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Abstract

For efficiency considerations, state-of-the-
art neural machine translation (NMT) re-
quires the vocabulary to be restricted to a
limited-size set of several thousand sym-
bols. This is highly problematic when
translating into inflected or compounding
languages. A typical remedy is the use
of subword units, where words are seg-
mented into smaller components. Byte
pair encoding, a purely corpus-based ap-
proach, has proved effective recently.

In this paper, we investigate word segmen-
tation strategies that incorporate more lin-
guistic knowledge. We demonstrate that
linguistically informed target word seg-
mentation is better suited for NMT, lead-
ing to improved translation quality on
the order of magnitude of +0.5 BLEU

and −0.9 TER for a medium-scale
English→German translation task.

Our work is important in that it shows that
linguistic knowledge can be used to im-
prove NMT results over results based only
on the language-agnostic byte pair encod-
ing vocabulary reduction technique.

1 Introduction

Inflection and nominal composition are morpho-
logical processes which exist in many natural lan-
guages. Machine translation into an inflected lan-
guage or into a compounding language must be
capable of generating words from a large vocabu-
lary of valid word surface forms, or ideally even be
open-vocabulary. In NMT, though, dealing with a
very large number of target symbols is expensive
in practice.

While, for instance, a standard dictionary of
German, a compounding language, may cover

140 000 vocabulary entries,1 NMT on off-the-
shelf GPU hardware is nowadays typically only
tractable with target vocabularies below 100 000
symbols.

This issue is made worse by the fact that com-
pound words are not a closed set. More frequently
occurring compound words may be covered in
a standard dictionary (e.g., “Finanztransaktions-
steuer”, English: “financial transaction tax”), but
the compounding process allows for words to be
freely joined to form new ones (e.g., “Finanztrans-
aktionssteuerzahler”, English: “financial transac-
tion tax payer”), and compounding is highly pro-
ductive in a language like German.

Furthermore, a dictionary lists canonical word
forms, many of which can have many inflected
variants, with morphological variation depending
on case, number, gender, tense, aspect, mood, and
so on. The German language has four cases, three
grammatical genders, and two numbers. Ger-
man exhibits a rich amount of morphological word
variations also in the verbal system. A machine
translation system should ideally be able to pro-
duce any permissible compound word, and all in-
flections for each canonical form of all words (in-
cluding compound words).

Previous work has drawn on byte pair encod-
ing to obtain a fixed-sized vocabulary of subword
units. In this paper, we investigate word segmen-
tation strategies for NMT which are linguistically
more informed. Specifically, we explore and em-
pirically compare:

• Compound splitting.
• Suffix splitting.
• Prefix splitting.
• Byte pair encoding (BPE).
• Cascaded applications of the above.
1Duden, 26th ed., 2013, cf. http://www.duden.de/

ueber_duden/auflagengeschichte.
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Our empirical evaluation focuses on
target-language side segmentation, with
English→German translation as the applica-
tion task. Our proposed approaches improve
machine translation quality by up to +0.5 BLEU

and −0.9 TER, respectively, compared with using
plain BPE.

Advantages of linguistically-informed target
word segmentation in NMT are:

1. Better vocabulary reduction for practical
tractability of NMT, as motivated above.

2. Reduction of data sparsity. Learning lexi-
cal choice is more difficult for rare words
that appear in few training samples (e.g., rare
compounds), or when a single form from a
source language with little inflection (such
as English) has many target-side translation
options which are morphological variants.
Splitting compounds and separating affixes
from stems can ease lexical selection.

3. Better open vocabulary translation. With
target-side word segmentation, the NMT sys-
tem can generate sequences of word pieces
at test time that have not been seen in this
combination in training. It may produce new
compounds, or valid morphological variants
that were not present in the training corpus,
e.g. by piecing together a stem with an inflec-
tional suffix in a new, but linguistically ad-
missible way. Using a linguistically informed
segmentation should better allow the system
to try to learn the linguistic processes of word
formation.

