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Abstract

Parsing speech requires a richer represen-
tation than 1-best or n-best hypotheses,
e.g. lattices. Moreover, previous work
shows that part-of-speech (POS) tags are a
valuable resource for parsing. In this pa-
per, we therefore explore a joint model-
ing approach of automatic speech recog-
nition (ASR) and POS tagging to enrich
ASR word lattices. To that end, we manip-
ulate the ASR process from the pronounc-
ing dictionary onward to use word-POS
pairs instead of words. We evaluate ASR,
POS tagging and dependency parsing (DP)
performance demonstrating a successful
lattice-based integration of ASR and POS

tagging.
1 Introduction

Parsing speech is an essential part (Chow and
Roukos, 1989; Moore et al., 1989; Su et al., 1992;
Chappelier et al., 1999; Collins et al., 2004) of
spoken language understanding (SLU) and diffi-
cult because spontaneous speech and syntax clash
(Ehrlich and Hanrieder, 1996; Charniak and John-
son, 2001; Béchet et al., 2014). Pipeline ap-
proaches concatenating a speech recognizer, a
POS tagger and a parser often rely on n-best hy-
potheses decoded from lattices. While n-best hy-
potheses cover more of the hypothesis space than
the 1-best hypothesis, they are redundant and in-
complete. Lattices on the other hand are effi-
ciently representing all hypotheses under consid-
eration and therefore allow recovery from more
ASR errors. Recent work on recurrent neural net-
work architectures with lattices as input (Ladhak
et al., 2016; Su et al., 2017) promises the use of
enriched lattices in SLU.
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The main contribution of this work is estab-
lishing a joint ASR and POS tagging approach
using the Kaldi (Povey et al., 2011) toolkit. To
that end, we enrich the ASR word lattices with
POS labels for all possible hypotheses on the word
level. This enables subsequent natural language
processing (NLP) machinery to use these syntac-
tically richer lattices. We present our proposed
method in detail including Kaldi specifics and ad-
dress problems that occur when data that requires
both speech and text information is used. Our re-
sults show a slight but consistent improvement of
the joint model throughout the evaluations in ASR,
POS tagging and DP performance.

2 Resources

We need a data resource with rich annotations for
training our integrated model. Since the train-
ing process requires audio transcriptions, POS la-
bels and gold-standard syntax annotations, all of
these need to be available. Considering the gen-
eral premise in data-driven methods that more data
is better data, we choose the Switchboard-1 Re-
lease 2! (Godfrey et al., 1992) corpus with about
2400 dialogs. The Switchboard (SWBD) corpus
has more recently been furnished with the NXT
Switchboard annotations® (Calhoun et al., 2010).
NXT provides a plethora of annotations and
most importantly for our work, an alignment of
Treebank-33 (Marcus et al., 1999) text and SWBD
transcriptions*. While the Treebank-3 corpus pro-

'LDC: https://catalog.ldc.upenn.edu/LDC97562
(Godfrey and Holliman, 1993)

2L.DC (under CC):
https://catalog.ldc.upenn.edu/LDC2009T26
(Calhoun et al., 2009)

3TYeebank—3 at the LDC: nttps://catalog.ldc.upenn.
edu/LDC99T42

*We used the corrected Mississippi State (MS-State)
transcriptions:
projects/switchboard/

https://www.isip.piconepress.com/
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vides syntax and POS tags, the transcriptions are
timestamped. The alignment of these two re-
sources offered by the NXT corpus contains all
necessary annotations.

