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Abstract

Most state-of-the-art information extrac-
tion approaches rely on token-level labels
to find the areas of interest in text. Unfor-
tunately, these labels are time-consuming
and costly to create, and consequently, not
available for many real-life IE tasks. To
make matters worse, token-level labels are
usually not the desired output, but just an
intermediary step. End-to-end (E2E) mod-
els, which take raw text as input and pro-
duce the desired output directly, need not
depend on token-level labels. We propose
an E2E model based on pointer networks,
which can be trained directly on pairs of
raw input and output text. We evaluate our
model on the ATIS data set, MIT restau-
rant corpus and the MIT movie corpus and
compare to neural baselines that do use
token-level labels. We achieve competi-
tive results, within a few percentage points
of the baselines, showing the feasibility
of E2E information extraction without the
need for token-level labels. This opens up
new possibilities, as for many tasks cur-
rently addressed by human extractors, raw
input and output data are available, but not
token-level labels.

1 Introduction
Humans spend countless hours extracting struc-
tured machine readable information from unstruc-
tured information in a multitude of domains.
Promising to automate this, information extraction
(IE) is one of the most sought-after industrial ap-
plications of natural language processing. How-
ever, despite substantial research efforts, in prac-
tice, many applications still rely on manual effort
to extract the relevant information.

One of the main bottlenecks is a shortage of
the data required to train state-of-the-art IE mod-
els, which rely on sequence tagging (Finkel et al.,
2005; Zhai et al., 2017). Such models require suf-
ficient amounts of training data that is labeled at
the token-level, i.e., with one label for each word.

The reason token-level labels are in short supply
is that they are not the intended output of human
IE tasks. Creating token-level labels thus requires
an additional effort, essentially doubling the work
required to process each item. This additional ef-
fort is expensive and infeasible for many produc-
tion systems: estimates put the average cost for
a sentence at about 3 dollars, and about half an
hour annotator time (Alonso et al., 2016). Conse-
quently, state-of-the-art IE approaches, relying on
sequence taggers, cannot be applied to many real
life IE tasks.

What is readily available in abundance and at no
additional costs, is the raw, unstructured input and
machine-readable output to a human IE task. Con-
sider the transcription of receipts, checks, or busi-
ness documents, where the input is an unstructured
PDF and the output a row in a database (due date,
payable amount, etc). Another example is flight
bookings, where the input is a natural language
request from the user, and the output a HTTP re-
quest, sent to the airline booking API.

To better exploit such existing data sources,
we propose an end-to-end (E2E) model based on
pointer networks with attention, which can be
trained end-to-end on the input/output pairs of hu-
man IE tasks, without requiring token-level anno-
tations.

We evaluate our model on three traditional IE
data sets. Note that our model and the baselines
are competing in two dimensions. The first is cost
and applicability. The baselines require token-
level labels, which are expensive and unavailable
for many real life tasks. Our model does not re-
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Figure 1: Our model based on pointer networks. The solid red lines are the attention weights. For clarity
only two decoders are drawn and only the strongest attention weight for each output is drawn.

quire such token-level labels. Given the time and
money required for these annotations, our model
clearly improves over the baselines in this dimen-
sion. The second dimension is the accuracy of the
models. Here we show that our model is compet-
itive with the baseline models on two of the data
sets and only slightly worse on the last data set, all
despite fewer available annotations.

Contributions We present an E2E IE model
with attention that does not depend on costly
token-level labels, yet performs competitively
with neural baseline models that rely on token-
level labels. By saving both time and money at
comparable performance, our model presents a vi-
able alternative for many real-life IE needs. Code
is available at github.com/rasmusbergpalm/e2e-ie-
release

2 Model
Our proposed model is based on pointer net-
works (Vinyals et al., 2015). A pointer network
is a sequence-to-sequence model with attention
in which the output is a position in the input se-
quence. The input position is ”pointed to” us-
ing the attention mechanism. See figure 1 for an
overview. Our formulation of the pointer network
is slightly different from the original: Our output
is some content from the input rather than a posi-
tion in the input.