2 Word Segmentation Strategies

2.1 Byte Pair Encoding

A technique in the manner of the Byte Pair Encod-
ing (BPE) compression algorithm (Gage, 1994)
can be adopted in order to segment words into
smaller subword units, as suggested by Sennrich
et al. (2016b). The BPE word segmenter con-
ceptionally proceeds by first splitting all words in
the whole corpus into individual characters. The
most frequent adjacent pairs of symbols are then
consecutively merged, until a specified limit of
merge operations has been reached. Merge opera-
tions are not applied across word boundaries. The
merge operations learned on a training corpus can
be stored and applied to other data, such as test
sets.

suffixes
-e, -em, -en, -end, -enheit, -enlich, -er, -erheit, -erlich,
-ern, -es, -est, -heit, -ig, -igend, -igkeit, -igung, -ik, -isch,
-keit, -lich, -lichkeit, -s, -se, -sen, -ses, -st, -ung

prefixes
ab-, an-, anti-, auf-, aus-, auseinander-, außer-, be-,
bei-, binnen-, bitter-, blut-, brand-, dar-, des-, dis-,
durch-, ein-, empor-, endo-, ent-, entgegen-, entlang-,
entzwei-, epi-, er-, extra-, fehl-, fern-, fest-, fort-, frei-,
für-, ge-, gegen-, gegenüber-, grund-, heim-, her-, hetero-,
hin-, hinter-, hinterher-, hoch-, homo-, homöo-, hyper-,
hypo-, inter-, intra-, iso-, kreuz-, los-, miss-, mit-, mono-,
multi-, nach-, neben-, nieder-, non-, pan-, para-, peri-,
poly-, post-, pro-, prä-, pseudo-, quasi-, schein-, semi-,
stock-, sub-, super-, supra-, tief-, tod-, trans-, ultra-,
um-, un-, unab-, unan-, unauf-, unaus-, unbe-, unbei-,
undar-, undis-, undurch-, unein-, unent-, uner-, unfehl-,
unfort-, unfrei-, unge-, unher-, unhin-, unhinter-, unhoch-,
unmiss-, unmit-, unnach-, unter-, untief-, unum-, ununter-,
unver-, unvor-, unweg-, unwider-, unzer-, unzu-, unüber-,
ur-, ver-, voll-, vor-, voran-, voraus-, vorüber-, weg-,
weiter-, wider-, wieder-, zer-, zu-, zurecht-, zurück-,
zusammen-, zuwider-, über-

Table 1: German affixes which our suffix splitter
and prefix splitter separate from the word stem.

An advantage of BPE word segmentation is that
it allows for a reduction of the amount of distinct
symbols to a desired order of magnitude. The
technique is purely frequency-based. Frequent se-
quences of characters will be joined through the
merge operations, resulting in common words not
being segmented. Words containing rare combina-
tions of characters will not be fully merged from
the character splitting all the way back to their
original form. They will remain split into two or
more subword units in the BPE-segmented data.
On the downside, the BPE algorithm has no no-
tion of morphosyntax, narrowing down its capa-
bilities at modeling inflection and compounding.
BPE also has no guidelines for splitting words into
syllables. This way no phonetic or semantic sub-
structures are taken into account. Therefore BPE
splits often appear arbitrary to the human reader,
since it appears frequently that subword units ig-
nore syllable boundaries entirely.

Nevertheless, NMT systems incorporating BPE
word segmentation have achieved top translation
quality in recent shared tasks (Sennrich et al.,
2016a; Bojar et al., 2016). We designed our
linguistically-informed segmentation techniques
by looking at the shortcomings of BPE segmen-
tations.
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2.2 Compound Splitting

BPE word segmentation operates bottom-up from
characters to larger units. Koehn and Knight
(2003) have proposed a frequency-based word
segmentation method that starts from the other
end, top-down inspecting full words and looking
into whether they are composed of parts which are
proper words themselves. Any composed word is
segmented into parts such that the geometric mean
of word frequencies of its parts (counted in the
original corpus) is maximized. This technique rep-
resents a suitable approach for compound splitting
in natural language processing applications. It has
been successfully applied in numerous statistical
machine translation systems, mostly on the source
language side, but sometimes also on the target
side (Sennrich et al., 2015).

The difference in nature between BPE word
segmentation and frequency-based compound
splitting (bottom-up and top-down) leads to quite
different results. While BPE tends to generate un-
intuitive splits, compound splitting nearly always
comes up with reasonable word splits. On the
other hand there are many possible intuitive word
splits that compound splitting does not catch.

2.3 Suffix Splitting

Morphological variation in natural languages is of-
ten realized to a large extent through affixation.
In the German language there are several suf-
fixes that unambiguously mark a word as an adjec-
tive, noun, or verb. By splitting these telling suf-
fixes, we can automatically include syntactic in-
formation. Even though this underlying relation-
ship between suffix and morphological function
is sometimes ambiguous—especially for verbs—
reasonable guesses about the POS of a word with
which we are not familiar are only possible by
considering its suffix.

Information retrieval systems take advantage
of this observation and reduce search queries to
stemmed forms by means of simply removing
common suffixes, prefixes, or both. The Porter
stemming algorithm is a well-known affix strip-
ping method (Porter, 1980). In such algorithms,
some basic linguistic knowledge about the mor-
phology of a particular language is taken into
account in order to come up with a few hand-
written rules which would detect common affixes
and delete them. We can benefit from the same
idea for the segmentation of word surface forms.

