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Abstract

We envisioned responsive generic hierar-
chical text summarization with summaries
organized by topic and paragraph based on
hierarchical structure topic models. But
we had to be sure that topic models were
stable for the sampled corpora. To that end
we developed a methodology for aligning
multiple hierarchical structure topic mod-
els run over the same corpus under simi-
lar conditions, calculating a representative
centroid model, and reporting stability of
the centroid model. We ran stability exper-
iments for standard corpora and a develop-
ment corpus of Global Warming articles.
We found flat and hierarchical structures
of two levels plus the root offer stable cen-
troid models, but hierarchical structures of
three levels plus the root didn’t seem stable
enough for use in hierarchical summariza-
tion.

1 Introduction

We envisioned a responsive generic hierarchical
text summarization process for complex subjects
and multiple page documents with resulting text
summaries organized by topic and paragraph. In-
formation extraction and summary construction
would be based on hierarchical structure topic
models learned in the analysis phase.! The hierar-
chical topic structure would provide the organiza-
tion as well as the information quantity budget and
extraction criteria for sections and paragraphs in
hierarchical summarization. Initial attempts along
this path offered promise for a more coherent and
organized summary for a small corpus of Global

"Phases are the somewhat standard: corpus preparation,
analysis, information extraction, summary construction.
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Warming articles from (Live Science, 2015) ver-
sus that obtained by flat topic structures.

However, multiple analyses of the same Global
Warming corpus and various standard corpora un-
der similar conditions rendered seemingly differ-
ent hierarchical topic models. Model differences
remained even after transforming and reducing
models based on required summary size and other
extrinsic summary requirements. So we decided
to examine topic model stability with the goal of
assuring that stable, representative, and credible
topic models would be produced in our analysis
phase. This paper documents our effort at assuring
hierarchical topic model stability for hierarchical
summarization.

It is inherent in Bayesian probabilistic topic
modeling and similar methods that repeat analyses
of the same corpus under the same conditions give
different results. But we must have substantially
similar results to do credible hierarchical summa-
rization (or other application). We require topic
model stability, i.e., similar topic models for anal-
yses performed under similar conditions. Without
stable results, we do not know which analyses to
believe, if any, and we mistrust the methodology
itself. Furthermore, any application of the result-
ing topic model is not credible.

Organization of Paper Bayesian probabilisitic
topic analysis (§2.1) expresses a corpus as the ma-
trix product of topic compositions of words with
document mixtures of topics. In flat topic analy-
sis, the matrix of topic-word compositions is orga-
nized as a flat vector of individual topics. With hi-
erarchical structure topic analysis, the topics take
on a hierarchical tree structure.

Topic model quality (§2.2) is typically assessed
by predictive likelihood of words for a test corpus
or by assessment of topic coherence. Our stabil-
ity assessment methodology seems largely com-
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plementary to quality assessment.

The Hungarian assignment algorithm (Kuhn,
1955) has been used for aligning flat topic model
pairs (§2.3), based on a cost matrix of pairwise
topic alignments. We will use a pairwise topic
similarity measure for populating the Hungarian
algorithm’s cost matrix.

Topic models, including hierarchical models,
are being used to construct text summaries (§2.4),
including hierarchical text summaries. This pro-
vides sufficient reason to want to assure the stabil-
ity of flat and hierarchical structure topic models.

We introduce the particular flat and hierarchical
structure topic models (§3.1) used for this paper.

In a simple yet significant innovation, we ex-
tend topic alignment (§3.2) to hierarchical struc-
ture topic model pairs via a recursive application
of the Hungarian assignment algorithm starting
with root topics of the model pair. Surprisingly,
we find time complexity of the hierarchical topic
structure improves versus flat structure with in-
creasing level of the hierarchy.

We measure stability (§3.3) as alignment (pro-
portion of aligned topics), similarity (weighted co-
sine similarity over topic compositions), and di-
vergence (Jensen-Shannon divergence over topic
distributions). Measures are defined for flar and
then extended to hierarchical structure topic mod-
els.

The more topic models in the study, the more
credible the stability analysis, since we are align-
ing more models and measuring stability based on
more analyses. For complex problems, however,
more models also makes it more likely we would
encounter alternative topic models, just as human
topic modelers might. We perform agglomerative
clustering on topic model similarity (§3.4) to test
whether models form a single or multiple stable
topic model groups, or are unstable.

For each cluster, we align models and calculate
topic frequency weighted centroids (§3.5) of topic-
word compositions for aligned topics. Then we as-
sess stability versus the centroid model (§3.6) sim-
ilarly to that done previously for model pairs.