2.1 Audio

Kaldi’s SWBD s5¢ recipe subsets the SWBD
(LDC97S62) corpus into various training and de-
velopment sets for acoustic model (AM) and lan-
guage model (LM) training. For ASR eval-
uation, the s5c recipe uses a separate evalu-
ation corpus LDC2002S09° of previously un-
released SWBD conversations (Linguistic Data
Consortium, 2002), which was not available to
us. Likewise unavailable were the Fisher cor-
pora LDC2004T19° (Cieri et al., 2004) and
LDC2005T19’ (Cieri et al., 2005), which con-
tain transcripts of conversational telephone speech
for language modeling. We utilize the available
SWBD data (the training set in the s5c¢ recipe)
and split it into training, development and eval-
uation set. Our results are therefore not directly
comparable to other results generated from the
Kaldi s5c recipe. We instead split our sets af-
ter the Treebank-3 splits as proposed by Charniak
and Johnson (2001). This leads to less training
data compared to the standard s5c¢ recipe, but also
yields splits common in parsing. A data summary
of our SWBD splits is given in Table 1. The Imdev
section of the SWBD corpus serves as the LM’s
development set and was “reserved for future use”
(Charniak and Johnson, 2001, p. 121).

Set Conv. IDs  # utt. # tok.
train 2xxx-3xxx 90823 677160
dev 4519-4936 5697 50148
eval 4004-4153 5822 48320
Imdev 4154-4483 5949 50017

Table 1: Summary of SWBD data splits. The columns for
utterances, tokens, average tokens per utterance and vocabu-
lary depend on the choice of the transcription. These are the
counts for our Treebank-3 transcription.

2.2 Transcription

While the NXT annotations provide a link be-
tween MS-State transcriptions and Treebank-3
text, we exploit this link only for the MS-State

5https ://catalog.ldc.upenn.edu/LDC2002S09
6https ://catalog.ldc.upenn.edu/LDC2004T19
7https ://catalog.ldc.upenn.edu/LDC2005T19
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transcription’s timestamps and base our lexicon
and LMs on the Treebank-3 text, rather than the
MS-State transcriptions. This introduces a number
of text-audio mismatches, or in other words, what
is said is not what is in the annotated text. Fig-
ure 1 illustrates contractions as one characteristic
difference in the tokenization of the two transcrip-
tions: “doesn’t” is represented as two tokens in the
Treebank-3 data, while it is expressed as one token
in the MS-State version. The second important as-
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*
* VBZ phonword
- doesn't
[ word ) 47.96-48.18
@
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phonword

the
47.48-47.61
E" ,

Figure 1: MS-State vs Treebank-3 transcription, from Cal-
houn et al. (2010, p. 392). Treebank-3 transcriptions (word, in
light gray) are mapped to the MS-State transcriptions (phon-
word in blue) through 1-to-n relations, where multiple words
in one transcription can be linked to one in the other. The box
colored in black with syl/n in it depicts a unstressed syllable
of a different annotation layer we do not consider here.

pect of choosing the Treebank-3 over the MS-State
transcription, is the incongruity of utterances (cf.
Calhoun et al., 2010, ch. 3.3, p. 393ff). Training
and evaluation become easier if the utterances are
congruent in the transcription and the Treebank-3
data with the syntactical parses. We decided to di-
rectly base the transcriptions on these annotations.

2.3 Syntax annotation

The linguistic structure annotated in the SWBD
Treebank-3 section is available through the NXT
Switchboard annotations and is based on the
Treebank-3 text. Choosing the Treebank-3 tran-
scription as the gold standard for the ASR system
directly yields Treebank-style tokens in the rec-
ognized speech. The POS tagset (Calhoun et al.,
2010, p. 394) consists of the 35 POS tags® in the
Treebank-3 tagset. Disfluencies in the SWBD cor-
pus are annotated following Shriberg (1994) and
they are present in the Treebank-3 annotations.

3 Proposed method

First, we describe the ASR component based on
the default Kaldi s5c recipe that generates POS-
enriched word lattices in detail. Second, we intro-
duce the POS taggers considered for the pipeline
system. Third, we briefly characterize the depen-
dency parser in our experiments.

81t is the PTB tagset without punctuation (which is covered
by SYM and the remaining nine punctuation tags).



3.1 ASR with POS tagging

Starting from the s5c recipe, all but the acoustic
modeling part underwent significant changes. The
pronouncing dictionary (or lexicon), LM and re-
sulting decoding graph now all contain word-POS
pairs rather than words. We are going to outline
this process step by step.