We have modified the Python implementation
of the German Snowball stemming algorithm from
NLTK2 for our purposes. The Snowball stem-
mer removes German suffixes via some language-
specific heuristics. In order to obtain a segmenter,
we have altered the code to not drop suffixes, but
to write them out separately from the stem. Our
Snowball segmenter splits off the German suffixes
that are shown in Table 1. Some of them are in-
flectional, others are used for nominalization or
adjectivization. The suffix segmenter also splits
sequential appearances of suffixes into multiple
parts according to the Snowball algorithm’s split-
ting steps, but always retaining a stem with a min-
imum length of at least three characters.

Table 2 shows some relationships between Ger-
man suffixes and their English translations. Espe-
cially nominalizations and participles are partic-
ularly consistent, which makes translation rather
unambiguous. Even though an exact translation
from every German suffix to one specific English
suffix cannot be established, this shows that a set
of German suffixes translates into a set of English
suffixes. Some suffixes indeed have an unambigu-
ous translation like German -los to English -less or
German -end to English -ing. These relationships
might be due to the shared roots of the German and
English language. Especially for other Germanic
languages this promises transferability of our re-
sults.

It seems to be a reasonable assumption that
other languages also have a certain set of possible
suffixes which correspond to each type of word.
For these relationships our approach may be able
to automatically and cheaply add (weak) POS in-
formation, which might improve translation qual-
ity, but this will require further investigation in fu-
ture work.

We would also like to study the relationship be-
tween stemming quality and resulting NMT trans-
lation quality. Weissweiler and Fraser (2017) have
introduced a new stemmer of German and showed
that it performs better than Snowball using com-
parison with gold standards. This may serve as an
interesting starting point.

2.4 Prefix Splitting

Similarly to our Snowball suffix segmenter, we
have written a small script to split off prefixes.

2http://www.nltk.org/_modules/nltk/
stem/snowball.html
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German suffixes unambiguously marking
nouns
-ung, -heit, -nis, -keit, -sal, -schaft, -ling, -tum
English nominalizations with -ness are trans-
lated consistently by adding one of these suf-
fixes
busyness – Geschäftigkeit
abstractness – Abstraktheit
kindness – Freundlichkeit
coziness – Behaglichkeit
giftedness – Begabung
sadness – Traurigkeit
tiredness – Müdigkeit
laziness – Faulheit
But a simple mapping between German and En-
glish noun suffixes does not exist
Abholzung – deforestation
Segmentierung – segmentation
Trockenheit – aridity
Obrigkeit – autority
Genauigkeit – precision
Bündnis – alliance
Gefängnis – prison
Verhältnis – relationship
German suffixes typical for adjectives
-ig, -lig, -isch, -sam, -bar, -haft, -los
Adjective derivation using these suffixes
achtsam – mindful
wendig – agile
begehbar – accessible
sichtbar – visible
nahrhaft – nutricious
essbar – edible
fettig – greasy
ethisch – ethical
moralisch – morally
laienhaft – unprofessional
-los with consistent English counterpart -less
taktlos – tactless
reglos – motionless
rastlos – restless
schamlos – shameless
German participles ending with -end
hängend – hanging
stehend – standing
schlafend – sleeping
lachend – laughing

Table 2: Examples illustrating the use of German
suffixes.

The common German verb prefix ver- shows no
obvious pattern in English translations
verstehen – to understand
sich verirren – to get lost
vergehen – to vanish
sich versprechen – to misspeak oneself
verfehlen – to miss
aus Versehen – unintentionally
verbieten – to prohibit
vergessen – to forget
Another common German verb prefix, be-, also
shows no obvious pattern
behaupten – to claim
beschuldigen – to accuse
bewerben – to apply for
beladen – to load
betonen – to emphasize
bewahren – to preserve
The common German prefix auf- (English: on,
up) has relatively consistent pattern in English
translation
aufstellen – to put up
aufsetzen – to sit up
aufgehen – to give up
aufstehen – to stand up
aufblasen – to blow up
aufgeben – to give up
aufbauen – to set up
aufhören – to stop
German verb setzen (English: to sit down) with
different prefixes
absetzen – to drop off
besetzen – to occupy
ersetzen – to replace
zersetzen – to decompose
umsetzen – to realize
widersetzen – to defy

Table 3: Examples illustrating the use of German
prefixes.
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Here, we specifically target verb and adjective pre-
fixes and thus only segment lowercase words, ex-
cluding nouns which are written in uppercase in
German text. We consider the prefixes as shown
in Table 1. We sort them descending by length,
checking for longer prefix matches first. Nega-
tional prefixes (beginning with un-, but not unter-)
are additionally segmented after un-; e.g., unab-
becomes un- ab-. In case the remaining part starts
with either of the two verb infixes -zu- or -ge-, we
also segment after that infix. We require the final
stem to be at least three characters long.

