
Proceedings of the Conference on Machine Translation (WMT), Volume 1: Research Papers, pages 99–107
Copenhagen, Denmark, September 711, 2017. c©2017 Association for Computational Linguistics

Deep Architectures for Neural Machine Translation

Antonio Valerio Miceli Barone† Jindřich Helcl? Rico Sennrich†
Barry Haddow† Alexandra Birch†

†School of Informatics, University of Edinburgh
?Faculty of Mathematics and Physics, Charles University

{amiceli, bhaddow}@inf.ed.ac.uk
{rico.sennrich, a.birch}@ed.ac.uk

helcl@ufal.mff.cuni.cz

Abstract

It has been shown that increasing model
depth improves the quality of neural ma-
chine translation. However, different
architectural variants to increase model
depth have been proposed, and so far, there
has been no thorough comparative study.

In this work, we describe and evaluate
several existing approaches to introduce
depth in neural machine translation. Ad-
ditionally, we explore novel architectural
variants, including deep transition RNNs,
and we vary how attention is used in
the deep decoder. We introduce a novel
"BiDeep" RNN architecture that combines
deep transition RNNs and stacked RNNs.

Our evaluation is carried out on the En-
glish to German WMT news translation
dataset, using a single-GPU machine for
both training and inference. We find that
several of our proposed architectures im-
prove upon existing approaches in terms
of speed and translation quality. We obtain
best improvements with a BiDeep RNN of
combined depth 8, obtaining an average
improvement of 1.5 BLEU over a strong
shallow baseline.

We release our code for ease of adoption.

1 Introduction

Neural machine translation (NMT) is a well-
established approach that yields the best results
on most language pairs (Bojar et al., 2016; Cet-
tolo et al., 2016). Most systems are based on the
sequence-to-sequence model with attention (Bah-
danau et al., 2015) which employs single-layer re-
current neural networks both in the encoder and in
the decoder.

Unlike feed-forward networks where depth is
straightforwardly defined as the number of non-
input layers, recurrent neural network architec-
tures with multiple layers allow different connec-
tion schemes (Pascanu et al., 2014) that give rise to
different, orthogonal, definitions of depth (Zhang
et al., 2016) which can affect the model perfor-
mance depending on a given task. This is fur-
ther complicated in sequence-to-sequence models
as they contain multiple sub-networks, recurrent
or feed-forward, each of which can be deep in dif-
ferent ways, giving rise to a large number of pos-
sible configurations.

In this work we focus on stacked and deep tran-
sition recurrent architectures as defined by Pas-
canu et al. (2014). Different types of stacked ar-
chitectures have been successfully used for NMT
(Zhou et al., 2016; Wu et al., 2016). However,
there is a lack of empirical comparisons of dif-
ferent deep architectures. Deep transition archi-
tectures have been successfully used for language
modeling (Zilly et al., 2016), but not for NMT
so far. We evaluate these architectures, both
alone and in combination, varying the connec-
tion scheme between the different components and
their depth over the different dimensions, measur-
ing the performance of the different configurations
on the WMT news translation task.1

Related work includes that of Britz et al. (2017),
who have performed an exploration of NMT ar-
chitectures in parallel to our work. Their ex-
periments, which are largely orthogonal to ours,
focus on embedding size, RNN cell type (GRU
vs. LSTM), network depth (defined according
to the architecture of Wu et al. (2016)), atten-
tion mechanism and beam size. Gehring et al.
(2017) recently proposed a NMT architecture
based on convolutions over fixed-sized windows

1http://www.statmt.org/wmt17/
translation-task.html

99

rather than RNNs, and they reported results for
different model depths and attention mechanism
configurations. A similar feedforward architec-
ture which uses multiple pervasive attention mech-
anisms rather than convolutions was proposed by
Vaswani et al. (2017), who also report results for
different model depths.

2 NMT Architectures

All the architectures that we consider in this work
are GRU (Cho et al., 2014a) sequence-to-sequence
transducers (Sutskever et al., 2014; Cho et al.,
2014b) with attention (Bahdanau et al., 2015). In
this section we describe the baseline system and
the variants that we evaluated.

2.1 Baseline Architecture
As our baseline, we use the NMT architecture im-
plemented in Nematus, which is described in more
depth by Sennrich et al. (2017b). We augment it
with layer normalization (Ba et al., 2016), which
we have found to both improve translation quality
and make training considerably faster.