Corpus setup: Our model does not access re-
sources other than the Switchboard-1 Release 2
(LDC97S562, with updates and corrected speaker
information) data, the MS-State transcription and
the Switchboard NXT corpus as described in Sec-
tion 2. All transcription-based resources are being
lowercased as they are in the s5c recipe scripts.

Transcription generation: To get a Treebank-
style transcription, we query the NXT annota-
tion corpus for pointers from MS-State tokens
to Treebank-3 tokens. With this mapping, we
pick the POS tags for the Treebank-3 orthography
and the timestamps for the MS-State words. An
example for the POS-tagged gold standard tran-
scription is: “are |VBP you|PRP ready|JJ
now | RB”.

POS-enriched lexicon: We first append the
lexicon with some handcrafted lexical additions
for contractions of auxiliaries and adjust for tok-
enization differences between the source MS-State
format and the target Treebank-3 format. The pro-
nunciation of the resulting partial words is taken
from the respective full entries in the dictionary
supplied with the MS-State transcriptions. The
lexical unit “won’t”, for example, is mapped to the
pronunciation “w ow n t” in the MS-State version,
but is not readily merged from the existing partial
words (“wo” and “n’t”) in the MS-State lexicon
and therefore is a lexical addition. Other auxil-
iaries, like “can’t” that needs to be split as “can’t”
to conform with the Treebank-3 tokenization, and
partial words in general, are added in the lexicon
conversion via automated handling where all par-
tials exist.

For all gold standard occurrences of word-POS
combinations, we copy the words’ pronunciations
for all of the POS tags they occur with. Partial
words starting with a hyphen are automatically
added to the lexicon without the hyphen to account
for tokenization differences. Duplicate word-POS
pairs are excluded. Figure 2 shows part of the re-
sulting POS-enriched lexicon, where “read” oc-
curs with four different POS tags and two dis-
tinct pronunciations. We use “<unk>|XX” for
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unknown tokens. Note that our scheme can over-
generate word-POS combinations, as it does not
check whether the pronunciation variation occurs
with all POS tags of a word (compare left and right
parts of Figure 2).

read|VB r eh d
read|VB r iy d
read|VBD r eh d
read|VBD r iy d
read|VBN r eh d
read|VBN r iy d
read|VBP r eh d
read|VBP r iy d

read r eh d
read r iy d

Figure 2: Pronunciation entries for “read” in the lexicon,
with (left) and without (right) POS tags.

Language modeling: LM training is performed
on the frain set with the Imdev set as heldout data.
We train the LM on the POS-enriched transcrip-
tion directly. See Figure 3 for example trigrams.

.000432954

.0004147099
.0003858729
.0002859116
.0001056216

we|PRP ca|MD n’t|RB

’s|BES kind|RB of |RB
they|PRP ca|MD n’t|RB
just |RB kind|RB of |RB
you|PRP ca|MD n’t|RB

-0
-0
-0
-0

Figure 3: Top 5 trigrams in the Joint-LM, based on the con-
ditional log probabilities in the first column.

Different from the s5c recipe, we compute tri-
gram and bigram LMs with SRILM® (Stolcke,
2002) and “<unk> | XX” as unknown token. As
discussed in Section 2, we did not use SWBD-
external resources for mixing and interpolating
our LMs. We use SRILM with modified Kneser-
Ney smoothing (Chen and Goodman, 1999) with
interpolated estimates, and use only words occur-
ring in the specified vocabulary and not in the
count files. We report LM perplexity (PPL) on the
Imdev held-out data in Table 2. Note that the joint
model LM in Table 2 encounters 150 OOV tokens
(e.g. hyphenated numerals like “thirty-seven”).
The PPLs increase slightly for the joint model be-
cause the vocabulary has n entries for each word,
where n is the number of POS tags the word oc-
curs with.

