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Abstract

Named Entity Recognition for social me-
dia data is challenging because of its
inherent noisiness. In addition to im-
proper grammatical structures, it contains
spelling inconsistencies and numerous in-
formal abbreviations. We propose a novel
multi-task approach by employing a more
general secondary task of Named Entity
(NE) segmentation together with the pri-
mary task of fine-grained NE categoriza-
tion. The multi-task neural network ar-
chitecture learns higher order feature rep-
resentations from word and character se-
quences along with basic Part-of-Speech
tags and gazetteer information. This neu-
ral network acts as a feature extractor to
feed a Conditional Random Fields clas-
sifier. We were able to obtain the first
position in the 3rd Workshop on Noisy
User-generated Text (WNUT-2017) with a
41.86% entity F1-score and a 40.24% sur-
face F1-score.

1 Introduction

Named Entity Recognition (NER) aims at iden-
tifying different types of entities, such as people
names, companies, location, etc., within a given
text. This information is useful for higher-level
Natural Language Processing (NLP) applications
such as information extraction, summarization,
and data mining (Chen et al., 2004; Banko et al.,
2007; Aramaki et al., 2009). Learning Named En-
tities (NEs) from social media is a challenging
task mainly because (i) entities usually represent a
small part of limited annotated data which makes
the task hard to generalize, and (ii) they do not fol-
low strict rules (Ritter et al., 2011; Li et al., 2012).

This paper describes a multi-task neural net-
work that aims at generalizing the underneath
rules of emerging NEs in user-generated text. In
addition to the main category classification task,
we employ an auxiliary but related secondary task
called NE segmentation (i.e. a binary classifica-
tion of whether a given token is a NE or not).
We use both tasks to jointly train the network.
More specifically, the model captures word shapes
and some orthographic features at the character
level by using a Convolutional Neural Network
(CNN). For contextual and syntactical informa-
tion at the word level, such as word and Part-
of-Speech (POS) embeddings, the model imple-
ments a Bidirectional Long-Short Term Memory
(BLSTM) architecture. Finally, to cover well-
known entities, the model uses a dense representa-
tion of gazetteers. Once the network is trained, we
use it as a feature extractor to feed a Conditional
Random Fields (CRF) classifier. The CRF clas-
sifier jointly predicts the most likely sequence of
labels giving better results than the network itself.

With respect to the participants of the shared
task, our approach achieved the best results in
both categories: 41.86% F1-score for entities, and
40.24% F1-score for surface forms. The data for
this shared task is provided by Derczynski et al.
(2017).

2 Related Work

Traditional NER systems use hand-crafted fea-
tures, gazetteers and other external resources to
perform well (Ratinov and Roth, 2009). Luo et al.
(2015) obtain state-of-the-art results by relying on
heavily hand-crafted features, which are expensive
to develop and maintain. Recently, many studies
have outperformed traditional NER systems by ap-
plying neural network architectures. For instance,
Lample et al. (2016) use a bidirectional LSTM-
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CRF architecture. They obtain a state-of-the-
art performance without relying on hand-crafted
features. Limsopatham and Collier (2016), who
achieved the first place on WNUT-2016 shared
task, use a BLSTM neural network to leverage or-
thographic features. We use a similar approach but
we employ CNN and BLSTM in parallel instead of
forwarding the CNN output to the BLSTM. Nev-
ertheless, our main contribution resides on Multi-
Task Learning (MTL) and a combination of POS
tags and gazetteers representation to feed the net-
work.

Recently, MTL has gained significant attention.
Researchers have tried to correlate the success
of MTL with label entropy, regularizers, training
data size, and other aspects (Martı́nez Alonso and
Plank, 2017; Bingel and Søgaard, 2017). For in-
stance, Collobert and Weston (2008) use a multi-
task network for different NLP tasks and show that
the multi-task setting improves generality among
shared tasks. In this paper, we take advantage of
the multi-task setting by adding a more general
secondary task, NE segmentation, along with the
primary NE categorization task.

3 Methodology

This section describes our system1 in three parts:
feature representation, model description2, and se-
quential inference.