We demonstrate the methodology (§4) over flat
and hierarchical structure models in an 18 run fac-
torial experiment on three corpora, and in a sepa-
rate ad hoc 16 run experiment on a larger corpus.

We return to our work on hierarchical summa-

2Software engineering already knows this — that hierar-
chical structure is less time complex than monolithic.
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rization (§5) now armed with stable hierarchical
topic models and examine our next steps as well
as options for further research.

2 Previous Work

We use Bayesian probabilistic topic modeling in
the analysis phase of our hierarchical summariza-
tion process. Here we briefly review topic model-
ing, topic model quality, topic model stability, and
use of topic models in hierarchical summarization.

2.1 Topic Models

The Latent Dirichlet analysis (LDA) Bayesian
probabilistic topic model, introduced and popular-
ized by Blei et al. (2003); Griffiths and Steyvers
(2004), factors a corpus of document-word occur-
rences as the matrix product of topic compositions
of words and document mixtures of topics (figure
1). The topic structure is flat and the number of
topics, K, and vocabulary size, V, are fixed. In the
generative probabilistic model, topic-word com-
positions are distributed symmetric Dirichlet with
parameter 7, and document-topic mixtures are dis-
tributed Dirichlet with concentration parameter .

documents

o
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topics

L]

Corpus

words
words

Figure 1: Topic Model Factorization of Corpus

Teh et al. (2005, 2006) generalized the LDA
model in two important ways: (1) the number of
topics, K, is made open ended by treating the topic
model as a Dirichlet process (DP) with growth
parameter ~y for sampling a new topic, and (2)
documents are sampled from Dirichlet processes
(DPs) which are themselves sampled from corpus
DPs thus forming hierarchical Dirichlet processes,
HDPs, even while the topic structure remains flat.

Blei et al. (2010) developed hierarchical topic
analysis where the generative model of the cor-
pus consists of a hierarchy of nested Dirichlet pro-
cesses (DPs) and each document is generated as a
single non-branching path down the corpus hier-
archical structure. Stay-or-go stochastic switches
are used at each document node to determine
whether to stay on the current topic or go to a topic
further down the tree.

Paisley et al. (2015) extended the non-branching
document paths to a nested hierarchical structure



Dirichlet process model with branching in both the
document and global models. In figure 2, the grey
represents the corpus tree and the black overlaid
trees the individual document trees. Each docu-
ment parent node is a DP sampled from its corre-
sponding corpus node DP. Analysis infers the cor-
pus topic structure and compositions, and docu-
ment topic mixtures and stay-or-go switches.

Figure 2: Hierarchical Corpus Structure

2.2 Quality

Predictive log likelihood for words, test LL(x), is
a popular measure of topic analysis quality. Test
LL(x) shows the predictability of words on test
data given the model fit to training data (corpus
topics and compositions). While not a stability
measure, test LL(x) does give an objective indi-
cation of predictability. Teh et al. (2007) pro-
vides formulas for calculating test LL(x) for the
flat topic structure in both Gibbs sampler and vari-
ational inference analysis methods.

Assessing quality of individual topics can be
as simple as noting topics below a minimum fre-
quency or comparing divergence of topics from
any of uniform, corpus, or power distributions
of word frequencies. More powerful methods
assess individual and aggregate topic coherence.
The current standard is to measure coherence by
normalized pairwise mutual information (NPMI)
(Aletras and Stevenson, 2013; Lau et al., 2014,
Roder et al., 2015) versus pairwise probabilities
calculated from some very large pertinent corpus.

We view test likelihood and topic coherence as
largely complementary to topic model stability.

2.3 Topic Alignment and Stability

Topic models must be aligned on topics before as-
sessing stability. de Wall and Barnard (2008) cal-
culates similarity weights between topics from dif-
ferent models over documents, constructs a cost
matrix from negative similarity weights, and ap-
plies the Hungarian assignment algorithm (Kuhn,
1955) to determine the optimal pairwise topic
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model alignment. Stability is defined as the cor-
relation between aligned topics over documents.

Greene et al. (2014) calculates the average of
Jaccard scores on sets of popular word ranks be-
tween topic combinations of a topic model pair,
and determines the model agreement (i.e., stabil-
ity) as the average over topics of Jaccard scores
resulting from the optimal topic alignment by the
Hungarian assignment algorithm.

Chuang et al. (2015) notes that model alignment
is “ill-defined and computationally intractable”
with multiple-to-multiple mappings between top-
ics, and adopts the solution of mapping topics up-
to-one topic.’>

Yang et al. (2016) aligns topics for flat topic
structures also using the Hungarian assignment al-
gorithm and up-to-one topic correspondence. Sta-
bility is measured as agreement between token
topic assignments over aligned topic models.

