistics.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Conference
on Machine Translation. In Proceedings of the First
Conference on Machine Translation. Association for
Computational Linguistics, Berlin, Germany.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 Workshop on Statistical Machine Translation.

166

In Proceedings of the Tenth Workshop on Statisti-
cal Machine Translation. Association for Computa-
tional Linguistics, Lisbon, Portugal.

Rajen Chatterjee, Gebremedhen Gebremelak, Matteo
Negri, and Marco Turchi. 2017. Online Automatic
Post-editing for MT in a Multi-Domain Translation
Environment. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Valencia, Spain, pages
525–535.

Rajen Chatterjee, Marco Turchi, and Matteo Negri.
2015a. The FBK Participation in the WMT15 Au-
tomatic Post-editing Shared Task. In Proceedings of
the Tenth Workshop on Statistical Machine Transla-
tion. Lisbon, Portugal.

Rajen Chatterjee, Marion Weller, Matteo Negri, and
Marco Turchi. 2015b. Exploring the Planet of
the APEs: a Comparative Study of State-of-the-art
Methods for MT Automatic Post-Editing. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics. Beijing, China.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Properties
of Neural Machine Translation: Encoder-Decoder
Approaches. In Proceedings of SSST@EMNLP
2014, Eighth Workshop on Syntax, Semantics and
Structure in Statistical Translation. Doha, Qatar.

José G. C. de Souza, Jesús González-Rubio, Christian
Buck, Marco Turchi, and Matteo Negri. 2014. FBK-
UPV-UEdin participation in the WMT14 Quality
Estimation shared-task. In Proceedings of the Ninth
Workshop on Statistical Machine Translation. Balti-
more, MD, USA.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine
Learning Research .

Marcello Federico, Nicola Bertoldi, Mauro Cettolo,
Matteo Negri, Marco Turchi, Marco Trombetti,
Alessandro Cattelan, Antonio Farina, Domenico
Lupinetti, Andrea Martines, Alberto Massidda, Hol-
ger Schwenk, Loïc Barrault, Frederic Blain, Philipp
Koehn, Christian Buck, and Ulrich Germann. 2014.
THE MATECAT TOOL. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: System Demonstrations.
Dublin, Ireland.

Philip Gage. 1994. A New Algorithm for Data Com-
pression. C Users Journal 12(2).

Qin Gao and Stephan Vogel. 2008. Parallel Implemen-
tations of Word Alignment Tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loïc Barrault, Huei-Chi Lin, Fethi Bougares,

Holger Schwenk, and Yoshua Bengio. 2015. On Us-
ing Monolingual Corpora in Neural Machine Trans-
lation. arXiv e-prints .

Chris Hokamp and Qun Liu. 2017. Lexically Con-
strained Decoding for Sequence Generation Using
Grid Beam Search. CoRR abs/1704.07138.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On Using Very Large
Target Vocabulary for Neural Machine Translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing. Beijing, China.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Log-linear Combinations of Monolingual and
Bilingual Neural Machine Translation Models for
Automatic Post-Editing. In Proceedings of the First
Conference on Machine Translation. Berlin, Ger-
many.

Philipp Koehn. 2004. Statistical Significance Tests for
Machine Translation Evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Pro-
ceedings: the tenth Machine Translation Summit.
AAMT, Phuket, Thailand.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the
ACL on Interactive Poster and Demonstration Ses-
sions.

Minh-Thang Luong and Christopher D Manning. 2015.
Stanford Neural Machine Translation Systems for
Spoken Language Domains. In Proceedings of the
International Workshop on Spoken Language Trans-
lation.

Jan Niehues, Eunah Cho, Thanh-Le Ha, and Alex
Waibel. 2016. Pre-Translation for Neural Machine
Translation. In International Conference on Com-
putational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics.

Rico Sennrich and Barry Haddow. 2016. Linguistic In-
put Features Improve Neural Machine Translation.
In Proceedings of the First Conference on Machine
Translation. Berlin, Germany.

167

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh Neural Machine Translation Sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation. Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics.

Michel Simard, Cyril Goutte, and Pierre Isabelle. 2007.
Statistical Phrase-Based Post-Editing. In Proceed-
ings of the Annual Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL HLT). Rochester, New York,
pages 508–515.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study
of Translation Edit Rate with Targeted Human An-
notation. In Proceedings of Association for Ma-
chine Translation in the Americas. Cambridge, Mas-
sachusetts, USA, pages 223–231.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically Guided Neural Machine
Translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics. Berlin, Germany.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Tomaz Erjavec, Dan Tufis, and
Dániel Varga. 2006. The JRC-Acquis: A Mul-
tilingual Aligned Parallel Corpus with 20+ Lan-
guages. In Proceedings of the 5th International
Conference on Language Resources and Evaluation
(LREC’2006). Genoa, Italy.

Jörg Tiedemann. 2009. News from OPUS - A Col-
lection of Multilingual Parallel Corpora with Tools
and Interfaces. In Recent Advances in Natural
Language Processing, John Benjamins, Amster-
dam/Philadelphia, Borovets, Bulgaria.

Alexander Yeh. 2000. More Accurate Tests for the Sta-
tistical Significance of Result Differences. In Pro-
ceedings of the 18th Conference on Computational
Linguistics - Volume 2.

168