For our discussion, it is relevant that the base-
line architecture already exhibits two types of
depth:

• recurrence transition depth in the decoder
RNN which consists of two GRU transitions
per output word with an attention mechanism
in between, as described in Firat and Cho
(2016).

• feed-forward depth in the attention network
that computes the alignment scores and in the
output network that predicts the target words.
Both these networks are multi-layer percep-
trons with one tanh hidden layer.

2.2 Deep Transition Architectures
In a deep transition RNN (DT-RNN), at each time
step the next state is computed by the sequen-
tial application of multiple transition layers, effec-
tively using a feed-forward network embedded in-
side the recurrent cell. In our experiments, these
layers are GRU transition blocks with indepen-
dently trainable parameters, connected such that
the "state" output of one of them is used as the
"state" input of the next one. Note that each of
these GRU transition is not individually recurrent,
recurrence only occurs at the level of the whole
multi-layer cell, as the "state" output of the last

. . .

. . .

. . .

Figure 1: Deep transition decoder

GRU transition for the current time step is carried
over as the "state" input of the first GRU transition
for the next time step.

Applying this architecture to NMT is a novel
contribution.

2.2.1 Deep Transition Encoder
As in a baseline shallow Nematus system, the en-
coder is a bidirectional recurrent neural network.
Let Ls be the encoder recurrence depth, then for
the i-th source word in the forward direction the
forward source word state

−→
h i ≡

−→
h i,Ls is com-

puted as:

−→
h i,1 = GRU1

(
xi,
−→
h i−1,Ls

)

−→
h i,k = GRUk

(
0,
−→
h i,k−1

)
for 1 < k ≤ Ls

where the input to the first GRU transition is the
word embedding xi, while the other GRU transi-
tions have no external inputs. Recurrence occurs
as the previous word state

−→
h i−1,Ls enters the com-

putation in the first GRU transition for the current
word.
The reverse source word states are computed sim-
ilarly and concatenated to the forward ones to
form the bidirectional source word states C ≡{[−→

h i,Ls

←−
h i,Ls

]}
.

2.2.2 Deep Transition Decoder
The deep transition decoder is obtained by extend-
ing the baseline decoder in a similar way. Recall
that the baseline decoder of Nematus already has
a transition depth of two, with the first GRU tran-
sition receiving as input the embedding of the pre-
vious target word and the second GRU transition
receiving as input a context vector computed by
the attention mechanism. We extend this decoder

100

architecture to an arbitrary transition depth Lt as
follows:

sj,1 = GRU1 (yj−1, sj−1,Lt)

sj,2 = GRU2 (ATT(C, sj,1), sj,1)

sj,k = GRUk (0, sj,k−1) for 2 < k ≤ Lt

where yj−1 is the embedding of the previous target
word and ATT(C, si,1) is the context vector com-
puted by the attention mechanism. GRU transi-
tions other than the first two do not have external
inputs. The target word state vector sj ≡ sj,Lt is
then used by the feed-forward output network to
predict the current target word. A diagram of this
architecture is shown in Figure 1.

The output network can be also made deeper by
adding more feed-forward hidden layers.

2.3 Stacked architectures

A stacked RNN is obtained by having multiple
RNNs (GRUs in our experiments) run for the same
number of time steps, connected such that at each
step the bottom RNN takes "external" inputs from
the outside, while each of the higher RNN takes
as its "external" input the "state" output of the one
below it. Residual connections between states at
different depth (He et al., 2016) are also used to
improve information flow. Note that unlike deep
transition GRUs, here each GRU transition block
constitutes a cell that is individually recurrent, as it
has its own state that is carried over between time
steps.

2.3.1 Stacked Encoder

In this work we consider two types of bidirectional
stacked encoders: an architecture similar to Zhou
et al. (2016) which we denote here as alternating
encoder (Figure 2), and one similar to Wu et al.
(2016) which we denote as biunidirectional en-
coder (Figure 3).

Our contribution is the empirical comparison of
these architectures, both in isolation and in combi-
nation with the deep transition architecture.

We do not consider stacked unidirectional en-
coders (Sutskever et al., 2014) as bidirectional en-
coders have been shown to outperform them (e.g.
Britz et al. (2017)).

Alternating Stacked Encoder The forward part
of the encoder consists of a stack of GRU recurrent
neural networks, the first one processing words in

.