We use the Hungarian algorithm and the up-
to-one topic correspondence. We choose to em-
phasize topic correspondence based on topic word
compositions, as in the generative model, and so
base our cost matrix on similarity of topic word
compositions between models.

2.4 Topic Model Based Summarization

Haghighi and Vanderwende (2009) examined sev-
eral hybrid topic models using LDA as a build-
ing block and demonstrated the superior efficacy
of their hybrid model (general topic, general con-
tent topic, detail content topics, and document
specific topics) in constructing short summaries
for Document Understanding Conferences (U.S.
Department of Commerce: National Institute of
Standards and Technology, 2015). Delort and Al-
fonseca (2011); Mason and Charniak (2011) used
similar models in short summaries for the Text
Analysis Conferences (of Commerce: National In-
stitute of Standards and Technology, 2010, 2011).
Celikyilmaz and Hakkani-Tur (2010, 2011) used a
more general hierarchical LDA topic model struc-
ture, doing hierarchical summarization for longer
summaries. Christensen et al. (2014) developed
“hierarchical summarization” using temporal hier-
archical clustering and budgeting summary com-
ponent size by cluster.

We use a more general hierarchical structured
Bayesian topic model similar to Paisley et al.

3Indeed, the issue of mapping 1 topic to 2+ topics would
be an interesting and useful problem to solve.



(2015). Essential for any of these related hierar-
chical topic model or cluster based methods is the
stability of the model used to drive summarization.

3 Methodology

We present a process for aligning topic models and
measuring topic model stability for both flat and
hierarchical structure cases. The resulting stable
hierarchical structure topic centroid model would
be further transformed to take into account extrin-
sic summarization requirements.

Stability — Measurement Process

1. Infer multiple topic models for the same cor-
pus run under similar conditions.

Determine pairwise topic model alignments.
. Calculate stability over pairs.

Cluster topic models using agglomerative
clustering over pairwise stability.

. For each cluster:

(a) Align member topic models and calcu-
late topic model centroids.

(b) Align member topic models with topic
centroid model.

(c) Calculate stability of topic models with
topic centroid model.

6. Interpret stability results.

3.1 Topic Modeling

For a flat topic structure, we use a Gibbs sam-
pler implementation of Teh et al. (2006) hierar-
chical Dirichlet processes (HDP). For a hierarchi-
cal topic structure, we use a Gibbs sampler imple-
mentation of a simplified version of Paisley et al.
(2015)’s nested hierarchical Dirichlet processes.
Our simplified model and Gibbs sampler drops the
use of stay-or-go stochastic switches at each doc-
ument Dirichlet process (DP) node. See supple-
mental notes (Supplemental, 2017b).

3.2 Pairwise Topic Model Alignment

From a set of M topic models, all M (M — 1)/2
model pairs are aligned based on topic pair assign-
ment costs. Assignment cost between topics from
distinct model pairs is calculated as

costy; = —(my/N)(ni/N) * cosSim(my, ny),
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where (k,[) indexes topics from model pairs, my,
and n; are topic frequencies, N is corpus size,
my and n; are vectors of word frequencies for
topic pair (k,l), and cosSim calculates the co-
sine similarity.* By using topic frequency ratios
in the cost, similar frequency topics are preferred.
Since weak similarities are not useful, we censor
cosSim < .25 and substitute zero for their cost.

Flat Topic Models Pairwise costs are assembled
into a cost matrix indexed by (&, [) and the optimal
cost assignment of the model pair is determined
by the Hungarian assignment algorithm. For un-
equal numbers of topics, vectors of zero (maxi-
mum) costs are substituted for nonexistent topics.

Hierarchical Topic Models Hierarchical topic
structures are single rooted branching trees of
depth L where the root is depth 0. Each tree
node includes a topic of word compositions, and
each non-leaf tree node includes a Dirichlet pro-
cess (DP) of topic mixtures. We restrict hierarchi-
cal topic structure alignment to require: (1) roots
must align, and (2) aligned child branches must
align in their ancestors. With these restrictions,
we developed Minimize Subtree Cost (algorithm
1) applying the Hungarian algorithm to DP (non-
leaf) nodes of the hierarchical topic structure.

Method minimizeSubtreeCost is invoked ini-
tially for model pair roots, (0¢, 79) and recursively
thereafter for subtree pairs, (o, 7). If either sub-
tree is a leaf the topic alignment cost is returned.
For internal nodes, a cost matrix is constructed be-
tween the child nodes for the subtrees, the Hun-
garian assignment algorithm is invoked to get the
optimum cost alignment for the subtrees, the topic
cost is added to the subtree costs, and this result
is returned. Filling the subtree cost matrix calcu-
lates the cost of aligning properties between model
pairs of subtree children by minimizing subtree
costs for each child pair. Thus calculating subtree
costs and filling subtree costs together recursively
span the entire solution space for hierarchical topic
alignment. See supplemental java snippets (Sup-
plemental, 2017a).

