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Abstract

Sequence-to-sequence models with atten-
tion have been successful for a variety
of NLP problems, but their speed does
not scale well for tasks with long source
sequences such as document summariza-
tion. We propose a novel coarse-to-fine
attention model that hierarchically reads a
document, using coarse attention to select
top-level chunks of text and fine attention
to read the words of the chosen chunks.
While the computation for training stan-
dard attention models scales linearly with
source sequence length, our method scales
with the number of top-level chunks and
can handle much longer sequences. Em-
pirically, we find that while coarse-to-
fine attention models lag behind state-of-
the-art baselines, our method achieves the
desired behavior of sparsely attending to
subsets of the document for generation.

1 Introduction

The sequence-to-sequence architecture  of
Sutskever et al. (2014), also known as the
encoder-decoder architecture, is now the gold
standard for many NLP tasks, including machine
translation (Sutskever et al., 2014; Bahdanau
et al, 2015), question answering (Hermann
et al., 2015), dialogue (Li et al., 2016), caption
generation (Xu et al., 2015), and in particular
summarization (Rush et al., 2015).

A popular variant of sequence-to-sequence
models are attention models (Bahdanau et al.,
2015). By keeping an encoded representation of
each part of the input, we “attend” to the relevant
part each time we produce an output from the de-
coder. In practice, this means computing attention
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weights for all encoder hidden states, then taking
the weighted average as our new context vector.

While successful, existing sequence-to-
sequence methods are computationally limited by
the length of source and target sequences. For
a problem such as document summarization, a
source sequence of length N (where N could
potentially be very large) requires O(N) model
computations to encode. However, it makes sense
intuitively that not every word of the source will
be necessary for generating a summary, and so we
would like to reduce the amount of computation
performed on the source.

Therefore, in order to scale attention models for
this problem, we aim to prune down the length of
the source sequence in an intelligent way. Instead
of naively attending to all the words of the source
at once, our solution is to use a two-layer hier-
archical attention. For document summarization,
this means dividing the document into chunks of
text, sparsely attending to one or a few chunks
at a time using hard attention, then applying the
usual full attention over those chunks — we call this
method coarse-to-fine attention. Through experi-
ments, we find that while coarse-to-fine attention
does not perform as well as standard attention, it
does show the desired behavior of sparsely reading
the source sequence.

We structure the rest of the paper as follows. In
Section 2, we introduce related work on summa-
rization and neural attention. In Section 3, we re-
view the encoder-decoder framework, and in Sec-
tion 4 introduce our models. In Section 5, we
describe our experimental setup, and in Section 6
show results. Finally, we conclude in Section 7.

2 Related Work

In summarization, neural attention models were
first applied by Rush et al. (2015) to do headline
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generation, i.e. produce a title for a news arti-
cle given only the first sentence. Nallapati et al.
(2016) and See et al. (2017) apply attention mod-
els to summarize full documents, achieving state-
of-the-art results on the CNN/Dailymail dataset.
All of these models, however, suffer from the in-
herent complexity of attention over the full docu-
ment. Indeed, See et al. (2017) report that a single
model takes over 3 days to train.

Many techniques have been proposed in the lit-
erature to efficiently handle the problem of large
inputs to deep neural networks. One particular
framework is that of “conditional computation”,
as coined by Bengio et al. (2013) — the idea is
to only compute a subset of a network’s units for
a given input by gating different parts of the net-
work.

Several methods, some stochastic and some de-
terministic, have been explored in the vein of con-
ditional computation. In this work, we will fo-
cus on stochastic methods, although determinis-
tic methods are worth considering as future work
(Rae et al., 2016; Shazeer et al., 2017; Miller et al.,
2016; Martins and Astudillo, 2016).

On the stochastic front, Xu et al. (2015) demon-
strate the effectiveness of “hard” attention. While
standard “soft” attention averages the representa-
tions of where the model attends to, hard attention
discretely selects a single location. Hard attention
has been successfully applied in various computer
vision tasks (Mnih et al., 2014; Ba et al., 2015),
but so far has limited usage in NLP. We will apply
hard attention to the document summarization task
by sparsifying our reading of the source text.