.

.

. . .

Figure 2: Alternating stacked encoder (Zhou et al.,
2016).

the forward direction, the second one in the back-
ward direction, and so on, in alternating direc-
tions. For an encoder stack depth Ds, and a source
sentence length N , the forward source word state
−→w i ≡ −→w i,Ds is computed as:

−→w i,1 =
−→
h i,1 = GRU1

(
xi,
−→
h i−1,1

)

−→
h i,2k = GRU2k

(−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = GRU2k+1

(−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1
for 1 < j ≤ Ds

where we assume that
−→
h 0,k and

−→
h N+1,k are zero

vectors. Note the residual connections: at each
level above the first one, the word state of the pre-
vious level −→w i,j−1 is added to the recurrent state
of the GRU cell

−→
h i,j to compute the the word state

for the current level −→w i,j .
The backward part of the encoder has the same

structure, except that the first level of the stack
processes the words in the backward direction and
the subsequent levels alternate directions.

The forward and backward word states are then
concatenated to form bidirectional word states
C ≡ {[−→w i,Ds

←−w i,Ds]}. A diagram of this archi-
tecture is shown in Figure 2.

Biunidirectional Stacked Encoder In this en-
coder the forward and backward parts are shal-
low, as in the baseline architecture. Their word
states are concatenated to form shallow bidirec-
tional word states wi ≡ [−→w i,1

←−w i,1] that are then
used as inputs for subsequent stacked GRUs which
operate only in the forward sentence direction,
hence the name "biunidirectional". Since resid-
ual connections are also present, the higher depth

101

.

. . .

. . .

. . .

Figure 3: Biunidirectional stacked encoder (Wu
et al., 2016).

. . .

. . .

. . .

Figure 4: Stacked RNN decoder

GRUs have a state size twice that of the base
ones. This architecture has shorter maximum in-
formation propagation paths than the alternating
encoder, suggesting that it may be less expressive,
but it has the advantage of enabling implementa-
tions with higher model parallelism. A diagram of
this architecture is shown in Figure 3.

In principle, alternating and biunidirectional
stacked encoders can be combined by having Dsa

alternating layers followed by Dsb unidirectional
layers.

2.3.2 Stacked Decoder

A stacked decoder can be obtained by stacking
RNNs which operate in the forward sentence di-
rection. A diagram of this architecture is shown in
Figure 4.

Note that the base RNN is always a conditional
GRU (cGRU, Firat and Cho, 2016) which has tran-
sition depth at least two due to the way that the
context vectors generated by the attention mecha-
nism are used in Nematus. This opens up the pos-
sibility of several architectural variants which we
evaluated in this work:

Stacked GRU The higher RNNs are simple
GRUs which receive as input the state from the
previous level of the stack, with residual connec-

tions between the levels.

sj,1,1 = GRU1,1 (yj−1, sj−1,1,2)

cj,1 = ATT(C, sj,1,1)

sj,1,2 = GRU1,2 (cj,1, sj,1,1)

rj,1 = sj,1,2

sj,k,1 = GRUk (rj,k−1, sj−1,k,1)

rj,k = sj,k,1 + rj,k−1
for 1 < k ≤ Dt

Note that the higher levels have transition depth
one, unlike the base level which has two.

Stacked rGRU The higher RNNs are GRUs
whose "external" input is the concatenation of the
state below and the context vector from the base
RNN. Formally, the states sj,k,1 of the higher
RNNs are computed as:

sj,k,1 = GRUk ([rj,k−1, cj,1] , sj−1,k,1)

for 1 < k ≤ Dt

This is similar to the deep decoder by Wu et al.
(2016).

Stacked cGRU The higher RNNs are condi-
tional GRUs, each with an independent attention
mechanism. Each level has two GRU transitions
per step j, with a new context vector cj,k computed
in between:

sj,k,1 = GRUk,1 (rj,k−1, sj−1,k,1)

cj,k = ATT(C, sj,k,1)

sj,k,2 = GRUk,2 (cj,k, sj,1,1)

for 1 < k ≤ Dt

Note that unlike the stacked GRU and rGRU, the
higher levels have transition depth two.