Time Complexity For flat topic structures, topic
alignment time complexity is O(K?(V + K)),
where K is the number of topics and V is the vo-
cabulary size. Preparation of the cost matrix takes
K? topic vector cosine similarity calculations over

*Alternatively, straight cosine similarity or a divergence
measure such as Hellinger distance could be used.



Algorithm 1 Minimize Subtree Cost

Require: Trees o, 7
*Method: minimizeSubtreeCost(o, 7)*
if isLeaf(o) or isLeaf(7) then
return topicCost(o, 7)
else
costs « fillSubtreeCosts(c, 7)
return topicCost(o, 7)
+HungarianAssignment(costs)
end if

*Method: fillSubtreeCosts(o, 7)*

for k£ = 0 to o.children.size do
for [ = 0 to 7.children.size do

costslk, l] « minimizeSubtreeCost
(o .children[k], 7.children[1])

end for

end for

return costs

V words giving O(K2V), and the Hungarian
assignment algorithm which minimizes cost has
time complexity O(K?) (Kuhn, 1955).

Level 1 in the hierarchical structure is simi-
lar to the flat topic structure. Time complexity is
O(B?(V + B)), with branching factor, B, in place
of number of topics, K. Each increment in level
increases by a factor of B? the tree node pairs from
the parent level. The resulting time complexity for
level I beyond the root is then O(B? (V +B)). For
B > 1 the final level dominates the order calcula-
tion, and so the time complexity for a hierarchical
structure of depth L is O(B?*/(V + B)).

We compare this with the time complexity for
the flat structure alignment problem by express-
ing K as though from a flattened hierarchical
structure, K = (1 — BYT1)/(1 — B).> Then,
O(K2(V +K)) = O([(1— BE1) /(1 - B)P(V +
[(1 — BE*Y) /(1 — B)])). For B > 1 the terms
with B in the ratio dominate, and so expressing
flat structure in hierarchical terms gives time com-
plexity O(B?%(V + B¥)). Cost of assignment for
flat is greater by a factor of BL~! versus a compa-
rable hierarchical structure.

This is a surprising result! We had expected hi-
erarchical structure to add time complexity, but in-
stead it reduces time complexity with increasing
level compared to a corresponding flat structure.
Alignment of topics between hierarchical struc-

. . L .
>Sum of geometric series, > =0 B !, for a branching tree.
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tures is less time complex than for flar structures.

3.3 Pairwise Stability

Given the topic model alignment, we calculate
alignment, similarity, and divergence measures.
Table 1 gives a priori and preliminary calibration
study interpretations of the stability measures.

Proportion Aligned Alignment is calculated as,
pAlign = K'/[(K, + K.)/2], where K’ is the
number of aligned topics, and K, and K are the
number of topics for each model.

Weighted Similarity Similarity is calculated as
topic frequency weighted similarity of the topic
word compositions of the (o, 7) model pair, ¢

Z ml;ij\}nlcosSim(mk, np),

(k,1)e
aligned

wtSime ; =

where (k, ) indexes topics from the flat or hierar-
chically aligned model pair, my and n; are topic
frequencies, NV is the corpus size, my and nj are
vectors of word frequencies for topic pair (k,1),
and cosSim calculates the cosine similarity. Only
aligned topics are added to the wtSim, but the
corpus size includes all observations, so the fewer
aligned topics, the lower the weighted similarity.
For the hierarchical model we require that ances-
tors are also aligned.

Divergence Divergence is calculated as the
Jensen-Shannon divergence (JSD) between topic
frequency distributions for model pairs. Distribu-
tions are calculated as follows: (1) model o topic
frequency counts are assembled in array s by topic
index k, (2) frequencies of unaligned topics from
o are set to zero with the sum of frequencies of
unaligned topics set in s where K is the maxi-
mum number of topics for the (o, 7) model pair,
(3) model 7 topic frequency counts are assembled
in array t by topic index [, (4) frequencies of un-
aligned topics from 7 are set to zero with the sum
of frequencies of unaligned topics setin t 41, and
(5) topic frequencies in t are reordered according
to the alignment mapping between (o, 7). Thus,
aligned topics coincide with respect to their po-
sitions in s,t and unaligned frequencies are kept
separate between models. Divergence is calcu-
lated as

JSD(s||t) =1/2(KLD(s|jm) + K LD(t|jm)),

SUnweighted or other weighting could be used as well.