3.1 Feature Representation

We select features to represent the most relevant
aspects of the data for the task. The features are
divided into three categories: character, word, and
lexicons.
Character representation: we use an ortho-
graphic encoder similar to that of Limsopatham
and Collier (2016) to encapsulate capitalization,
punctuation, word shape, and other orthographic
features. The only difference is that we handle
non-ASCII characters. For instance, the sentence
“3rd Workshop !” becomes “ncc Cccccccc p” as
we map numbers to ‘n’, letters to ‘c’ (or ‘C’ if
capitalized), and punctuation marks to ‘p’. Non-
ASCII characters are mapped to ‘x’. This encoded
representation reduces the sparsity of character
features and allows us to focus on word shapes

1 https://github.com/tavo91/NER-WNUT17
2 The neural network is implemented using Keras

(https://github.com/fchollet/keras) and
Theano as backend (http://deeplearning.net/
software/theano/).

and punctuation patterns. Once we have an en-
coded word, we represent each character with a
30-dimensional vector (Ma and Hovy, 2016). We
account for a maximum length of 20 characters3

per word, applying post padding on shorter words
and truncating longer words.
Word representation: we have two different rep-
resentations at the word level. The first one uses
pre-trained word embeddings trained on 400 mil-
lion tweets representing each word with 400 di-
mensions (Godin et al., 2015)4. The second one
uses Part-of-Speech tags generated by the CMU
Twitter POS tagger (Owoputi et al., 2013). The
POS tag embeddings are represented by 100-
dimensional vectors. In order to capture contex-
tual information, we account for a context window
of 3 tokens on both words and POS tags, where the
target token is in the middle of the window.

We randomly initialize both the character fea-
tures and the POS tag vectors using a uniform dis-

tribution in the range
[
−

√
3

dim , +
√

3
dim

]
, where

dim is the dimension of the vectors from each fea-
ture representation (He et al., 2015).
Lexical representation: we use gazetteers pro-
vided by Mishra and Diesner (2016) to help the
model improve its precision for well-known enti-
ties. For each word we create a binary vector of 6
dimensions (one dimension per class). Each of the
vector dimensions is set to one if the word appears
in the gazetteers of the related class.

3.2 Model Description

Character level CNN: we use a CNN architecture
to learn word shapes and some orthographic fea-
tures at the character level representation (see Fig-
ure 1). The characters are embedded into a Rd×l

dimensional space, where d is the dimension of
the features per character and l is the maximum
length of characters per word. Then, we take the
character embeddings and apply 2-stacked convo-
lutional layers. Following Zhou et al. (2015), we
perform a global average pooling5 instead of the
widely used max pooling operation. Finally, the
result is passed to a fully-connected layer using a
Rectifier Linear Unit (ReLU) activation function,
which yields the character-based representation of

3 Different lengths do not improve results
4 http://www.fredericgodin.com/software
5 Zhou et al. (2015) empirically showed that global av-

erage pooling captured more extensive information from the
feature maps than max pooling.
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Figure 1: Orthographic character-based representation of a
word (green) using a CNN with 2-stacked convolutional lay-
ers. The first layer takes the input from embeddings (red)
while the second layer (blue) takes the input from the first
convolutional layer. Global Average Pooling is applied after
the second convolutional layer.

a word. The resulting vector is used as input for
the rest of the network.
Word level BLSTM: we use a Bidirectional
LSTM (Dyer et al., 2015) to learn the contextual
information of a sequence of words as described
in Figure 2. Word embeddings are initialized with
pre-trained Twitter word embeddings from a Skip-
gram model (Godin et al., 2015) using word2vec
(Mikolov et al., 2013). Additionally, we use POS
tag embeddings, which are randomly initialized
using a uniform distribution. The model receives
the concatenation of both POS tags and Twitter
word embeddings. The BLSTM layer extracts the
features from both forward and backward direc-
tions and concatenates the resulting vectors from
each direction ([~h; ~h]). Following Ma and Hovy
(2016), we use 100 neurons per direction. The re-
sulting vector is used as input for the rest of the
network.
Lexicon network: we take the lexical representa-
tion vectors of the input words and feed them into
a fully-connected layer. We use 32 neurons on this
layer and a ReLU activation function. Then, the
resulting vector is used as input for the rest of the
network.
Multi-task network: we create a unified model
to predict the NE segmentation and NE catego-
rization tasks simultaneously. Typically, the ad-
ditional task acts as a regularizer to generalize the
model (Goodfellow et al., 2016; Collobert and We-
ston, 2008). The concatenation of character, word
and lexical vectors is fed into the NE segmentation