3 Background

We begin by describing the standard sequence-to-
sequence attention model, also known as encoder-
decoder models.

In the encoder-decoder architecture, an encoder
recurrent neural network (RNN) reads the source
sequence as input to produce the context, and a
decoder RNN generates the output sequence using
the context as input.

Formally, suppose we have a vocabulary V. A
given input sequence wi,...,w, € V is trans-
formed into a sequence of vectors xXi,...,X, €
R%n through a word embedding matrix E €
RIVIXdin a3 x; = Bwy.

The encoder RNN is given by a parameterizable
function f., and a hidden state h; € Rnid at each
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time step ¢ with hy = fenc(x¢, h¢—1). In our mod-
els, we use the long-short term memory (LSTM)
network (Hochreiter and Schmidhuber, 1997).

The decoder is another RNN f.. that generates
output words y; € V. It keeps hidden state h{*¢ €
Rrid as hie = fa..(ys, ffcl) similar to the en-
coder RNN. A context vector is produced at each
time step using an attention function a that takes
the encoded hidden states [hj,..., h,] and the
current decoder hidden state h{*® and produces the
context ¢; € Ré%t: ¢; = a([hy,...,h,], hie).
As in Luong et al. (2015), we feed the context vec-
tor at time ¢ — 1 back into the decoder RNN at time
t,ie. b = foee([ys, 1], BS).

Finally, a linear projection and softmax (the
generator) produces a distribution over output
words y; € V:

p(yt’yt—la - Y1, [h17 SR hnD
softmax (W ¢c; + b°")

The models are then trained end-to-end to mini-
mize negative log-likelihood loss (NLL).

We note that we have great flexibility in how
our attention function a(-) combines the encoder
context and the current decoder hidden state. In
the next section, we describe our models for a(-).

4 Models

We describe a few instantiations for the attention
function a(-): standard attention, hierarchical
attention, and coarse-to-fine attention.

4.1 Standard Attention

In Bahdanau et al. (2015), the function a(-) is im-
plemented with an attention network. We compute
attention weights for each encoder hidden state h;
as follows:

Bri=h] Waerhdec =1 n (1)

oy = softmax(3,) (2)
n

G =Y b 3)
=1

Attention allows us to select the most relevant
words of the source (by assigning higher attention
weights) when generating words at each time step.

Our final context vector is then c;
tanh(W2[¢;, hfe]) for W2 ¢ R2dniaxdets g
learned matrix.

Going forward, we call this instantiation of the
attention function STANDARD.



4.2 Hierarchical Attention

The attention network of STANDARD is computa-
tionally expensive for long sequences — for each
hidden state of the decoder, we need to compare
it to every hidden state of the encoder in order to
determine where to attend to. This seems unnec-
essary for a problem such as document summa-
rization; intuitively, we only need to attend to a
few important chunks of text at a time. Therefore,
we propose a hierarchical method of attending to
the document — by segmenting the document into
large top-level chunks of text, we first attend to
these chunks, then to the words within the chunks.

To accomplish this hierarchical attention, we
construct encodings of the document at both lev-
els. Suppose we have chunks s1,...,s,, with
words wj 1,...,W;n, in chunk s;. For the top-
level representations, we use a simple encoding
model (e.g. bag of words or convolutions) on each
s; to obtain hidden states h < R%ent (see Sec-
tion 5 for details). For the word representations,
we run an LSTM encoder separately on the words
of each chunk; specifically, we apply an RNN on
s; to get hidden states h; ; for i = 1,...,m and
j = 1, N where hi,j = RNN(hiJ,l, wiyj).

Using the top-level representations hf and
the word representations h;;, we compute
coarse attention weights af, ..., a5, for the top-
level chunks in the same way as STANDARD,
and similarly compute fine attention weights
iy, .., a4, for each i. We then compute the
final soft attention on word w; j as o; = & - o’
(note this ensures that the weights normalize to 1
over the whole document). Finally, we proceed
exactly as in standard attention by computing the
weighted average over hidden states h; ; to pro-
duce the context, i.e. € = Z” a; jh; ;.

We label this attention method HIER. Next, we
consider the hard attention version of this model
to achieve sparsity in our network.