Basis Value Interpretation

a priori alignment =1 full alignment
calibration | alignment ~ 0.6 useful alignment

a priori similarity = 1 full similarity
calibration | similarity ~ 0.6 useful similarity
calibration | similarity ~ 0.25 | marginal similarity
a priori divergence = 0 full convergence
calibration | divergence ~ (0.1 | strong convergence
calibration | divergence ~ 0.4 | strong divergence

Table 1: Preliminary interpretation of stability

where m = (s +t)/2 and K LD is the Kullback-
Leibler divergence. For the hierarchical model we
require that ancestors are also aligned.

3.4 Cluster Topic Models

There are multiple ways in which topics can be
organized and assigned - whether performed auto-
matically or by human experts. So we test whether
model pairs align to a single stable model group,
or if multiple stable groups can be identified.

We use group-average agglomerative clustering
(Manning et al., 2008) on pairwise weighted simi-
larity, wt.Sim, to form model clusters. This results
in compact clusters maximizing separation be-
tween clusters while minimizing the distance be-
tween the cluster centroid and its members. Clus-
tering begins with each model forming its own
cluster and ends when either all models form a
single cluster or no more clusters can be formed
that meet wtSim > cutPoint, where wtSim is
the average weighted similarity. Output is a list of
clusters where each cluster includes a list of mod-
els ordered by entry into the cluster and wt.Sim.

Agglomerative clustering is fast and simple;
pairwise similarity scores do not have to be recal-
culated after each clustering step. However, we
don’t know what are the similarities or differences
between clusters without inspecting them.

3.5 Form Topic Centroid Models

With only one cluster, no unclustered models, and
good similarity, the models seem stable. We form
topic centroids and report this centroid model as
the representative topic model. With multiple
clusters, we should consider the appropriateness
of multiple solutions — perhaps corresponding to
multiple human solutions. We form centroids for
each topic and report centroid models as represen-
tative of the clusters. The occurrence of many un-
clustered models would indicate instability.
Controls specify a censor limit for similarity be-
low which topics do not merge into a centroid,
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and a minimum number of models and minimum
topic frequency below which topics drop from the
centroid topic model. While a cluster may have
several models, not all topics need not be aligned
across all models.

Form Topic Centroid Model (algorithm 2)
forms cluster centroid models by copying the
cluster centroid from the initial model and
then aligning and entering individual models
into the centroid iteratively based on their or-
der of entry into the cluster. = The method
optimizeSubtreeMap, a variation on the pre-
vious minimizeSubtreeCost (algorithm 1),
returns the topic correspondence mapping. Topics
which do not meet the topic similarity censor limit
(wtSim < .25) are not aligned. Unaligned top-
ics are provisionally added to the centroid model
in case subsequent models in the list have similar
topics. After the centroid model is formed, top-
ics which to not meet a minimum topic frequency
limit or minimum number of topic models limit
are dropped.

Algorithm 2 Form Topic Centroid Model

Require: Cluster list of trees A
*Method: formCentroidModel(\)*
B Ao
for i = 1 to \.size do
mapping «— optimizeSubtreeMap(, A;)
for all topic € \; do
if topic € mapping then
index «— mapping.indexO f(topic)
aggregateTopic(u, \;, index, topic)
else
addTopic(u, A;, topic)
end if
end for
end for
for all topic € p do
if failsDropLimits(topic) then
drop(u, topic)
end if
end for

3.6 Centroid Model Stability

For each cluster’s centroid model, we align indi-
vidual models with the centroid model and esti-
mate stability. The method is similar to that for
pairwise stability with the exception that the cen-
troid model is always one member of the pair and
so only M (centroid, model) pairs are analyzed.



3.7 Use in Hierarchical Summarization

The final product is a single stable centroid model,
when one exists. The stable centroid model shows
the topic structure, the proportional importance of
each topic, and the word composition of each topic
as a discrete probability distribution. In our hierar-
chical summarization process, this centroid model
would be further transformed (nested, pruned, ag-
gregated) by taking into account extrinsic require-
ments of summary size, and paragraph and sub-
paragraph structure. The resulting topic structure
model would be used to extract information pro-
portionally for each topic, and organize the section
and paragraph structured summary.

If the centroid model is not stable, then hier-
archical summarization would not be credible. If
there are multiple identifiable stable clusters, then
their centroid models become candidates for orga-
nizing the hierarchical summary.

4 Stability Experiments

The purpose of the stability experiments is to
demonstrate the methodology over corpora for flat
and hierarchical structures. When stable centroid
models result from replicate topic analyses, they
can credibly be transformed to take into account
extrinsic summarization requirements, and carried
forward to the information extraction phase of our
hierarchical summarization process.