Stacked crGRU The higher RNNs are condi-
tional GRUs but they reuse the context vectors
from the base RNN. Like the cGRU there are two
GRU transition per step, but they reuse the context
vector cj,1 computed at the first level of the stack:

sj,k,1 = GRUk,1 (rj,k−1, sj−1,k,1)

sj,k,2 = GRUk,2 (cj,1, sj,1,1)

for 1 < k ≤ Dt

102

2.4 BiDeep architectures

We introduce the BiDeep RNN, a novel architec-
ture obtained by combining deep transitions with
stacking.

A BiDeep encoder is obtained by replacing the
Ds individually recurrent GRU cells of a stacked
encoder with multi-layer deep transition cells each
composed by Ls GRU transition blocks.

For instance, the BiDeep alternating encoder is
defined as follows:

−→w i,1 =
−→
h i,1 = DTGRU1

(
xi,
−→
h i−1,1

)

−→
h i,2k = DTGRU2k

(−→w i,2k−1,
−→
h i+1,2k

)

for 1 < 2k ≤ Ds

−→
h i,2k+1 = DTGRU2k+1

(−→w i,2k,
−→
h i−1,2k+1

)

for 1 < 2k + 1 ≤ Ds

−→w i,j =
−→
h i,j +

−→w i,j−1
for 1 < j ≤ Ds

where each multi-layer cell DTGRUk is defined
as:

vk,1 = GRUk,1 (ink, statek)

vk,t = GRUk,t (0, vkt−1) for 1 < k ≤ Ls

DTGRUk (ink, statek) = vk,Ls

It is also possible to have different transition
depths at each stacking level.

BiDeep decoders are similarly defined, replac-
ing the recurrent cells (GRU, rGRU, cGRU or cr-
GRU) with deep transition multi-layer cells.

3 Experiments

All experiments were performed with Nematus
(Sennrich et al., 2017b), following Sennrich et al.
(2017a) in their choice of preprocessing and hy-
perparameters. For experiments with deep mod-
els, we increase the depth by a factor of 4 com-
pared to the baseline for most experiments; in pre-
liminary experiments, we observed diminishing
returns for deeper models.

We trained on the parallel English–German
training data of WMT-2017 news translation task,
using newstest2013 as validation set. We used
early-stopping on the validation cross-entropy and
selected the best model based on validation BLEU.

We report cross-entropy (CE) on newstest2013,
training speed (on a single Titan X (Pascal) GPU),

and the number of parameters. For transla-
tion quality, we report case-sensitive, detokenized
BLEU, measured with mteval-v13a.pl, on new-
stest2014, newstest2015, and newstest2016.

We release the code under an open source li-
cense, including it in the official Nematus reposi-
tory.2 The configuration files needed to replicate
our experiments are available in a separate reposi-
tory.3

3.1 Layer Normalization

Our first experiment is concerned with layer nor-
malization. We are interested to see how essen-
tial layer normalization is for our deep architec-
tures, and compare the effect of layer normaliza-
tion on a baseline system, and a system with an
alternating encoder with stacked depth 4. Results
are shown in Table 1. We find that layer normal-
ization is similarly effective for both the shallow
baseline model and the deep encoder, yielding an
average improvement of 0.8–1 BLEU, and reduc-
ing training time substantially. Therefore we use
it for all the subsequent experiments.

3.2 Deep Encoders

In Table 2 we report experimental results for dif-
ferent architectures of deep encoders, while the
decoder is kept shallow.

We find that all the deep encoders perform sub-
stantially better than baseline (+0.5–+1.2 BLEU),
with no consistent quality differences between
each other. In terms of number of parameters and
training speed, the deep transition encoder per-
forms best, followed by the alternating stacked
encoder and finally the biunidirectional encoder
(note that we trained on a single GPU, the biu-
nidirectional encoder may be comparatively faster
on multiple GPUs due to its higher model paral-
lelism).

3.3 Deep Decoders

Table 3 shows results for different decoder archi-
tectures, while the encoder is shallow. We find that
the deep decoders all improve the cross-entropy,
but the BLEU results are more varied: deep output4

decreases BLEU scores (but note that the baseline

2https://github.com/EdinburghNLP/
nematus

3https://github.com/Avmb/
deep-nmt-architectures

4deep feed-forward output with shallow RNNs in both the
encoder and decoder

103

encoder CE BLEU parameters (M) training speed early stop
2014 2015 2016 (words/s) (104 minibatches)

baseline 49.98 21.2 23.8 28.4 98.0 3350 44
+layer normalization 47.53 21.9 24.7 29.3 98.1 2900 29
alternating (depth 4) 49.25 21.8 24.6 28.9 135.8 2150 46
+layer normalization 46.29 22.6 25.2 30.5 135.9 1600 29