Acoustic modeling: We use the original s5¢
recipe and only adjust the training, development
and evaluation splits after Charniak and Johnson
(2001) (cf. Table 1). None of the other afore-
mentioned adaptations are applied and the manu-
ally corrected MS-State transcriptions are in use.
The tri4 model in the s5c¢ recipe is a triphone

ghttp://www.speech.sri.com/projects/srilm/



LM PPL

Baseline 2-gram  89.4
Baseline 3-gram  76.3
Joint 2-gram 96.4
Joint 3-gram 84.2

Table 2: PPL and OOVs on Imdev.

(with one context phone to the left and right)
model which was trained with speaker-adaptive
training (SAT, Anastasakos et al.,, 1996; Povey
et al., 2008) technique using feature-space maxi-
mum likelihood linear regression (fMLLR, Gales,
1998). We train this tri4 AM on the training split
in Table 1 with duplicate utterances removed.

3.2 Baseline POS tagging

We perform POS tagging with three out-of-the-
box taggers, two of them with pretrained models,
and choose the best one for our baseline pipeline
model.

NLTK’s (Bird et al., 2009) former default max-
imum entropy-based (ME) POS tagger with the
pretrained model trained on WSJ data from the
PTB (for an overview, see Taylor et al., 2003) is
the first tagger and we term it ME.pre. We also
train a ME POS tagger'? that is implemented af-
ter Ratnaparkhi (1996) on the first 70,000 sen-
tences'! of our SWBD training split, described in
Section 2, and denote our self-trained model by
ME.70k. We configure the ME classifier to use the
optimized version of MEGAM (Daumé 111, 2004)
for speed.

The second tagger is NLTK’s current default
tagger, based on a greedy averaged perceptron
(AP) tagger developed by Matthew Honnibal'?.
We name the AP tagger with the pretrained NLTK
model AP.pre, and the same tagger trained on the
full training split AP.

To have an NLTK-external industry-standard
POS tagger in our comparison, we also run
spaCy’s POS tagger (see https://spacy.io/, we
used spaCy in version 1.0.3) with its pretrained
English model (also trained with AP learning).

Available in NLTK and at: https://github.com/
arne-cl/nltk-maxent-pos-tagger

"'The sentences are sorted by their utterance id. The full
training set was not computationally feasible: MEGAM
threw an “out of memory” error.

12https://exp].osj.orl.ai/blog/
part-of-speech-pos-tagger-in-python
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3.3 Dependency parsing

In this work, we compare dependency parsing re-
sults of (a) the 1-best hypothesis of the baseline
tri4 ASR system with the self-trained AP POS
tagger and (b) the 1-best hypotheses of our joint
model. We use a greedy neural-based dependency
parser reimplemented after the greedy baseline in
Weiss et al. (2015).

The parser’s training set is the gold standard
data of the training split and identical for the #ri4
and the Joint-POS model with 62728 trainable
sentences out of 63304 (= 99.09%). In this eval-
uation, we tune the parser based on development
data and use word- and POS-based features. The
parser implementation uses averaged stochastic
gradient descent proposed independently by Rup-
pert (1988) and Polyak and Juditsky (1992) with
momentum (Rumelhart et al., 1986). We do not
embed any external information.

4 Results

Our evaluation includes intermediate ASR and
POS tagging results and a DP-based evaluation.
We evaluate partially correct ASR hypotheses with
a simplistic scoring method that allows imprecise
scoring when the recognized sequence of tokens
does not match the gold standard.

4.1 ASR

We test our joint ASR and POS model against the
default tri4 model in a ASR-only evaluation of the
1-best hypotheses. As we generate the word-POS
pairs jointly and they are part of the ASR hypothe-
ses, we strip the POS tags for the word-only eval-
uation in Table 3. We evaluate the ASR step based
on word error rate (WER) and sentence error rate
(SER).

Set Default tri4 Joint-POS
dev 28.75(65.83) 28.93 (65.28)
eval 29.41 (64.41) 29.26 (64.15)

Table 3: ASR results: numbers are WER (SER) as percent-
ages. POS tags stripped when evaluating joint model.