An input sequence of N words x = x1, ..., xN

is encoded into another sequence of length N us-
ing an Encoder.

ei = Encoder(xi, ei−1) (1)

We use a single shared encoder, and k = 1..K de-
coders, one for each piece of information we wish

to extract. At each step j each decoder calculate an
unnormalized scalar attention score akji over each
input position i. The k’th decoder output at step j,
okj , is then the weighted sum of inputs, weighted
with the normalized attention scores attkji.

dkj = Decoderk(ok,j−1, dk,j−1) (2)

akji = Attentionk(dkj , ei) for i = 1..N (3)

attkji = softmax(akji) for i = 1..N (4)

okj =
N∑

i=1

attkji xi . (5)

Since each xi is a one-hot encoded word, and the
attkji sum to one over i, okj is a probability dis-
tribution over words.

The loss function is the sum of the negative
cross entropy for each of the expected outputs ykj

and decoder outputs okj .

L(x,y) = −
K∑

k=1

1
Mk

Mk∑
j=1

ykj log (okj) , (6)

where Mk is the sequence length of expected out-
put yk.

The specific architecture depends on the choice
of Encoder, Decoder and Attention. For the en-
coder, we use a Bi-LSTM with 128 hidden units
and a word embedding of 96 dimensions. We use
a separate decoder for each of the fields. Each de-
coder has a word embedding of 96 dimensions, a
LSTM with 128 units, with a learned first hidden
state and its own attention mechanism. Our atten-
tion mechanism follows Bahdanau et al. (2014)

aji = vT tanh(We enci + Wd decj) . (7)
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The attention parameters We, Wd and v for each
attention mechanism are all 128-dimensional.

During training we use teacher forcing for the
decoders (Williams and Zipser, 1989), such that
ok,j−1 = yk,j−1. During testing we use argmax
to select the most probable output for each step j
and run each decoder until the first end of sentence
(EOS) symbol.

3 Experiments

3.1 Data sets

To compare our model to baselines relying on
token-level labels we use existing data sets for
which token level-labels are available. We mea-
sure our performance on the ATIS data set (Price,
1990) (4978 training samples, 893 testing sam-
ples) and the MIT restaurant (7660 train, 1521
test) and movie corpus (9775 train, 2443 test) (Liu
et al., 2013). These data sets contains token-level
labels in the Beginning-Inside-Out format (BIO).

The ATIS data set consists of natural language
requests to a simulated airline booking system.
Each word is labeled with one of several classes,
e.g. departure city, arrival city, cost, etc. The MIT
restaurant and movie corpus are similar, except for
a restaurant and movie domain respectively. See
table 1 for samples.

MIT Restaurant MIT Movie
2 B-Rating show O
start I-Rating me O
restaurants O films O
with O elvis B-ACTOR
inside B-Amenity films O
dining I-Amenity set B-PLOT

in I-PLOT
hawaii I-PLOT

Table 1: Samples from the MIT restaurant and
movie corpus. The transcription errors are part of
the data.

Since our model does not need token-level la-
bels, we create an E2E version of each data set
without token-level labels by chunking the BIO-
labeled words and using the labels as fields to ex-
tract. If there are multiple outputs for a single
field, e.g. multiple destination cities, we join them
with a comma. For the ATIS data set, we choose
the 10 most common labels, and we use all the
labels for the movie and restaurant corpus. The
movie data set has 12 fields and the restaurant has

8. See Table 2 for an example of the E2E ATIS
data set.

Input
cheapest airfare from tacoma to st. louis and detroit

Output
fromloc tacoma
toloc st. louis , detroit
airline name -
cost relative cheapest
period of day -
time -
time relative -
day name -
day number -
month name -

Table 2: Sample from the E2E ATIS data set.

3.2 Baselines

For the baselines, we use a two layer neural net-
work model. The first layer is a Bi-directional
Long Short Term Memory network (Hochreiter
and Schmidhuber, 1997) (Bi-LSTM) and the sec-
ond layer is a forward-only LSTM. Both layers
have 128 hidden units. We use a trained word em-
bedding of size 128. The baseline is trained with
Adam (Kingma and Ba, 2014) on the BIO labels
and uses early stopping on a held out validation
set.

This baseline architecture achieves a fairly
strong F1 score of 0.9456 on the ATIS data set.
For comparison, the published state-of-the-art is
at 0.9586 (Zhai et al., 2017). These numbers are
for the traditional BIO token level measure of per-
formance using the publicly available conlleval
script. They should not be confused with the E2E
performance reported later. We present them here
so that readers familiar with the ATIS data set can
evaluate the strength of our baselines using a well-
known measure.