Table 1: Layer normalization results. English→German WMT17 data.

encoder depth CE BLEU parameters (M) training speed
s. bidir. s. forw. trans. 2014 2015 2016 (words/s)

shallow 1 - 1 47.53 21.9 24.7 29.3 98.1 2900
alternating 4 - 1 46.29 22.6 25.2 30.5 135.9 1600
biunidirectional 1 3 1 46.79 22.4 25.4 30.0 173.7 1500
deep transition 1 - 4 46.54 22.9 25.4 30.2 117.0 1900

Table 2: Deep encoder results. English→German WMT17 data. Parameters and speed are highlighted
for the deep recurrent models.

has already some depth), stacked GRU performs
similarly to the baseline (-0.1–+0.2 BLEU) and
stacked rGRU possibly slightly better (+0.1–+0.2
BLEU).

Other deep RNN decoders achieve higher gains.
The best results (+0.6 BLEU on average) are
achieved by the stacked conditional GRU with in-
dependent multi-step attention (cGRU). This de-
coder, however, is the slowest one and has the most
parameters.

The deep transition decoder performs well (+0.5
BLEU on average) in terms of quality and is the
fastest and smallest of all the deep decoders that
have shown quality improvements.

The stacked conditional GRU with reused at-
tention (crGRU) achieves smaller improvements
(+0.3 BLEU on average) and has speed and
size intermediate between the deep transition and
stacked cGRU decoders.

3.4 Deep Encoders and Decoders

Table 4 shows results for models where both the
encoder and the decoder are deep, in addition to
the results of the best deep encoder (the deep tran-
sition encoder) + shallow decoder reported here
for ease of comparison.

Compared to deep transition encoder alone, we
generally see improvements in cross-entropy, but
not in BLEU. We evaluate architectures similar to
Zhou et al. (2016) (alternating encoder + stacked
GRU decoder) and (Wu et al., 2016) (biunidirec-
tional encoder + stacked rGRU decoder), though
they are not straight replications since we used
GRU cells rather than LSTMs and the implemen-
tation details are different. We find that the for-
mer architecture performs better in terms of BLEU

scores, model size and training speed.
The other variants of alternating encoder +

stacked or deep transition decoder perform simi-
larly to alternating encoder + stacked rGRU de-
coder, but do not improve BLEU scores over the
best deep encoder with shallow decoder. Ap-
plying the BiDeep architecture while keeping the
total depth the same yields small improvements
over the best deep encoder (+0.2 BLEU on aver-
age), while the improvement in cross-entropy is
stronger. We conjecture that deep decoders may be
better at handling subtle target-side linguistic phe-
nomena that are not well captured by the 4-gram
precision-based BLEU evaluation.

Finally, we evaluate a subset of architectures
with a combined depth that is 8 times that of the
baseline. Among the large models, the BiDeep
model yields substantial improvements (average
+0.6 BLEU over the best deep encoder, +1.5
BLEU over the shallow baseline), in addition to
cross-entropy improvements. The stacked-only
model, on the other hand, performs similarly to the
smaller models, despite having even more param-
eters than the BiDeep model. This shows that it is
useful to combine deep transitions with stacking,
as they provide two orthogonal kinds of depth that
are both beneficial for neural machine translation.

3.5 Error Analysis

One theoretical difference between a stacked RNN
and a deep transition RNN is that the distance in
the computation graph between timesteps is in-
creased for deep transition RNNs. While this al-
lows for arguably more expressive computations
to be represented, in principle it could reduce the
ability to remember information over long dis-

104

decoder high RNN decoder RNN depth output CE BLEU params. training speed
stacked trans. type depth 2014 2015 2016 (M) (words/s)

shallow - 1 1 1 47.53 21.9 24.7 29.3 98.1 2900
stacked GRU 4 1 1 46.73 21.8 24.6 29.5 117.0 2250
stacked rGRU 4 1 1 46.72 22.1 25.0 29.4 135.9 2150
stacked cGRU 4 1 1 44.76 22.8 25.5 29.6 164.3 1300
stacked crGRU 4 1 1 45.88 22.5 24.7 29.7 145.4 1750
deep transition - 1 8 1 45.98 22.4 24.9 30.0 117.0 2200
deep output - 1 1 4 47.21 21.5 24.2 28.7 98.9 2850