Recall that these results are not directly com-
parable to other ASR results on the SWBD cor-
pus, because of our data splits with less train-
ing data and use of the Treebank-3 transcription.
In the unaltered (apart from the splits, see Sec-
tion 2.1), original s5c recipe, the WER on the



eval set with the original MS-State transcriptions
(48926 tokens, 4331 utterances) is 26.51% with a
SER of 67.91%. Compared to the baseline, the re-
sults of our Joint-POS model are slightly better for
the dev set and eval set in SER, and for the eval set
also in WER.

4.2 POS tagging

We present an evaluation of our joint model’s per-
formance up to the baseline model’s POS tagging
step. We compare against the POS tagger per-
formance on the 1-best ASR hypotheses in the
pipeline approach. As the 1-best hypotheses of
joint and pipeline model can differ, we evaluate the
POS tagging step on ASR output against the word-
POS pair Treebank-3 gold standard by means of
WER.

Tagger dev eval

ME.pre 43.29 (94.23) 44.49 (94.19)
AP.pre 45.46 (95.84) 46.18 (95.74)
spaCy.pre  39.17 (82.83) 40.42 (81.86)
ME.70k 33.24 (68.18) 36.35 (54.98)
AP 32.30 (67.67) 33.10 (66.85)
Joint-POS  32.05 (67.32) 32.52 (66.52)

Table 4: POS tagging results: numbers are WER (SER) on
the 1-best hypotheses. ME.70k is trained on the first 70,000
training set sentences. A model name ending in .pre indicates
the use of a pretrained model. Model names without dot-
ted endings are trained on the full SWBD training set. Best
scores per set are in boldface.

Table 4 shows that the Joint-POS model con-
sistently outperforms the baseline POS taggers on
both sets. The pretrained models clearly have not
been trained on speech data and unsurprisingly
perform poorly. Our self-trained ME and AP mod-
els improve at least 6% in WER and 15% in SER
over the pretrained models. The margin by which
our joint model surpasses the self-trained AP tag-
ger is small with an improvement of 0.25% WER
on the dev and 0.58% WER on the eval set. The
self-trained AP tagger performed best of the base-
line taggers and we therefore use it in for the DP-
based evaluation in the next section.

43 DP

We evaluate our joint ASR-POS model on the
target task by running a dependency parser on
POS-tagged 1-best hypotheses. In the competing
pipeline model, we score the output of the default
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tri4 ASR 1-best hypotheses tagged by the AP tag-
ger we trained ourselves. All results in Table 5 and
Table 6 show that our joint model does profit from
the joint ASR and POS modeling in our approach.

tri4 Joint-POS
Set #utts #tokens UAS LAS UAS LAS
dev 900 4881 9430 9271 9541 93.63
eval 882 4827 94.68 93.06 94.92 93.52
devp 942 5261 94.16 92.38 — —
evalp 921 5134  94.06 92.31 — —
devy; 932 5158 — — 94.65 92.88
eval; 921 5137 — — 94.61 92.93

Table 5: Parsing results for subsets of correct tokenizations.
Labeled attachment scores (LAS) and unlabeled attachment
scores (UAS) given as percentages. Best scores on the com-
mon sets in boldface.

Table 5 features evaluations of six different de-
velopment and evaluation sets. The sets named
dev and eval are the common subsets of token-
level correct hypotheses that the pipeline and joint
model share and therefore can be directly com-
pared on. The sets indexed with a P or J are the
token-level correct hypotheses for the pipeline and
joint model respectively. As the models are not
identical with respect to their 1-best hypotheses
that match the Treebank-3 data, we also present
the results using all available correctly tokenized
ASR hypotheses. Our Joint-POS model consis-
tently outperforms the pipeline tri4 approach be-
tween 1.11% (dev, UAS) and 0.24% (eval, UAS)
on the common subsets. The results are similar
for the non-matching subsets. Note, that the re-
sults in Table 5 are for the small subset of utter-
ances with a correct token sequence, i.e. where
the (converted and filtered) Treebank-3 sentence
tokens match the ASR hypothesis words exactly.
This restriction allows an evaluation with LAS and
UAS because the tokenization is identical and we
have gold data for this correct token sequence. To
(a) have a more extensive evaluation on all the ut-
terances we have hypotheses for'> and (b) be able
to compare the pipeline and joint approach on the
hypotheses coverage and close misses of the cor-
rect tokenization, too, we present Table 6.