4.3 Coarse-to-Fine Attention

With the previous models STANDARD and HIER,
we are required to compute hidden states over all
words and top-level chunks in the document, so
that if we have M chunks and /N words per chunk,
the computational complexity is O(M N) for each
attention step.

However, if we are able to perform conditional
computation and only read M ™ of the chunks at
a time, we can reduce the attention complexity to
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O(M + M™N), where we choose the chunks to
attend to in O (M) and read the selected chunks in
O(M™N). Note that this expression ignores the
total the number of words of the document, and
the bottleneck becomes the length of each chunk
of text.

In our model, we will apply stochastic sampling
to the top-level attention distribution in the spirit
of hard attention (Xu et al., 2015; Mnih et al.,
2014; Ba et al., 2015) while keeping the lower-
level attention as is. We call our method coarse-
to-fine attention'.

Specifically, using the top-level attention distri-
bution of, ..., a;,, we select a single chunk s; by
sampling this distribution. We then set the context
vector as » i1 ai’h; j, where we use the word
attention weights for the chosen chunk s;. Note
that this is equivalent to converting the top-level
distribution o to a one-hot encoding based on the
hard sample, then writing «; ; = o7 - a;’; as in
HIER. At test time, we take the max o for a one-
hot encoding instead of sampling. We label this
coarse-to-fine method C2F.

Because the hard attention model loses the
property of being end-to-end differentiable, we
use reinforcement learning to train our network.
Specifically, we use the REINFORCE algorithm
(Williams, 1992), also formalized by Schulman
et al. (2015) in the stochastic computation graph
framework. Layers before the hard attention node
receive backpropagated policy gradient %—g r-
0log (;ze(a|9)

, where 7 is some reward and p(«|f) is
the attention distribution that we sample from.

Rewards and variance reduction We can think
of our decoder RNN as a reinforcement learning
agent where the state is the LSTM decoder state
at time ¢ and actions are the hard attention deci-
sions. Since samples from o at time ¢ of the
RNN decoder can also affect future rewards, the
total influenced reward is Zz;t s at time ¢, where
re = log p(ye|ly1, - - -, yi—1, X) is the single step re-
ward. Inspired by the discount factor from RL, we
slightly modify the total reward: instead of simply
taking the sum, we can scale later rewards with a
discount factor v, giving total reward ZST:t AL
for the stochastic hard attention node a;. We found

"The term coarse-to-fine attention has previously been in-
troduced in the literature (Mei et al., 2016). However, their
idea is different: they use coarse attention to reweight the fine
attention computed over the entire input. This idea has also
been called hierarchical attention (Nallapati et al., 2016).
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Figure 1: Model architecture for sequence-to-sequence with coarse-to-fine attention. The left side is the encoder that reads
the document, and the right side is the decoder that produces the output sequence. On the encoder side, the top-level hidden
states are used for the coarse attention weights, while the word-level hidden states are used for the fine attention weights. The
context vector is then produced by a weighted average of the word-level states. In HIER, we average over the coarse attention
weights, thus requiring computation of all word-level hidden states. In C2F, we make a hard decision for which chunk of text
to use, and so we only need to compute word-level hidden states for one chunk.

that adding a discount factor helps in practice (we
use v = 0.5).

Training on the reward directly tends to have
high variance, and so we subtract a baseline re-
ward to help reduce variance as per Weaver and
Tao (2001). To calculate these baselines, we store
a constant b, for each decoder time step ¢. We fol-
low Xu et al. (2015) and keep an exponentially
moving average of the reward for each time step
t as by < by + B(ry — by) where ry is the average
minibatch reward and /3 a learning rate (set to 0.1).

In addition to including a baseline, we also scale
the rewards by a tuned hyperparameter A — we
found that scaling helped to stabilize training. We
empirically set A to 0.3. Therefore, our final re-
ward at time ¢ can be written as

T
Ay (rg — by) (4)
s=t

ALTERNATE training Xu et al. (2015) explain
that training hard attention with REINFORCE has
very high variance, even when including a base-
line. Thus, for every minibatch of training, they
randomly use soft attention instead of hard atten-
tion with some probability (they use 0.5). The
backpropagated gradient is then the standard soft
attention gradient instead of the REINFORCE gra-
dient. When we use this training method in our
results, we label it as + ALTERNATE.