Table 3: Deep decoder results. English→German WMT17 data. Parameters and speed are highlighted
for the deep recurrent models.

encoder decoder decoder high encoder depth decoder depth CE BLEU params. training speed
RNN type bidir. forw. trans. stacked trans. 2014 2015 2016 (M) (words/s)

shallow shallow - 1 - 1 1 1 47.53 21.9 24.7 29.3 98.1 2900
deep tran. shallow - 1 - 4 1 1 46.54 22.9 25.4 30.2 117.0 1900

(Zhou et al., 2016) (ours)
alternating stacked GRU 4 - 1 4 1 45.89 22.9 25.3 30.1 154.9 1480

(Wu et al., 2016) (ours)
biunidir. stacked rGRU 1 3 1 4 1 46.15 22.4 24.7 29.6 211.5 1280
alternating stacked rGRU 4 - 1 4 1 46.00 23.0 25.7 30.5 173.7 1400
alternating stacked cGRU 4 - 1 4 1 44.32 22.9 25.7 29.8 202.1 970
deep tran. deep tran. - 1 - 4 1 8 45.52 22.7 25.7 30.1 136.0 1570
BiDeep altern. BiDeep rGRU 2 - 2 2 4/2 43.52 23.1 25.5 30.6 145.4 1480
BiDeep altern. BiDeep rGRU 4 - 2 4 4/2 43.26 23.4 26.0 31.0 214.7 980
alternating stacked rGRU 8 - 1 8 1 44.32 22.9 25.5 30.5 274.6 880

Table 4: Deep encoder–decoder results. English→German WMT17 data. Transition depth 4/2 means 4
in the base RNN of the stack and 2 in the higher RNNs. The last two models are large and their results
are highlighted separately.

tances, since each layer may lose information dur-
ing forward computation or backpropagation. This
may not be a significant issue in the encoder,
as the attention mechanism provides short paths
from any source word state to the decoder, but
the decoder contains no such shortcuts between its
states, therefore it might be possible that this nega-
tively affects its ability to model long-distance re-
lationships in the target text, such as subject–verb
agreement.

Here, we seek to answer this question by test-
ing our models on Lingeval97 (Sennrich, 2017),
a test set which provides contrastive translation
pairs for different types of errors. For the exam-
ple of subject-verb agreement, contrastive transla-
tions are created from a reference translation by
changing the grammatical number of the verb, and
we can measure how often the NMT model prefers
the correct reference over the contrastive variant.

In Figure 5, we show accuracy as a function of
the distance between subject and verb. We find
that information is successfully passed over long
distances by the deep recurrent transition network.
Even for decisions that require information to be
carried over 16 or more words, or at least 128 GRU
transitions5, the deep recurrent transition network

5some decisions may not require the information to be
passed on the target side because the decisions may be possi-

0 4 8 12 16
0.8

0.85

0.9

0.95

1

distance

ac
cu

ra
cy

shallow GRU
stacked GRU
deep transition GRU
BiDeep GRU

≥ 16

Figure 5: Subject-verb agreement accuracy as a
function of distance between subject and verb.

achieves an accuracy of over 92.5% (N = 560),
higher than the shallow decoder (91.6%), and sim-
ilar to the stacked GRU (92.7%). The highest ac-
curacy (94.3%) is achieved by the BiDeep net-
work.

4 Conclusions

In this work we presented and evaluated multiple
architectures to increase the model depth of neural
machine translation systems.

We showed that alternating stacked encoders
(Zhou et al., 2016) outperform biunidirectional

ble based on source-side information.

105

stacked encoders (Wu et al., 2016), both in ac-
curacy and (single-GPU) speed. We showed that
deep transition architectures, which we first ap-
plied to NMT, perform comparably to the stacked
ones in terms of accuracy (BLEU, cross-entropy
and long-distance syntactic agreement), and better
in terms of speed and number of parameters.

We found that depth improves BLEU scores es-
pecially in the encoder. Decoder depth, however,
still improves cross-entropy if not strongly BLEU

scores.
The best results are obtained by our BiDeep

architecture which combines both stacked depth
and transition depth in both the (alternating) en-
coder and the decoder, yielding better accuracy for
the same number of parameters than systems with
only one kind of depth.