We cannot use the standard parsing evaluation
measures that depend on a correct word sequence
to get scores on imperfectly recognized utterances.

BThere are a few empty utterances with negligible counts.



We address this problem with a simple but im-
precise solution: (1.) Parse the development and
evaluation set using the parser models previously
trained and tuned on the common sets (see Ta-
ble 5); (2.) Evaluate the parser predictions on
the ASR hypotheses against the gold Treebank-3
data with a imprecise scoring method that allows
for a mismatch of the gold and predicted token
sequence. We introduce two simple scores, un-
labeled score (US) and labeled score (LS), with
their names derived from UAS and LAS respec-
tively (see Table 6). Recall that UAS requires a
relation’s head and dependent to match including
their position and LAS requires a matching label
(or dependency type) on that relation in addition.
The imprecision in the US and LS scoring stems
from ignoring the positions of head and dependent
in the utterance completely. We iterate over the
utterances and for every token (or dependent) look
up its head (word) and count this relation as a US
match if the lookup is successful. When there is
a US match, we also check for a matching label
and count that as an LS match. The US and LS
counts are normalized by the number of tokens
in the Treebank-3 reference. The improvement
our Joint-POS model shows over the pipeline tri4
model is small for all scores, but consistent.

Model Set UAS LAS US LS
it dev 3220 3120 52.02 49.40
" eval 3121 3029 5072 4833
. dev 3241 3143 5221 49.71
Joint-POS 01 31.56 3073 5121 48.99

Table 6: Parsing results on full dev and eval sets. LAS, UAS,
LS and US are given as percentages. The dev set has 3994
utterances with 44760 tokens and the eval set has 3912 utter-
ances with 43277 tokens. Best scores per set in boldface.

5 DP-based analysis

We tentatively analyze in which cases the joint
model does better than the pipeline approach. We
first give absolute counts for how often this is the
case in Table 7. While the Joint-POS model re-
ceives higher counts for all scores, there are also
a considerable number of cases where the pipeline
model makes fewer mistakes. We pick all exam-
ples randomly from the instances counted in the
All column of Table 7 and focus on short sentences
for presentability.
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Model UAS LAS US LS Al
tri4 320 330 483 496 233
Joint-POS 332 363 540 596 267

Table 7: Utterance-based parsing evaluation. The numbers
are counts of utterances where the model in the first column
is better than the other. Column A/l gives the counts for when
it is better on all four measures.

In the following examples, we highlight the im-
portant differences in boldface. In Figure 4, we
see a fully correct Joint-POS model. While the
pipeline approach does also recognize the correct
word sequence, a POS tagging error causes the
parsing to be erroneous on two arcs. This error
affects all four scores (UAS, LAS, US and LS), as
the parsing model not only misclassifies the label,
but also attaches the head of “there” incorrectly.
We visualize the error’s effect in a correct vs in-
correct tree comparison.

root root

nsubj advmod nsubj

aux prt aux || prep  pcomp

off
RP

off
IN

there
RB

start
VB

there
RB

start
VB

we
PRP MD

can we

PRP MD

can

Figure 4: Dependency graph comparison #1. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

We observe a recognition error in the pipeline
tri4 model that causes a different reading and syn-
tactical structure in Figure 5. While it is accept-
able spontaneous speech (e.g. “I like rock.. and
like some country music.”), “and” would not be
the subject of the sentence.

dobj

i like
PRP  VBP

like
UH

music

NN

music

NN

some

DT

some

DT

and
CcC

country
NN

country
NN

Figure 5: Dependency graph comparison #2. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

The third graph visualization in Figure 6 illus-
trates an ASR deletion error on the first word. The
pipeline #ri4 model handles the error gracefully,
but receives lower US and LS scores because of
the token mismatch nonetheless. If we had not
allowed the imprecise evaluation, we would not
have observed this kind of error.