Multiple samples From our initial experiments
with C2F, we found that taking a single sample
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was not very effective. However, we discovered
that sampling multiple times from the attention
distribution a® improves performance.

To be precise, we fix a number k,,,; for the
number of times we sample from a®. Then, we
sample based on the multinomial distribution go ~
Mult (kpyur, { i} ) to produce the new top-level
attention vector o, with & = p; /K. In our re-
sults, we label this as +MULTI.

Intuitively, k,,,; is the number of top-level
chunks we select to produce the context. With
higher k,,,,,;, the hard attention model more closely
approximates the soft attention model, and hence
should lead to better performance. This, however,
incurs a cost in computational complexity.

5 Experiments

5.1 Data

Experiments were performed on a version of
the CNN/Dailymail dataset from Hermann et al.
(2015). Each data point is a news document ac-
companied by up to 4 “highlights”, and we take
the first of these as our target summary. Note that
our dataset differs from related work (Nallapati
et al., 2016; See et al., 2017) which take all the
highlights as the summary, as we were less inter-
ested in target side length and more in correctly
locating sparse attention in the source.

Train, validation, and test splits are provided
with the original dataset along with document to-
kenization and sentence splitting. We do addi-



tional preprocessing by replacing all numbers with
# and appending end of sentence tokens </s> to
each sentence. We limit our vocabulary size to the
50000 most frequent words, replacing the rest with
<unk> tokens.

5.2 Implementation Details

To ease minibatch training on the hierarchical
models, we arrange the first 400 words of the doc-
ument into a 10 by 40 image and take each row
to be a top-level chunk. For HIER, we also experi-
ment with shapes of 5 by 80 and 2 by 200 (denoted
5x80, 2x200 resp.). These should more closely
approximate STANDARD as the shape approaches
a single sequence.

In addition, we pad short documents to the max-
imum length with a special padding word and al-
low the model to attend to it. However, we zero out
word embeddings for the padding states and also
zero out their corresponding LSTM states. We
found in practice that very little of the attention
ended up on the corresponding states.

5.3 Models

Baselines We consider a few baseline models. A
strong and simple baseline is the first sentence of
the document, which we denote FIRST.

We also consider the integer linear program-
ming (ILP) based document summarizer of Dur-
rett et al. (2016). We apply the code ? directly on
the test set without retraining the system. We pro-
vide the necessary preprocessing using the Berke-
ley coreference system®. We call this baseline
ILP.

Our models We ran experiments with the mod-
els STANDARD, HIER, and C2F as described
above.

For the coarse attention representations hf of
HIER and C2F, we experiment with convolutional
and bag of words encodings. We use convolu-
tions for the top-level representations by default,
where we follow Kim (2014) and perform a con-
volution over each window of words in the chunk
using 600 filters of kernel width 6. We use max-
over-time pooling to obtain a fixed-dimensional
top-level representation in R%/ where dy = 600
is the number of filters. For bag of words, we sim-
ply take the top-level representation as the sum of

2https://github.com/gregdurrett/berkeley-doc-summarizer
3https://github.com/gregdurrett/berkeley-entity
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the chunk’s word embeddings (for a separate em-
bedding matrix), and we write BOW when we use
this encoding. For BOW models, we fix the word
embeddings on the encoder side (in other models,
they are fine tuned).

As an addition to any top-level representation
method, we can include positional embeddings. In
general, we expect the order of text in the docu-
ment to matter for summarization — for example,
the first few sentences are usually important. We
therefore include the option to concatenate a 25-
dimensional embedding of the chunk’s position to
the representation. When we use positional em-
beddings, we write +POS.

For C2F, we include options +MULTI for
kmur > 1, +PRETRAIN for starting with a model
pretrained with soft attention for 1 epoch, and
+ALTERNATE for sampling between hard and soft
attention with probability 0.5.

5.4 Training

We train with minibatch stochastic gradient de-
scent (SGD) with batch size 20 for 20 epochs,
renormalizing gradients below norm 5. We initial-
ize the learning rate to 0.1 for the top-level encoder
and 1 for the rest of the model, and begin decaying
it by a factor of 0.5 each epoch after the validation
perplexity stops decreasing.