While suffixes tend to contain morpholog-
ical information, German prefixes change—
sometimes radically—the semantics of the word
stem. Some prefixes, especially those indicating
local relationships, have a relatively clear and con-
sistent translation. On the other hand, certain pre-
fixes change the meaning more subtly and also
more ambiguously. Therefore some prefixes lead
to a simple translation while others change the
meaning too radically.

Table 3 shows how the meaning of German
verbs can change by adding different prefixes to
a common stem. The example for setzen – to sit
down illustrates that each of the combinations is
semantically so different from the others that their
translations have to be learned separately. This
also means that splitting the prefix might not ben-
efit the machine translation system, since general-
ization is hardly possible.

The examples given in Table 3 also suggest that
a single verb prefix may affect the semantics of the
word in ambiguous ways when applied to differ-
ent verb stems. The very common German prefix
ver-, for instance, which often indicates an incor-
rectly performed action (like sich versprechen – to
misspeak oneself or verfehlen – to miss), still has
a lot of different applications. This variety shows
that prefixes clearly carry information, but still it is
highly ambiguous and therefore might not benefit
the translation process.

The German prefix auf – up, on has a rela-
tively unambiguous translation, though, and hence
splitting it might support the machine transla-
tion system. A possible improvement might be
only splitting these unambiguously translatable
prefixes (which in general are prepositions indi-
cating the direction of the altered verb), but this
remains to be investigated in future research.

2.5 Cascaded Application of Segmenters

Affix splitting and compound splitting can be ap-
plied in combination, by cascading the segmenters
and preprocessing the data first with the suffix
splitter, then optionally with the prefix splitter, and
then with the compound splitter. In a cascaded ap-
plication, the compound splitter is applied to word
stems only, and the counts for computing the ge-
ometric means of word frequencies for compound
splitting are collected after affix splitting.

When cascading the compound splitter with af-
fix splitting, we introduce a minor modification.
Our standalone compound splitter takes the filler
letter “s” and “es” into account, which often ap-
pear in between word parts in German noun com-
pounding. For better consistency of the compound
splitting component with affix splitting, we addi-
tionally allow for more fillers, namely: suffixes,
suffixes followed by “s”, and “zu”.

The methods for compound splitting, suffix
splitting, and prefix splitting provide linguistically
more sound approaches for word segmentation,
but they do not arbitrarily reduce the amount of
distinct symbols. For a further reduction of the
number of target-side symbols, we may want to
apply a final BPE segmentation step on top of the
other segmenters. BPE will not re-merge words
that have been segmented before. It can ben-
efit from the prior segmentation provided to it
and come up with a potentially better sequence
of merge operations. Affixes will be learned as
subwords but not joined with the stem. This im-
proves the quality of resulting BPE splits. BPE
no longer combines arbitrary second to last sylla-
bles with their suffixes, which makes learning the
other—non affix—syllables easier.

We deliberately decided against joint/bilingual
BPE, for multiple reasons. (1.) In cascaded
segmentations, BPE operations are learned from
training data after previous splitters in the pipeline
have been applied. With joint BPE, the source
would be affected, being preprocessed slightly dif-
ferently in different setups. Instead, we opted
for conducting BPE-50K separately over English.
The source is hence equal in all setups, which we
believe renders the evaluation more sound. (2.)

When tying source+target in joint-BPE, vocabu-
lary sizes cannot be controlled independently on
each side. Joint-BPE with 59500 operations for
instance yields 46K German types in the data,
but an English corpus containing only 26K types.
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BPE sie alle versch ## icken vorsätzlich irreführende Dokumente an
Kleinunternehmen in ganz Europa .

compound + BPE sie alle verschicken vorsätzlich #L irre @@ führende Doku-
mente an #U klein @@ unter @@ nehmen in ganz Europa .

suffix + BPE sie all $$e verschick $$en vorsätz $$lich irreführ $$end $$e
Dokument $$e an Kleinunternehm $$en in ganz Europa .

suffix + compound + BPE sie all $$e verschick $$en vorsätz $$lich #L Irre @@ führ $$end
$$e Dokument $$e an #U klein @@ Unternehm $$en in ganz
Europa .

suffix + prefix + compound + BPE sie all $$e ver§§ schick $$en vor§§ sätz $$lich #L Irre @@ führ
$$end $$e Dokument $$e an #U klein @@ Unternehm $$en in
ganz Europa .