The example in Figure 7 also has an ASR error
in the pipeline approach at its core. In this case,



root root

aux dobj

nn

rap  music
NN NN

nsubj nsubj

do
VBP

like
VB

like
VB

music
NN

you
PRP

rap
NN

you
PRP

Figure 6: Dependency graph comparison #3. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

while the joint model is entirely correct, the recog-
nition error in the pipeline causes two POS tagging
errors resulting in an incorrect parse.

root

nsubjpass

advmod

auxpass

started
VBN

it ’s
PRP BES

started
VBN

let ’s
VB PRP

just
RB

get
VB

just
RB

get
VB

Figure 7: Dependency graph comparison #4. Correct Joint-
POS tree on the left, incorrect tri4 tree on the right.

The example utterance in Table 8 contains ASR
errors in the both models’ hypotheses with sub-
sequent errors in POS tagging and parsing. We
can glean that discourse interjections like ‘“uh..
uh..” can be misrecognized as regular words, an
error characteristic of spontaneous speech. Note,
that the joint model gets the word “families” right,
but as an object instead the subject. The pipeline
model produces four word errors in sequence and
“families” does not appear in its hypothesis.

6 Related work

Spoken language poses a variety of problems for
NLP. The recognition of spoken language can
suffer from poor recording equipment, noisy en-
vironments, unclear speech or speech patholo-
gies. It also exhibits spontaneity, ungrammati-
cality and disfluencies, e.g. repairs and restarts
(cf.  Shriberg (1994)). Hence, in addition to
ASR errors, downstream tasks such as parsing
have to deal with these difficulties of conversa-
tional speech, whether the ASR output is in the
form of n-best sequences or lattices. Jgrgensen
(2007) remove disfluencies prior to parsing and
find their removal improves the performance of
both a dependency and a head-driven lexicalized
statistical parser on SWBD. In a more general joint
approach of disfluency detection and DP, Honni-
bal and Johnson (2014) in contrast to Jgrgensen
(2007) make use of the disfluency annotations and
report strong results for both, disfluency annota-
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tion and DP. Rasooli and Tetreault (2013) extend
the arc-eager transition system (Nivre, 2008) with
actions that handle reparanda, discourse mark-
ers and interjections, thereby also explicitly using
marked disfluencies on SWBD for joint DP and
disfluency detection. Where Rasooli and Tetreault
(2013) and Honnibal and Johnson (2014) work
with SWBD text data, Yoshikawa et al. (2016) are
close to our setting and assume ASR output text
as parser input. Yoshikawa et al. (2016) create an
alignment that enables the transfer of gold tree-
bank data to ASR output texts and add three ac-
tions to manage disfluencies and ASR errors to the
arc-eager shift-reduce transition system of Zhang
and Nivre (2011). While they do not parse lat-
tices or confusion networks (lattices can be con-
verted to confusion networks, see Mangu et al.
(2000)) directly, Yoshikawa et al. (2016) use infor-
mation from word confusion networks to discover
erroneous regions in the ASR output. Charniak
and Johnson (2001) parse SWBD after removing
edited speech that they identify with a linear clas-
sifier. Additionally, Charniak and Johnson (2001)
introduce a relaxed edited parsing metric that con-
siders a simplified gold standard constituent parse
(removed edited words are added back into the
constituent parse for evaluation). Johnson and
Charniak (2004) model speech repairs in a noisy
channel model utilizing tree adjoining grammars
(TAGs). Source sentence probabilities in the noisy
channel are computed with a bigram LM and
rescored with a syntactic parser for a more global
view on the source sentence. The noisy chan-
nel is then formalized as TAG that maps source
sentences to target sentences, where repairs are
treated as the cleaned target side of the reparanda
on the source side. Besides the words themselves,
Johnson and Charniak (2004) use POS tags for
the alignment of reparandum and repair, which in-
dicates their usefulness in detecting disfluencies.
Approaching spontaneous speech issues from an-
other angle, Béchet et al. (2014) adapt a parser
trained on written text by means of an interactive
web interface (Bazillon et al., 2012) in which users
can modify POS and dependency tags writing reg-
ular expressions.