4.1 Corpora

Corpora used in this study are Journal of the
ACM (JACM) abstracts from years 1987-2000,
Global Warming (GW) articles for the year 2015
(Live Science, 2015), Proceedings of the National
Academy of Sciences (PNAS) abstracts for years
1991-2001 (Ponweiser et al., 2015), Neural In-
formation Processing Systems (NIPS) proceed-
ings for years 1988-1999 from (Lichman, 2013).
PNAS and GW texts were lemmatized. Stop
words and words with frequency less than ten
were removed. JACM and GW are small cor-
pora; JACM has very small abstracts while GW
has short articles; PNAS has numerous abstracts
and NIPS has longer articles.

4.2 Experimental Design

An 18 run factorial design (3 corpora x 3 levels
x 2 growth rates) crosses JACM, GW, and PNAS
corpora, with flat (L=0) and hierarchical (L=2,3)
topic structures, and topic growth rates to achieve
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Corpus J A\ N D
JACM 534 1,328 33,517 62.8
GW 116 970 31,894 274.9
PNAS 27,688 9,685 2,713,006 98.0
NIPS 1,491 6,149 1,813,400 1,216.2

Table 2: Corpora Characteristics.

J=document count, V=vocabulary size, N=corpus
size, D=average document size.

two different topic count ranges. Four replicate
topic analyses were run at each factorial setting.
For training, our simplified Gibbs sampler used
a=1.0 and n=0.01 with optimization. The growth
parameter y was set to create topic counts at low
(L), medium (M), and high (H) ranges.

Separately, an ad hoc experiment was per-
formed on a set of 16 trials on the NIPS corpus
with hierarchical (L=3) model using similar train-
ing control settings. This experiment demonstrates
the occurrence of multiple clusters.

4.3 Results - Factorial Design

Stability analysis was performed for each exper-
imental group of replicates. Topics were not
aligned when wtSim < .25, clustering terminated
when when avgWtSim < cutPoint 5,7
and topics were dropped from the cluster centroid
model when nModel;, < 2.

Table 3 shows the results for the factorial de-
sign with corpus, hierarchical topic structure (L),
and growth rate (7). Results reported are num-
ber of topics in training model (K), and stabil-
ity measures of number (K’) and proportion of
topics aligned (pAlign) in centroid model, aver-
age weighted similarity (wtSim), and hierarchi-
cal Jensen-Shannon divergence (hJSD). Ideal re-
sults based on a priori values (table 1) would be
pAlign ~ 1, wtSim ~ 1, hJSD = 0.

We expected simpler would be more stable
(Ockham’s razor), such that more levels and top-
ics give poorer stability. This is largely confirmed
by stability measures in that greater hierarchy lev-
els and greater topic count models generally had
poorer stability measures. Hierarchical L=3 mod-
els and with the JACM corpus especially showed
poorer stability.

"JACM L = 3 model used .4 for cut point.



Model | Train Stability

L ~| K K’ pAlign wtSim hJSD
JACM

0 M 703 705 1.00 0.867 0.028
2 M 78.0 660 0.85 0.839 0.052
3 M 848 482 0.57 0.682 0.128
0 H 106.8 106.8 1.00  0.851 0.034
2 H 1045 872 0.83 0.831 0.062
3 H 108.5 46.7 043 0.700 0.157

GW

0 M 658 658 1.00 0.869 0.030
2 M 738 720 0.98 0.894 0.028
3 M 823 598 0.73 0.762 0.100
0 H 99.0 982 0.99 0.871 0.023
2 H 108.0 89.8 0.83 0.824 0.081
3 H 1058 628 0.59 0.726 0.133
PNAS

0 L 868 865 0.99 0.930 0.013
2 L 768 1723 0.94 0.905 0.052
3 L 763 588 0.77 0.732 0.137
0 M 135.0 1340 0.99 0.920 0.017
2 M 1403 1225 0.87 0.875 0.071
3 M 1343 922 0.69 0.752 0.143

Table 3: Experimental results - stability.

4.4 Results - Ad hoc Design - NIPS

We analyzed a set of 16 trials on the NIPS corpus
run under somewhat similar conditions with topic
counts in the 90 to 200 range with hierarchical
L=3. Given the corpus size, non-equality of con-
ditions, and diversity of topic counts, we weren’t
surprised to find multiple distinct clusters.