English they all mail deliberately deceptive documents to small busi-
nesses across Europe .

Table 4: Different word segmentation strategies applied to a training sentence. ## is a BPE split-point,
ver§§ is prefix ver, $$en is the suffix en, #U and #L are upper and lower case indicators for compounds,
@@ indicates a compound merge-point, @s@ would indicate a compound merged with the letter s
between the parts, etc.

(3.) Joint-BPE may boost transliteration capabili-
ties. Generally, we would however recommend
to extract BPE operations monolingually to bet-
ter capture the properties of the individual lan-
guage. We argue that well justified segmentation
cannot be language-independent. (4.) We would
not expect fundamentally different findings when
switching to joint-BPE everywhere.

2.6 Reversibility

Target-side word segmentation needs to be re-
versible in postprocessing. We introduce special
markers to enable reversibility of word splits. For
suffixes, we attach a marker to the beginning of
each suffix token; for prefixes to the end of each
split prefix.

Fillers within segmented compounds receive at-
tached markers on either side. When a compound
is segmented into parts with no filler between
them, we place a separate special marker token
in the middle which is not attached to any of the
parts. It indicates the segmentation and has two
advantages over attaching it to any of the parts:
(1.) The tokens of the parts are exactly the same
as when they appear as words outside of a com-
pound. The NMT system does not perceive them
as different symbols. (2.) There is more flexibility
at producing new compounds that have not been

seen in the training corpus. The NMT system can
decide to place any symbol into a token sequence
that would form a compound, even the ones which
were never part of a compound in training. The
vocabulary is more open in that respect.

We adhere to the same rationale for split mark-
ers in BPE word segmentation. A special marker
token is placed separately between subword units,
with whitespace around it. In our experience, at-
taching the marker to BPE subword units does not
improve translation quality over our practice.

The compound splitter alters the casing of com-
pound parts to the variants that appears most fre-
quently in the corpus. When merging compounds
in postprocessing, we need to know whether to
lowercase or to uppercase the compound. We let
the translation system decide and introduce an-
other special annotation in order to allow for this.
When we segment compounds, we always place
an indicator symbol before the initial part of the
split compound token sequence, which can be ei-
ther #L or #U. It specifies the original casing of the
compound (lower or upper).

The effect of different segmentation strategies
on the word splits in an example sentence is shown
in Table 4.
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Preprocessing #types #tokens
tokenized 303 K 39 M
compound 139 K 45 M
suffix 217 K 54 M
suffix + compound 98 K 60 M
suffix + prefix + compound 88 K 63 M
BPE 46 K 42 M
compound + BPE 46 K 46 M
suffix + BPE 45 K 56 M
suffix + compound + BPE 43 K 60 M
suffix + prefix + compound + BPE 43 K 64 M

Table 5: Target-side training corpus statistics.

System test2007 test2008
BLEU TER BLEU TER

top 50K voc. (source & target) 25.5 60.9 25.2 60.9
BPE 25.8 60.7 25.6 60.9
compound + BPE 25.9 60.3 25.5 60.6
suffix + BPE 26.3 60.0 26.0 60.1
suffix + compound + BPE 26.2 59.8 25.8 60.2
suffix + prefix + compound + BPE 26.1 59.8 25.9 60.6
suffix + prefix + compound, 50K 25.9 59.9 25.5 60.3

phrase-based (Huck et al., 2015) 22.6 – 22.1 –

Table 6: English→German experimental results
on Europarl (case-sensitive BLEU and TER).

3 Machine Translation Experiments

3.1 Experimental Setup

We conduct an empirical evaluation using
encoder-decoder NMT with attention and gated
recurrent units as implemented in Nematus
(Sennrich et al., 2017). We train and test on
English–German Europarl data (Koehn, 2005).
The data is tokenized and frequent-cased using
scripts from the Moses toolkit (Koehn et al.,
2007). Sentences with length >50 after tokeniza-
tion are excluded from the training corpus, all
other sentences (1.7 M) are considered in training
under every word segmentation scheme. We
set the amount of merge operations for BPE to
50K. Corpus statistics of the German data after
different preprocessings are given in Table 5. On
the English source side, we apply BPE separately,
also with 50K merge operations.

For comparison, we build a setup denoted as top
50K voc. (source & target) where we train on the
tokenized corpus without any segmentation, limit-
ing the vocabulary to the 50K most frequent words
on each side and replacing rare words by “UNK”.
In a setup denoted as suffix + prefix + compound,
50K, we furthermore examine whether BPE can be

omitted in a cascaded application of target word
segmenters. Here, we use the top 50K target sym-
bols after suffix, prefix, and compound splitting,
but still apply BPE to the English source.