Figure 2: Word representation of POS-tag embeddings
(blue) and Twitter word embeddings (red) using a BLSTM
neural network.

and categorization tasks. We use a single-neuron
layer with a sigmoid activation function for the
secondary NE segmentation task, whereas for the
primary NE categorization task, we employ a 13-
neuron6 layer with a softmax activation function.
Finally, we add the losses from both tasks and feed
the total loss backward during training.

3.3 Sequential Inference

The multi-task network predicts probabilities for
each token in the input sentence individually.
Thus, those individual probabilities do not account
for sequential information. We exploit the sequen-
tial information by using a Conditional Random
Fields7 classifier over those probabilities. This al-
lows us to jointly predict the most likely sequence
of labels for a given sentence instead of perform-
ing a word-by-word prediction. More specifically,
we take the weights learned by the multi-task neu-
ral network and use them as features for the CRF
classifier (see Figure 3). Taking weights from the
common dense layer captures both of the segmen-
tation and categorization features.

4 Experimental Settings

We preprocess all the datasets by replacing the
URLs with the token <URL> before performing
any experiment. Additionally, we use half of de-
velopment set as validation and the other half as
evaluation.

6 Using BIO encoding, each of the 6 classes will have a
begin and inside version (e.g. B-product, I-product).

7 Python CRF-Suite library: https://github.com/
scrapinghub/python-crfsuite
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Figure 3: Overall system design. First, the system em-
beds a sentence into a high-dimensional space and uses CNN,
BLSTM, and dense encoders to extract features. Then, it
concatenates the resulting vectors of each encoder and per-
forms multi-task. The top left single-node layer represents
segmentation (red) while the top right three-node layer repre-
sents categorization (blue). Finally, a CRF classifier uses the
weights of the common dense layer to perform a sequential
classification.

Regarding the network hyper-parameters, in the
case of the CNN, we set the kernel size to 3 on
both convolutional layers. We also use the same
number of filters on both layers: 64. Increasing
the number of filters and the number of convolu-
tional layers yields worse results, and it takes sig-
nificantly more time. In the case of the BLSTM
architecture, we add dropout layers before and af-
ter the Bidirectional LSTM layers with dropout
rates of 0.5. The dropout layers allow the network
to reduce overfitting (Srivastava et al., 2014). We
also tried using a batch normalization layer instead
of dropouts, but the experiment yielded worse re-
sults. The training of the whole neural network
is conducted using a batch size of 500 samples,
and 150 epochs. Additionally, we compile the
model using the AdaMax optimizer (Kingma and
Ba, 2014). Accuracy and F1-score are used as
evaluation metrics.

For sequential inference, the CRF classifier uses
L-BFGS as a training algorithm with L1 and L2
regularization. The penalties for L1 and L2 are
1.0 and 1.0e−3, respectively.

5 Results and Discussion

We compare the results of the multi-task neural
network itself and the CRF classifier on each of
our experiments. The latter one always shows the
best results, which emphasizes the importance of
sequential information. The results of the CRF,
using the development set, are in Table 1.

Moreover, the addition of a secondary task al-
lows the CRF to use more relevant features from

Classes Precision (%) Recall (%) F1 (%)
corporation 35.71 29.41 32.26
creative-work 60.00 5.26 9.68
group 30.00 12.00 17.14
location 65.71 56.10 60.53
person 83.98 62.04 71.36
product 39.29 15.71 22.45
Entity 72.16 43.30 54.12
Surface 68.38 95.05 79.54

Table 1: This table shows the results from the CRF clas-
sifier at the class level. The classification is conducted using
the development set as both validation and evaluation.