Stability analysis was performed with control
settings: topics not aligned for wtSim < .25,
clustering terminated for wtSim < cutPoint =
.5 or .6, and topics dropped from the cluster cen-
troid model for nModel;, < 2. Results are re-
ported in table 4. At cutPoint = 0.5, all models
formed one cluster; at cut Point = 0.6, three sep-
arate clusters were identified and six models were
not joined to any cluster. Proportion of aligned
topics declined (nM odel}, < 2 is a more stringent
test when there are only 2 or 3 models in the clus-
ter), but similarity and divergence measures were
substantially improved for each of the three sepa-
rate clusters.

4.5 Impact on Hierarchical Summarization

For corpora in the factorial design, both flar and
hierarchal 1.=2 topic structures resulted in good
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Cluster nModels pAlign wtSim hJSD
cut point=0.5
0 16 0.81 0.592 0.246
cut point=0.6
0 5 0.66 0.783 0.073
1 2 0.31 0.829 0.140
2 3 0.50  0.821 0.086
sk

6 models were not clustered

Table 4: Ad hoc stability experiment on NIPS.

stability (high alignment and similarity with little
divergence), so the centroid topic model can cred-
ibly be carried forward for use in our hierarchi-
cal summarization process. The hierarchical L=3
models are generally less stable.

The NIPS stability analysis for a single cluster
shows moderate similarity of models and moder-
ate divergence of topic distributions, while more
restrictive clustering reveals three separate clusters
and six unassigned models. This bears further in-
vestigation.

5 Discussion
We have:

e placed modeling hierarchical topic structure
in the analysis phase of our hierarchical text

summarization process;

established the importance of a stable topic
model for use in the analysis phase;

developed a methodology for aligning and
measuring stability of topic models;

defined innovative and simple hierarchical
topic structure model alignment via a recur-
sive algorithm applying the Hungarian algo-
rithm to individual Dirichlet processes;

quantified time complexity of our hierarchi-
cal alignment algorithm and showed reduced
time complexity at increasing hierarchical
level versus flat topic structures;

developed alignment, similarity, and diver-
gence stability measures for hierarchical
topic structures;

applied agglomerative clustering to form co-
herent groups of topic models:

— constructed representative cluster cen-
troid models, and



— calculated centroid model stability;

e demonstrated the methodology, finding cred-
ible models for flatr and hierarchical 1.=2
structures;

demonstrated the methodology on a large set
of hierarchical 1.=3 topic models run on the
NIPS corpus, finding multiple coherent clus-
ters plus unclustered models;

mentioned parenthetically work on a pilot
calibration study for stability measures;

Future Work There is work to be done on topic
model stability, model alignment, and stability
measurement:

apply our methodology to larger, more varied
models and different inference methods;

improve, expand, and publish calibration
studies beyond our pilot;

explore other topic model alignment cost
measures;

further improve topic alignment including
options other than up-to-one matching;

improve hierarchical structure topic model
stability.

Summarization - Next Step We further trans-
form the hierarchical topic structure taking into ac-
count extrinsic summarization requirements. The
product from the analysis phase is a hierarchi-
cal structure topic model where each topic in-
cludes its proportional representation of the cor-
pus and a composition of words given as a dis-
crete probability distribution. This structure is
used in information extraction, where topic com-
positions match information from the corpus, e.g.,
sentences, and proportional representation budgets
the quantity of information to be extracted for each
topic. The transformed topic structure organizes
summary topic and paragraph structure.

Conclusion Our topic model stability methodol-
ogy lets us diagnose and compute “usable” hierar-
chical topic models for collections of long docu-
ments. This is an essential and “attractive starting
point towards hierarchical text summarization.” 8

8Thanks to reviewer for this concise statement of benefit.

72

References

Nikolaos Aletras and Mark Stevenson. 2013. Eval-
uating topic coherence using distributional seman-
tics. In Proceedings of the 10th International Con-
ference on Computational Semantics (IWCS 2013) —
Long Papers, pages 13-22. Association for Compu-
tational Linguistics.

David M. Blei, Thomas L. Griffiths, and Michael 1. Jor-
dan. 2010. The nested chinese restaurant process
and bayesian nonparametric inference of topic hier-
archies. J. ACM, 57(2):7:1-7:30.

David M. Blei, Andrew Y. Ng, and Michael 1. Jordan.
2003. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993-1022.

Asli Celikyilmaz and Dilek Hakkani-Tur. 2010. A hy-
brid hierarchical model for multi-document summa-
rization. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics,
ACL 10, pages 815-824, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Asli Celikyilmaz and Dilek Hakkani-Tur. 2011. Dis-
covery of topically coherent sentences for extrac-
tive summarization. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
491-499, Portland, Oregon, USA. Association for
Computational Linguistics.

Janara Christensen, Stephen Soderland, Gagan Bansal,
and Mausam. 2014. Hierarchical summarization:
Scaling up multi-document summarization. In Pro-
ceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics.