For the E2E performance measure we train the
baseline models using token-level BIO labels and
predict BIO labels on the test set. Given the pre-
dicted BIO labels, we create the E2E output for the
baseline models in the same way we created the
E2E data sets, i.e. by chunking and extracting la-
bels as fields. We evaluate our model and the base-
lines using the MUC-5 definitions of precision, re-
call and F1, without partial matches (Chinchor and
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Sundheim, 1993). We use bootstrap sampling to
estimate the probability that the model with the
best micro average F1 score on the entire test set
is worse for a randomly sampled subset of the test
data.

3.3 Our model

Since our decoders can only output values that are
present in the input, we prepend a single comma
to every input sequence. We optimize our model
using Adam and use early stopping on a held-out
validation set. The model quickly converges to op-
timal performance, usually after around 5000 up-
dates after which it starts overfitting.

For the restaurant data set, to increase perfor-
mance, we double the sizes of all the parameters
and use embedding and recurrent dropout follow-
ing (Gal, 2015). Further, we add a summarizer
LSTM to each decoder. The summarizer LSTM
reads the entire encoded input. The last hidden
state of the summarizer LSTM is then concate-
nated to each input to the decoder.

3.4 Results

Data set Baseline Ours p

ATIS 0.977 0.974 0.1755

Movie 0.816 0.817 0.3792

Restaurant 0.724 0.694 0.0001

Table 3: Micro average F1 scores on the E2E data
sets. Results that are significantly better (p <
0.05) are highlighted in bold.

We see in Table 3 that our model is competi-
tive with the baseline models in terms of micro-
averaged F1 for two of the three data sets. This
is a remarkable result given that the baselines are
trained on token-level labels, whereas our model
is trained end-to-end. For the restaurant data set,
our model is slightly worse than the baseline.

4 Related work
Event extraction (EE) is similar to the E2E IE task
we propose, except that it can have several event
types and multiple events per input. In our E2E IE
task, we only have a single event type and assume
there is zero or one event mentioned in the input,
which is an easier task. Recently, Nguyen et al.
(2016) achieved state of the art results on the ACE
2005 EE data set using a recurrent neural network
to jointly model event triggers and argument roles.

Other approaches have addressed the need for
token-level labels when only raw output values
are available. Mintz et al. (2009) introduced dis-
tant supervision, which heuristically generates the
token-level labels from the output values. You do
this by searching for input tokens that matches out-
put values. The matching tokens are then assigned
the labels for the matching outputs. One drawback
is that the quality of the labels crucially depend on
the search algorithm and how closely the tokens
match the output values, which makes it brittle.
Our method is trained end-to-end, thus not relying
on brittle heuristics.

Sutskever et al. (2014) opened up the sequence-
to-sequence paradigm. With the addition of at-
tention (Bahdanau et al., 2014), these models
achieved state-of-the-art results in machine trans-
lation (Wu et al., 2016). We are broadly inspired
by these results to investigate E2E models for IE.

The idea of copying words from the input to the
output have been used in machine translation to
overcome problems with out-of-vocabulary words
(Gulcehre et al., 2016; Gu et al., 2016).

5 Discussion
We present an end-to-end IE model that does not
require detailed token-level labels. Despite being
trained end-to-end, it is competitive with baseline
models relying on token-level labels. In contrast
to them, our model can be used on many real life
IE tasks where intermediate token-level labels are
not available and creating them is not feasible.

In our experiments our model and the baselines
had access to the same amount of training sam-
ples. In a real life scenario it is likely that token-
level labels only exist for a subset of all the data.
It would be interesting to investigate the quanti-
ty/quality trade-of of the labels, and a multi task
extension to the model, which could make use of
available token-level labels.

Our model is remarkably stable to hyper param-
eter changes. On the restaurant dataset we tried
several different architectures and hyper parame-
ters before settling on the reported one. The differ-
ence between the worst and the best was approxi-
mately 2 percentage points.

A major limitation of the proposed model is that
it can only output values that are present in the in-
put. This is a problem for outputs that are nor-
malized before being submitted as machine read-
able data, which is a common occurrence. For in-
stance, dates might appear as ’Jan 17 2012’ in
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the input and as ’17-01-2012’ in the machine
readable output.

While it is clear that this model does not solve
all the problems present in real-life IE tasks, we
believe it is an important step towards applicable
E2E IE systems.

In the future, we will experiment with adding
character level models on top of the pointer net-
work outputs so the model can focus on an input,
and then normalize it to fit the normalized outputs.
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