It is important to note that the amount of dis-
tinct target symbols in the setups ranges between
43K-46K; 50K for top-50K-voc systems. There
are no massive vocabulary size differences. We
always apply 50K BPE operations. Minor di-
vergences in the number of types naturally occur
amongst the various cascaded segmentations. The
linguistically-informed splitters segment more, re-
sulting in more tokens. We chose BPE-50K be-
cause the vocabulary is reasonably large while
training fits onto GPUs with 8 GB of RAM. Larger
vocabularies come at the cost of either more RAM
or adjustment of other parameters (e.g., batch size
or sentence length limit). From hyperparameter
search over reduced vocabulary sizes we would
not expect important insights, so we do not do this.

In all setups the training samples are always
the same. We removed long sentences after to-
kenization but before segmentation, which affects
all setups equally. No sentences are discarded after
that stage (Nematus’ maxlen > longest sequence in
data).

We configure dimensions of 500 for the embed-
dings and 1024 for the hidden layer. We train
with the Adam optimizer (Kingma and Ba, 2015),
a learning rate of 0.0001, batch size of 50, and
dropout with probability 0.2 applied to the hidden
layer.3 We validate on the test2006 set after ev-
ery 10 000 updates and do early stopping when the
validation cost has not decreased for ten epochs.

We evaluate case-sensitive with BLEU (Pa-
pineni et al., 2002) and TER (Snover et al.,
2006), computed over postprocessed hypotheses
against the raw references with mteval-v13a
and tercom.7.25, respectively.

3.2 Experimental Results

The translation results are reported in Table 6.
Cascading compound splitting and BPE slightly
improves translation quality as measured in TER.
Cascading suffix splitting with BPE or with
compound splitting plus BPE considerably im-
proves translation quality by up to +0.5 BLEU or
−0.9 TER over pure BPE. Adding in prefix split-
ting is less effective. We conjecture that prefix

3In preliminary experiments, we found dropout for
source, target, and embeddings did not yield additional gains.
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System
Words in output BPE-merged

tokens types
compound-merged

tokens types
suffix-merged

tokens types
prefix-merged
tokens types

BPE 1 075 1 032 – – – – – –
(1.9 %) (13.4 %) – – – – – –

compound + BPE 271 255 2 766 1 738 – – – –
(0.5 %) (3.3 %) (4.9 %) (22.6 %) – – – –

suffix + BPE 443 427 – – 19 152 4 915 – –
(0.8 %) (5.6 %) – – (33.7 %) (64.0 %) – –

suffix + compound + BPE 111 106 2 568 1 597 19 028 5 022 – –
(0.2 %) (1.4 %) (4.5 %) (20.4 %) (33.7 %) (64.1 %) – –

suffix + prefix + compound + BPE 100 95 2 566 1 577 19 063 4 990 4 601 1 667
(0.2 %) (1.2 %) (4.5 %) (20.2 %) (33.5 %) (64.0 %) (8.1 %) (21.4 %)

Table 7: Statistics over words in system outputs for test2008, after desegmentation.

System
Words in output overall

tokens types ratio

BPE 57 334 7 700 0.134

compound + BPE 56 827 7 692 0.135

suffix + BPE 56 849 7 674 0.135

suffix + compound + BPE 56 461 7 839 0.139

suffix + prefix + compound + BPE 56 875 7 797 0.137

reference 57 073 8 975 0.157

Table 8: Overall types and tokens, measured on
test2008 after desegmentation (hypotheses trans-
lations) or after tokenization (reference).

System avg. sent. length
BPE 28.7

compound + BPE 28.4

suffix + BPE 28.4

suffix + compound + BPE 28.2

suffix + prefix + compound + BPE 28.4

reference 28.5

Table 9: Average sentence lengths on test2008.

System
Words in output unseen vocabulary

tokens types
BPE 197 194

(0.3 %) (2.5 %)

compound + BPE 280 257
(0.5 %) (3.3 %)

suffix + BPE 139 138
(0.2 %) (1.8 %)

suffix + compound + BPE 262 238
(0.5 %) (3.0 %)

suffix + prefix + compound + BPE 265 234
(0.5 %) (3.0 %)

Table 10: Productivity at open vocabulary transla-
tion, measured on test2008 system outputs (after
desegmentation) against the vocabulary of the to-
kenized training data.

splitting does not help because German verb pre-
fixes often radically modify the meaning. When
prefixes are split off, the decoder’s embeddings
layer may therefore become less effective (as the
stem may be confusable with a completely differ-
ent word).