We use 2 layer LSTMs with 500 hidden units,
and we initialize word embeddings with 300-
dimensional word2vec embeddings (Mikolov and
Dean, 2013). We initialize all other parameters as
uniform in the interval [—0.1,0.1]. For convolu-
tional layers, we use a kernel width of 6 and 600
filters. Positional embeddings have dimension 25.
We use dropout (Srivastava et al., 2014) between
stacked LSTM hidden states and before the final
word generator layer to regularize (with dropout
probability 0.3). At test time, we run beam search
to produce the summary with a beam size of 5.

Our models are implemented using Torch based
on a past version of the OpenNMT system* (Klein
et al., 2017). We ran our experiments on a 12GB
Geforce GTX Titan X GPU. The models take be-
tween 2-2.5 hours to train per epoch.

5.5 Evaluation

We report metrics for perplexity and ROUGE bal-
anced F-scores (Lin, 2004) on the test set.

*http://opennmt.net



With multiple gold summaries in the
CNN/Dailymail highlights, we take the max
ROUGE score over the gold summaries for a
predicted summary, as our models are trained to
produce a single sentence. The final metric is then
the average over all test data points.’

Note that because we are training the model
to output a single highlight, our numbers are not
comparable with Nallapati et al. (2016) or See
et al. (2017).

6 Results

Table 1 shows summarization results. We see
that our soft attention models comfortably beat the
baselines, while hard attention lags behind.

The ILP model ROUGE scores are surprisingly
low. We attribute this to the fact that our models
usually produce a single sentence as the summary,
while the ILP system can produce multiple. ILP
therefore has comparatively high ROUGE recall
while suffering in precision.

Unfortunately, the STANDARD sequence-to-
sequence baseline proves to be difficult to beat.
HIER performs surprisingly poorly, even though
the hierarchical assumption seems like a natural
one to make. We believe that the assumption
that we can factor the attention distribution into
learned coarse and fine factors may in fact be
too strong. Because the training signal is back-
propagated to the word-level LSTM via the coarse
attention, the training algorithm cannot directly
compare word attention weights as in STANDARD.
Thus, the model does not learn how to attend to the
most relevant top-level chunks, instead averaging
the attention as a backoff (see 6.1). Additionally,
the shapes 5x80 and 2x200 perform slightly bet-
ter, indicating that the model prefers to have fewer
sequences to attend to.

C2F results are significantly worse than soft
attention results. As has been previously ob-
served (Zaremba and Sutskever, 2015), training
with reinforcement learning is inherently more
difficult than standard maximum likelihood, as
the signal from rewards tends to have high vari-
ance (even with variance reduction techniques).
Thus, it may be too difficult to train the encoder
(which forms a large part of the model) using
such a noisy gradient. Even with soft attention
pretraining (+PRETRAIN) and alternating training

SWe run the ROUGE 1.5.5 script with flags -m -n 2
-a —-f B.
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(+ALTERNATE), C2F fails to reach HIER perfor-
mance.

While taking a single sample performs quite
poorly, we see that taking more than one sam-
ple gives a significant boost to scores (+MULTI2,
+MULTI3). There seem to be diminishing returns
as we take more samples.

Finally, we note that positional embeddings
(+P0OS) give a nontrivial boost to scores and causes
the attention to prefer the front of the document.
The exception, C2F + POS, is due to the fact that
the attention collapses to always highlight the first
top-level chunk.

We show predicted summaries from each model
in Figure 2. We note that the ILP system, which
extracts sentences first, produces long summaries.
In contrast, the generated summaries tend to be
quite succint, and most are the result of copying
or paraphrasing specific sentences.

Source: isis supporters have vowed to murder twitter staff because they
believe the site ’s policy of shutting down their extremist pages is a ’
virtual war * . </s> a mocked - up image of the site ’s founder jack
dorsey in <unk> was posted yesterday alongside a diatribe written in
arabic , which claimed twitter employees ’ necks are ’ a target for the
soldiers of the caliphate > . </s> addressing mr dorsey personally ,
it claimed twitter was taking sides in a * media war * which allowed ’
slaughter * , adding : * your virtual war on us will cause a real war on
you. </s> diatribe : an image of twitter founder jack dorsey in <unk>
was posted alongside a rant in arabic </s> ...