We recommend to use combined architectures
when maximum accuracy is the goal, or use deep
transition architectures when speed or model size
are a concern, as deep transition performs very
positively in the quality/speed and quality/size
trade-off.

While this paper only reports results for one
translation direction, the effectiveness of the pre-
sented architectures across different data condi-
tions and language pairs was confirmed in follow-
up work. For the shared news translation task
of this year’s Conference on Machine Translation
(WMT17), we built deep models for 12 transla-
tion directions, using a deep transition architecture
or a stacked architecture (alternating encoder and
rGRU decoder), and observe improvements for the
majority of translation directions (Sennrich et al.,
2017a).

Acknowledgments

The research presented in this publication was
conducted in cooperation with Samsung Electron-
ics Polska sp. z o.o. - Samsung R&D Institute
Poland.

This project received funding from the
European Union’s Horizon 2020 research

and innovation programme under grant agree-
ments 645452 (QT21), 644402 (HimL) and
688139 (SUMMA).

References
Lei Jimmy Ba, Ryan Kiros, and Geoffrey E. Hinton.

2016. Layer Normalization. CoRR abs/1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Conference
on Machine Translation (WMT16). In Proceedings
of the First Conference on Machine Translation, Vol-
ume 2: Shared Task Papers. Association for Com-
putational Linguistics, Berlin, Germany, pages 131–
198.

Denny Britz, Anna Goldie, Minh-Thang Luong, and
Quoc V. Le. 2017. Massive Exploration of Neu-
ral Machine Translation Architectures. CoRR
abs/1703.03906.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2016. Report on
the 13th IWSLT Evaluation Campaign. In IWSLT
2016. Seattle, USA.

Kyunghyun Cho, B van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. In Eighth Workshop on Syntax, Seman-
tics and Structure in Statistical Translation (SSST-
8), 2014.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learn-
ing Phrase Representations using RNN Encoder–
Decoder for Statistical Machine Translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).
Doha, Qatar, pages 1724–1734.

Orhan Firat and Kyunghyun Cho. 2016. Con-
ditional Gated Recurrent Unit with Attention
Mechanism. https://github.com/nyu-dl/dl4mt-
tutorial/blob/master/docs/cgru.pdf. Published
online, version adbaeea.

Jonas Gehring, Michael Auli, David Grangier, De-
nis Yarats, and Yann N. Dauphin. 2017. Convo-
lutional Sequence to Sequence Learning. CoRR
abs/1705.03122.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016. pages 770–
778.

106

Razvan Pascanu, Çağlar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to Construct Deep
Recurrent Neural Networks. In International Con-
ference on Learning Representations 2014 (Confer-
ence Track).

Rico Sennrich. 2017. How Grammatical is Character-
level Neural Machine Translation? Assessing MT
Quality with Contrastive Translation Pairs. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 2, Short Papers. Association for
Computational Linguistics, Valencia, Spain, pages
376–382.

Rico Sennrich, Alexandra Birch, Anna Currey, Ulrich
Germann, Barry Haddow, Kenneth Heafield, An-
tonio Valerio Miceli Barone, and Philip Williams.
2017a. The University of Edinburgh’s Neural MT
Systems for WMT17. In Proceedings of the Sec-
ond Conference on Machine Translation, Volume 2:
Shared Task Papers. Copenhagen, Denmark.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Vale-
rio Miceli Barone, Jozef Mokry, and Maria Nade-
jde. 2017b. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Valencia, Spain, pages 65–68.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. arXiv preprint arXiv:1706.03762 .

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
Neural Machine Translation System: Bridging the
Gap between Human and Machine Translation.
CoRR abs/1609.08144.

Saizheng Zhang, Yuhuai Wu, Tong Che, Zhouhan Lin,
Roland Memisevic, Ruslan R Salakhutdinov, and
Yoshua Bengio. 2016. Architectural Complexity
Measures of Recurrent Neural Networks. In Ad-
vances in Neural Information Processing Systems
29. pages 1822–1830.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and
Wei Xu. 2016. Deep Recurrent Models with Fast-
Forward Connections for Neural Machine Transla-
tion. TACL 4:371–383.

Julian Georg Zilly, Rupesh Kumar Srivastava,
Jan Koutník, and Jürgen Schmidhuber. 2016.
Recurrent highway networks. arXiv preprint
arXiv:1607.03474 .

107