We also evaluated casing manually. Manual
inspection of the first fifty #L / #U occurrences
in one of the hyptheses reveals that none is mis-
placed, and casing is always correctly indicated.

3.3 Analysis

In order to better understand the impact of the dif-
ferent target-side segmentation strategies, we an-
alyze and compare the output of our main setups.
Particularly, we turn our attention on the words in
the translation outputs for the test2008 set. For the
analysis, in order to achieve comparable vocabu-
laries in the various outputs, we apply desegmen-
tation to all of the plain hypotheses produced by
the systems. However, we do not run the full post-
processing pipeline: detruecasing and detokeniza-
tion are omitted.

First, we count the number of words in the de-
segmented translations that have been merged to-
gether from subword components in the plain sys-
tem outputs. Table 7 shows the statistics. The ta-
ble rows contain the absolute amounts and rela-
tive frequencies of words with subword unit parts
in the desegmented hypotheses, for running words
in the text (types) and in terms of the vocabulary
in the test2008 translation output. The frequen-
cies are relative to all words in the respective out-
put. Note that when cascaded word segmentation
was applied, a single desegmented word may be
composed of multiple subword units that originate
from different word splitters. We find that com-
pared to the pure BPE system, many more words
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OOV
types A B C D E

A 0 1621 1583 1584 1626
(21.1 %) (20.6 %) (20.6 %) (21.1 %)

B 1612 0 1589 1469 1434
(21.0 %) (20.7 %) (19.1 %) (18.7 %)

C 1559 1574 0 1451 1456
(20.3 %) (20.5 %) (18.9 %) (19.0 %)

D 1726 1620 1617 0 1435
(22.0 %) (20.7 %) (20.6 %) (18.3 %)

E 1725 1542 1579 1392 0
(22.1 %) (19.8 %) (20.3 %) (17.9 %)

R 3641 3676 3624 3604 3634
(40.6 %) (41.0 %) (40.4 %) (40.2 %) (40.5 %)

Table 11: Systems compared against each other in
terms of types found in test2008 hypothesis trans-
lations, after desegmentation. (OOV words of out-
put of vertical system wrt. vocabulary present in
output of horizontal system.) A: BPE. B: com-
pound + BPE. C: suffix + BPE. D: suffix + com-
pound + BPE. E: suffix + prefix + compound +
BPE. R: reference translation.

OOV
tokens A B C D E

A 0 1804 1763 1801 1826
(3.1 %) (3.1 %) (3.1 %) (3.2 %)

B 1814 0 1793 1663 1612
(3.2 %) (3.2 %) (2.9 %) (2.8 %)

C 1741 1768 0 1647 1648
(3.1 %) (3.1 %) (2.9 %) (2.9 %)

D 1942 1803 1801 0 1565
(3.4 %) (3.2 %) (3.2 %) (2.8 %)

E 1958 1734 1794 1554 0
(3.4 %) (3.0 %) (3.2 %) (2.7 %)

R 4506 4582 4484 4484 4520
(7.9 %) (8.0 %) (7.9 %) (7.9 %) (7.9 %)

Table 12: Systems compared against each other
in terms of tokens found in test2008 hypothesis
translations, after desegmentation.

Output
similarity A B C D E

A 100 61.6 61.3 60.4 60.1

B 61.6 100 61.4 62.0 62.1

C 61.3 61.4 100 62.5 62.9

D 60.5 62.0 62.5 100 63.0

E 60.1 62.1 62.9 63.0 100

Table 13: System outputs (after desegmenta-
tion) evaluated against each other with BLEU.
(Hypothesis translation of vertical system against
output of horizontal system as the reference in
multi-bleu.perl.)

are merged from subword unit parts in the other
systems.

Table 8 presents the overall amount of types and
tokens in the hypothesis translations and in the ref-
erence. The pure BPE system exhibits the low-
est type/token ratio, whereas the type/token ratio
in the reference is higher than in all the machine
translation outputs.

Average sentence lengths are given in Table 9.
The pure BPE system produces sentences that are
slightly longer than the ones in the reference. All
other setups tend to be below the average reference
sentence length, the shortest sentences being pro-
duced by the suffix + compound + BPE system.