Classes Precision (%) Recall (%) F1 (%)
corporation 31.91 22.73 26.55
creative-work 36.67 7.75 12.79
group 41.79 16.97 24.14
location 56.92 49.33 52.86
person 70.72 50.12 58.66
product 30.77 9.45 14.46
Entity 57.54 32.90 41.86
Surface 56.31 31.31 40.24

Table 2: This table shows the final results of our submis-
sion. The hardest class to predict for is creative-work, while
the easiest is person.

the network improving its results from a F1-score
of 52.42% to 54.12%. Our finding that a multi-
task architecture is generally preferable over the
single task architecture is consistent with prior re-
search (Søgaard and Goldberg, 2016; Collobert
and Weston, 2008; Attia et al., 2016; Maharjan
et al., 2017).

We also study the relevance of our features by
performing multiple experiments with the same
architecture and different combinations of fea-
tures. For instance, removing gazetteers from the
model drops the results from 54.12% to 52.69%.
Similarly, removing POS tags gives worse results
(51.12%). Among many combinations, the feature
set presented in Section 3.1 yields the best results.

The final results of our submission to the
WNUT-2017 shared task are shown in Table 2.
Our approach obtains the best results for the per-
son and location categories. It is less effective for
corporation, and the most difficult categories for
our system are creative-work and product. Our in-
tuition is that the latter two classes are the most
difficult to predict for because they grow faster
and have less restrictive patterns than the rest. For
instance, products can have any type of letters or
numbers in their names, or in the case of creative
works, as many words as their titles can hold (e.g.
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Participants F1 - E (%) F1 - SF (%)
MIC-CIS 37.06 34.25
Arcada 39.98 37.77
Drexel-CCI 26.30 25.26
SJTU-Adapt 40.42 37.62
FLYTXT 38.35 36.31
SpinningBytes 40.78 39.33
UH-RiTUAL 41.86 40.24

Table 3: The scores of all the participants in the WNUT-
2017 shared task. The metrics of the shared task are entity
and surface form F1-scores. Our results are highlighted.

name of movies, books, songs, etc.).
Regarding the shared-task metrics, our ap-

proach achieves a 41.86% F1-score for entities and
40.24% for surface forms. Table 3 shows that our
system yields similar results to the other partici-
pants on both metrics. In general, the final scores
are low which states the difficulty of the task and
that the problem is far from being solved.

6 Error Analysis

By evaluating the errors made by the CRF clas-
sifier, we find that the NE boundaries are a prob-
lem. For instance, when a NE is preceded by an
article starting with a capitalized letter, the model
includes the article as if it were part of the NE.
This behavior may be caused by the capitalization
features captured by the CNN network. Similarly,
if a NE is followed by a conjunction and another
NE, the classifier tends to join both NEs as if the
conjunction were part of a single unified entity.
Another common problem shown by the classi-
fier is that fully-capitalized NEs are disregarded
most of the time. This pattern may be related to
the switch of domains in the training and testing
phases. For instance, some Twitter informal ab-
breviations8 may appear fully-capitalized but they
do not represent NEs, whereas in Reddit and Stack
Overflow fully-capitalized words are more likely
to describe NEs.

7 Conclusion

We show that our multi-task neural network is ca-
pable of extracting relevant features from noisy
user-generated text. We also show that a CRF
classifier can boost the neural network results be-
cause it uses the whole sentence to predict the
most likely set of labels. Additionally, our ap-
proach emphasizes the importance of POS tags in

8 E.g. LOL is an informal social media expression that
stands for Laughing Out Loud, which is not an NE.

conjunction with gazetteers for NER tasks. Twit-
ter word embeddings and orthographic character
embeddings are also relevant for the task.

Finally, our ongoing work aims at improving
these results by getting a better understanding of
the strengths and weaknesses of our model. We
also plan to evaluate the current system in related
tasks where noise and emerging NEs are prevalent.
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