GoLD: diatribe in arabic posted anonymously yesterday and shared
online

FIRST: isis supporters have vowed to murder twitter staff because they
believe the site ’s policy of shutting down their extremist pages is a ’
virtual war ’ .

ILP: ISIS supporters have vowed to murder Twitter staff because they
believe the site ’s policy of shutting down their extremist pages is a ’
virtual war ° . Twitter was taking sides . Islamic State militants have
swept through huge tracts of Syria and Iraq , murdering thousands of
people .

STANDARD: image of jack dorsey ’s founder jack dorsey posted on
twitter

HIER: the message was posted in arabic and posted on twitter

HIER BOW: the message was posted on twitter and posted on twitter
HIER +POS: dorsey in <unk> was posted yesterday alongside a
diatribe in arabic

C2F: "’ lone war ’ is a ’ virtual war ’ image of the islamic state

C2F +MULTI2: isis supporters say site ’s policy of shutting down is a’
propaganda war ’

C2F +POS +MULTI2: twitter users say they believe site ’s policy of
closure is a > media war ’

Figure 2: Predicted summaries for each model. The source
document is truncated for clarity.

6.1 Analysis

Sharpness of Attention We are interested in
measuring the ability of our models to focus on
a single top-level chunk using attention. Quan-
titatively, we measure the entropy of the coarse
attention on the validation set in Table 2. Intu-



Model PPL ROUGE-1 ROUGE-2 ROUGE-L
FIRST - 32.3 15.5 27.4
ILP - 290.1 16.0 26.5
STANDARD 13.9 34.7 18.8 32.3
HIER 16.0 33.3 17.5 31.0
HiErR BOW 16.3 33.0 17.4 30.7
HIER +POS 154 34.2 18.3 31.8
HIER 5X80 15.0 33.9 18.0 31.5
HIER 2X200 14.5 33.9 18.1 31.6
C2F 32.8 28.2 12.9 26.2
C2F +POS 37.8 28.3 12.5 26.1
C2F +MULTI2 25.5 30.0 14.4 27.9
C2F +POS +MULTI2 21.9 31.2 15.3 29.0
C2F +MULTI3 22.9 30.4 14.9 28.3
C2F +PRETRAIN 26.3 29.7 14.2 27.5
C2F +ALTERNATE 23.6 31.1 154 28.8

Table 1: Summarization results for CNN/Dailymail (first highlight as target) on perplexity (PPL) and ROUGE metrics.

Model Entropy
STANDARD 1.31
HIER 2.14
C2F 0.15
C2F +MULTI2 0.59
C2F +POS +MULTI2 0.46

Table 2: Entropy over coarse attention, averaged over all at-
tention distributions in the validation set. For reference, uni-
form attention in our case gives entropy ~ 2.30.

itively, higher entropy means the attention is more
spread out, while lower entropy means the atten-
tion is concentrated.

We compute the entropy numbers by averag-
ing over all generated words in the validation
set. Because each document has been split into
10 chunks, perfectly uniform entropy would be
~ 2.30.

We note that the entropy of C2F is very low
(before taking the argmax at test time). This is
exactly what we had hoped for — we will see that
the model in fact learns to focus on only a few
top-level chunks of the document over the course
of generation. If we have multiple samples with
+MULTI2, the model is allowed to use 2 chunks at
a time, which relaxes the entropy slightly.

We also observe that the HIER entropy is very
high and almost uniform. The model appears to be
averaging the encoder hidden states across chunks,
indicating that the training failed to find the same
optimum as in STANDARD. We discuss this fur-
ther in the next section.

Attention Heatmaps For the document in Fig-
ure 2, we visualize the coarse attention distribu-
tions produced by each model in Figure 3.
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In each figure, the rows are the top-level chunks
of each document (40 words per row), and the
columns are the summary words produced by the
model. The intensity of each box for a given
column represents the strength of the attention
weight on that row. For STANDARD, the heatmap
is produced by summing the word-level attention
weights in each row.