Next, we look into how often the open vocab-
ulary capabilities of the systems lead to the gen-
eration of words which are not present in the to-
kenized training corpus. We denote these words
as “unseen”. Table 10 reveals that only small
fractions of the words formed from subword unit
parts (as counted before, Table 7) are unseen. The
relative frequency of produced unseen words is
smaller than—or equal to—half a percent in the
running text. The setups trained with compound-
split target data produce unseen words a bit more
often. While at first glance it might seem dis-
appointing that the systems’ open vocabulary ca-
pabilities do not come into effect more heavily,
this observation however emphasizes that we have
succeeded at training neural models that adhere
to word formation processes which lead to valid
forms.

A straightforward follow-up question is how
lexically dissimilar the various system outputs are.
In Tables 11 and 12, we compare all hypotheses
pairwise against each other, measuring the amount
of words in one hypothesis that does not appear
in the vocabulary present in a translation from
another system. We basically calculate cross-
hypothesis out-of-vocabulary (OOV) rates. Ta-
ble 11 shows the results on type level, Table 12 on
token level. We furthermore compare against the
reference. The system outputs are lexically quite
dissimilar, but much closer to each other than to
the reference.

We can finally follow the very same rationale by
evaluating the system outputs against each other
with BLEU, calculating the BLEU score of one
hypothesis against another hypothesis rather than
against a reference translation. The result, pre-
sented in Table 13, reaffirms that the different sys-
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tems have each learned to translate in different
ways, based on the respective segmentation of the
training data.

Our cascaded suffix + compound + BPE tar-
get word segmentation strategy was employed
for LMU Munich’s participation in the WMT17
shared tasks on machine translation of news and
of biomedical texts. We refer the reader to the sys-
tem description paper (Huck et al., 2017a), where
we include some interesting translation examples
from the news translation task. We note that our
system was ranked first in the human evaluation of
the news task, despite having a lower BLEU score
than Edinburgh’s submission. BLEU, which tries
to automatically predict how humans will evalu-
ate quality, may unfairly penalize approaches like
ours, but more study is needed.

4 Related Work

The SMT literature has a wide diversity of ap-
proaches in dealing with translation to morpholog-
ically rich languages. One common theme is mod-
eling the relationship between lemmas and sur-
face forms using morphological knowledge, e.g.,
(Toutanova and Suzuki, 2007; Koehn and Hoang,
2007; Bojar and Kos, 2010; Fraser et al., 2012;
Weller et al., 2013; Tamchyna et al., 2016; Huck
et al., 2017b). This problem has been studied for
NMT by Tamchyna et al. (2017), and it would be
interesting to compare with their approach.

Our work is closer in spirit to previous work
on integrating morphological segmentation into
SMT. Some examples of early work here in-
clude work on Arabic (Lee et al., 2003) and
Czech (Goldwater and McClosky, 2005). More
recent work includes work on Arabic, such as
(Habash, 2007), and work on Turkish (Oflazer and
Durgar El-Kahlout, 2007; Yeniterzi and Oflazer,
2010). Unsupervised morphological splitting, us-
ing, e.g., Morfessor has also been tried, particu-
larly for dealing with agglutinative languages (Vir-
pioja et al., 2007). Our work is motivated by the
same linguistic observations as theirs.

Other studies, e.g., (Popović et al., 2006;
Stymne, 2008; Cap et al., 2014), model German
compounds by splitting them into single simple
words in the SMT training data, and then pre-
dicting where to merge simple words as a post-
processing step (after SMT decoding). This has
similarities to our use of compound splitting and
markers in NMT.

There is also starting to be interest in alterna-
tives to BPE in NMT. The Google NMT system
(Wu et al., 2016) used wordpiece splitting, which
is similar to but different from BPE and would
be interesting to evaluate in future work. Ataman
et al. (2017) considered both supervised and unsu-
pervised splitting of agglutinative morphemes in
Turkish, which is closely related to our ideas. An
important difference here is that Turkish is an ag-
glutinative language, while German has fusional
inflection and very productive compounding.

We are also excited about early work on
character-based NMT such as (Lee et al., 2016),
which may eventually replace segmentation mod-
els like those in our work (or also replace BPE
when linguistically aware segmentation is not
available). However, at the current stage of re-
search character-based approaches require very
long training times and extensive optimization of
hyperparameters to make them work, and still
do not seem to be able to produce state-of-the-
art translation quality on a wide range of tasks.
More research is needed in making character-
based NMT robust and accessible to many re-
search groups.

5 Conclusion

Linguistically motivated target-side word segmen-
tation improves neural machine translation into an
inflected and compounding language. The sys-
tem can learn linguistic word formation processes
from the segmented data. For German, we have
shown that cascading of suffix splitting—or suf-
fix splitting and compound splitting—with BPE
yields the best results. In future work we will con-
sider alternative sources of linguistic knowledge
about morphological processes and also evaluate
high performance unsupervised segmentation.
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