Jason Chuang, Margaret E Roberts, Brandon M Stew-
art, Rebecca Weiss, Dustin Tingley, Justin Grim-
mer, and Jeffrey Heer. 2015. Topiccheck: Interac-
tive alignment for assessing topic model stability. In
Proceedings of NAACL-HLT, pages 175-184.

Jean-Yves Delort and Enrique Alfonseca. 2011. De-
scription of the google update summarizer at TAC-
2011. 1In Proceedings of the Fourth Text Analy-
sis Conference, TAC 2011, Gaithersburg, Maryland,
USA, November 14-15, 2011. NIST.

Derek Greene, Derek O’Callaghan, and Padraig Cun-
ningham. 2014. How many topics? stability
analysis for topic models. In Machine Learning
and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2014, Nancy, France,
September 15-19, 2014. Proceedings, Part I, volume
8724 of Lecture Notes in Computer Science, pages
498-513. Springer Berlin Heidelberg.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences, 101(suppl 1):5228-5235.



Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing content models for multi-document summariza-
tion. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics, NAACL ’09, pages 362-370,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Harold W. Kuhn. 1955. The hungarian method for
the assignment problem. Naval Research Logistics
Quarterly, 2:83-97.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, EACL 2014, April 26-30, 2014, Gothen-
burg, Sweden, pages 530-539.

M. Lichman. 2013. UCI machine learning repository.

Live Science. 2015. Live Science. Online at live-

science.com.

Christopher D. Manning, Prabhakar Raghavan, and
Hinrich Schiitze. 2008. Introduction to Information
Retrieval. Cambridge University Press, Cambridge,
UK.

Rebecca Mason and Eugene Charniak. 2011. Ex-
tractive multi-document summaries should explic-
itly not contain document-specific content. In Pro-
ceedings of the Workshop on Automatic Summariza-
tion for Different Genres, Media, and Languages,
WASDGML °11, pages 49-54, Stroudsburg, PA,
USA. Association for Computational Linguistics.

John William Paisley, Chong Wang, David M. Blei, and
Michael I. Jordan. 2015. Nested hierarchical dirich-
let processes. IEEE Trans. Pattern Anal. Mach. In-
tell., 37(2):256-270.

Martin Ponweiser, Bettina Griin, and Kurt Hornik.
2015. Finding scientific topics revisited. In Maur-
izio Carpita, Eugenio Brentari, and E1 Mostafa Qan-
nari, editors, Advances in Latent Variables, Studies
in Theoretical and Applied Statistics, pages 93—100.
Springer International Publishing.

Michael Roder, Andreas Both, and Alexander Hinneb-
urg. 2015. Exploring the space of topic coherence
measures. In Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Min-
ing, WSDM 15, pages 399-408, New York, NY,
USA. ACM.

U.S. Department of Commerce: National Institute of
Standards and Technology. 2010. Text analysis con-
ference 2010 — summarization track.

U.S. Department of Commerce: National Institute of
Standards and Technology. 2011. Text analysis con-
ference 2011 — summarization track.

73

Supplemental. 2017a. Hierarchicaltopicagreementx-
tra.java, hierarchicalmodelstorextra.java. Supple-
mental material for EMNLP Summarization work-
shop 2017 - java snippets on topic model alignment.
Request from author by email.

Supplemental. 2017b. Topicmodeltheoryxtra.pdf.
Supplemental material for EMNLP Summarization
workshop 2017 - Topic model theory. Request from
author by email.

Y. W. Teh, M. 1. Jordan, M. J. Beal, and D. M. Blei.
2005. Sharing clusters among related groups: Hier-
archical Dirichlet processes. In Advances in Neural
Information Processing Systems, volume 17.

Yee Whye Teh, Michael 1. Jordan, Matthew J. Beal,
and David M. Blei. 2006. Hierarchical dirichlet pro-
cesses. Journal of the American Statistical Associa-
tion, 101(476):1566-1581.

Yee Whye Teh, Kenichi Kurihara, and Max Welling.
2007. Collapsed variational inference for hdp. In
NIPS, pages 1481-1488. Curran Associates, Inc.

U.S. Department of Commerce: National Institute of
Standards and Technology. 2015. Document under-
standing conferences.

Alta de Wall and Etienne Barnard. 2008. Evaluating
topic models with stability. In 19th Annual Sympo-
sium of the Pattern Recognition Association of South

Africa. Pattern Recognition Association of South
Africa.

Yi Yang, Shimei Pan, Jie Lu, Mercan Topkara, and
Yangqiu Song. 2016. The stability and usability of
statistical topic models. ACM Trans. Interact. Intell.
Syst., 6(2):14:1-14:23.