In HIER, we observe that the attention becomes
washed out (in accord with its high entropy) and
is essentially averaging all of the encoder hidden
states. This is surprising because in theory, HIER
should be able to replicate the same attention dis-
tribution as STANDARD.

If we examine the word-level attention (not pic-
tured here), we find that the model focuses on stop
words (e.g. punctuation marks, </s>) in the en-
coder. We posit this may be due to the LSTM “sav-
ing” information at these words, and so the soft at-
tention model can best retrieve the information by
averaging over these hidden states. Alternatively,
the model may be ignoring the encoder and gener-
ating only from the decoder language model.

In C2F, we see that we get very sharp attention
on some rows as we had hoped. Unfortunately, the
model has trouble deciding where to attend to, os-
cillating between the first and second-to-last rows.
We partially alleviate this problem by allowing the
model to attend to multiple rows in hard attention.
Indeed, with +MULTI2 +POS, the model actually
produces a very coherent output by focusing at-
tention near the beginning. We believe that the
improved result for this example is not only due
to more flexibility in where to attend, but a better
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isis supporters have vowed to murder twitter staff because they believe the site
's policy of shutting down their extremist pages is a ' virtual war
" . </s>a mocked - up image of the site 's founder jack

dorsey in cross-hairs was posted yesterday alongside a diatribe written in arabic ,
which claimed twitter employees ' necks are ' a target for the soldiers
of the caliphate ' . </s> addressing mr dorsey personally , it claimed twitter

was taking sides in a ' media war ' which allowed ' slaughter
", adding : ' your virtual war on us will cause a
real war on you . </s> diatribe : an image of twitter founder jack

dorsey in cross-hairs was posted alongside a rant in arabic </s> it is
nine years since mr dorsey launched the site , which is trying to
avoid being a vehicle for jihadi videos </s>" how will you protect your

employees and supporters , helpless jack , when their necks officially become a
{arget for the soldiers of the caliphate ? ' </s> it also claimed
killing employees ' outside a neighbourhcod pub ' would be no more preventable than

the massacres of charlie hebdo killer amedy coulibaly and copenhagen shooter omar el
- hussein . </s> it then said men and women , young and
old , would all be targeted and closed by saying nothing would prevent the

" delivery of the holy missicn to the world ' . the rant
was written anonymously and posted on the text sharing service pastebin yesterday before
being shared by isis supporters , including on twitter . </s> a twitter spokesman

told buzzfeed law enforcement officials had been made aware of the rant and
will assess whether it poses a genuine threat . </s> killers : the
message compared its threat to the murders carried out in paris by amedy coulibaly

(left ) and in copenhagen by omar el - hussein ( right
). so - called ' lone wolf ' attackers are encouraged by
online messages </s> islamic state militants have swept through huge tracts of syria and

iraq , murdering thousands of people and forcing others to conform to an
extreme interpretation of sunni islam . </s> also known as isis and isil
, they use social media a major propaganda tool in their bid to radicalise

Figure 3: Sentence attention visualizations for different models. From left to right: (1) STANDARD, (2) HIER, (3) C2F, (4)
C2F +MULTI2 +POS.

encoding model due to the training process. (Miller et al., 2016) (preliminary investigations
with sparsemax were not extremely promising, but
7 Conclusion we leave this to future work). Resolving these is-

sues can allow attention models to become more
scalable, especially in computationally intensive
tasks such as document summarization.

In this work, we experiment with a novel coarse-
to-fine attention model on the CNN/Dailymail
dataset. We find that both versions of our model,
HIER and C2F, fail to beat the standard sequence-
to-sequence model on metrics, but C2F has the de-
sired property of sharp attention on a small subset
of the source. Therefore, coarse-to-fine attention
shows promise for scaling up existing models to
larger inputs.

Further experimentation is needed to improve
these attention models to state of the art. In par-
ticular, we need to better understand (1) the rea-
son for the subpar performance and high entropy
of hierarchical attention, (2) how to control the
variance training of reinforcement learning, and
(3) how to balance the tradeoff between stronger
models and attention sparsity over long source se-
quences. We would also like to investigate alter-
natives to reinforcement learning for implement-
ing sparse attention, e.g. sparsemax (Martins and
Astudillo, 2016) and key-value memory networks
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