Natural speech poses specific problems, but also
comes with acoustic information that can improve
parsing speech through its incorporation (Tran
etal., 2017) or reranking (Kahn et al., 2005). Han-
dling disfluencies following Charniak and Johnson



Treebank-3 Joint-POS tri4
ID  Word POS Head Dep. Word POS Head Dep. Word POS Head Dep.
1 well UH 7 discourse  well UH 7 discourse  well UH 0 root
2 how WRB 3 advmod  how WRB 3 advmod  how WRB 3 advmod
3 many 1 6 amod many 1) 7 nsubj many 1 1 dep
4 uh UH 6 discourse  of IN 3 dep of IN 3 dep
5 uh UH 6 discourse  of IN 3 prep of IN 3 prep
6  families NNS 7 nsubj families NNS 5 pobj own NNS 5 pobj
7  own VBP 0 root own VB 0 root on IN 3 prep
8§ a DT 9 det a DT 9 det a DT 9 det
9  refrigerator NN 7 dobj refrigerator NN 7 dobj refrigerator NN 7 pobj

Table 8: Example utterance. Errors in both models in boldface.

(2001), Kahn et al. (2005) rerank the n-best parses
using a set of prosodic features in the rerank-
ing framework of Collins (2000). Kahn et al.
(2005) find that combining prosodic features with
non-local syntactic features increase F'-scores in
the relaxed edited metric of Charniak and John-
son (2001). Kahn and Ostendorf (2012) present
an approach that automatically recognizes speech,
segments a stream of words (e.g. a conversa-
tion side/speaker turn) into sentences and parses
these. A reranker that can take into account ASR
posteriors for n-best ASR hypotheses as well as
parse-specific features for m-best parses can then
jointly optimize towards WER (n hypotheses) or
SParseval (Roark et al., 2006) (n x m hypotheses)
metrics (Kahn and Ostendorf, 2012). Ehrlich and
Hanrieder (1996) describe an agenda-driven chart
parser that considers an acoustic word-level score
from a word lattice and can combine a sentence-
spanning analysis from partial hypotheses if a
full parse is unobtainable. Tran et al. (2017)
use speech and text domain cues for constituent
parsing in an attention-based encoder-decoder ap-
proach based on Vinyals et al. (2015). They show
that word-level acoustic-prosodic features learned
with convolutional neural networks improve per-
formance.

7 Discussion

Replacing words with word-POS pairs through-
out the ASR process, as described in Section 3.1,
increases the search space considerably. We fo-
cus on establishing the feasibility of this approach
here and do not detail techniques to address this
complexity issue. Including prior distributions
of word-POS pair occurrences could help disam-
biguation early on in lattice creation. The LM in
the joint model relies on word-POS pairs as well,
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and a smoothing approach that backs off to n-
grams of words instead of n-grams of word-POS
pairs would counter the increased sparsity due to
the combination of words and their POS tags in
the LM part. We only explore instances of errors
the joint and pipeline models make in our analy-
sis. A systematic error analysis identifying advan-
tages and disadvantages of the joint model would
be interesting, especially with the errors involving
contractions and disfluencies. As a negative exam-
ple for our joint model, we observed the separation
of “didn’t” as “did” plus “n’t” as an ASR error for
“did it”. A qualitative analysis of error types could
indicate whether this a random or systematic er-
ror, and the same is true of the positive examples
in Section 5.

8 Conclusion

We have demonstrated a method to jointly perform
POS tagging and ASR on speech. The tagging and
parsing evaluations of the pipeline model vs our
joint model confirm the successful integration of
POS tags into speech lattices. While the improve-
ments over the pipeline approach are small, we en-
rich lattices with POS tags that allow for latticed-
based NLP in future work.
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