
Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 122–130
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Improving Document Clustering by Eliminating Unnatural Language

Myungha Jang1, Jinho D. Choi2, James Allan1

1College of Information and Computer Sciences, University of Massachusetts
2Department of Computer Science, Emory University

mhjang@cs.umass.edu, jinho.choi@emory.edu, allan@cs.umass.edu

Abstract

Technical documents contain a fair amount
of unnatural language, such as tables, for-
mulas, and pseudo-code. Unnatural lan-
guage can be an important factor of confus-
ing existing NLP tools. This paper presents
an effective method of distinguishing un-
natural language from natural language,
and evaluates the impact of unnatural lan-
guage detection on NLP tasks such as doc-
ument clustering. We view this problem as
an information extraction task and build a
multiclass classification model identifying
unnatural language components into four
categories. First, we create a new anno-
tated corpus by collecting slides and papers
in various formats, PPT, PDF, and HTML,
where unnatural language components are
annotated into four categories. We then ex-
plore features available from plain text to
build a statistical model that can handle any
format as long as it is converted into plain
text. Our experiments show that removing
unnatural language components gives an
absolute improvement in document cluster-
ing by up to 15%. Our corpus and tool are
publicly available.

1 Introduction

Technical documents typically include meta com-
ponents such as figures, tables, mathematical for-
mulas, and pseudo-code to effectively communi-
cate complex ideas and results. Let us define the
term unnatural language as text blocks that con-
sist of only meta components as opposed to natural
language that consists of body text.

There are many effective NLP tools available as
the field has been advanced. However, these tools
are mostly built for input text that are natural lan-

guage. As many of our tools for NLP can be badly
confused by unnatural language, it is necessary to
distinguish unnatural language blocks from natural
language blocks, or else unnatural language blocks
will cause confusion for natural language process-
ing. Once we salvage natural language blocks from
the documents, we can exploit NLP tools much
better as they are intended for. This phenomenon
is emphasized in technical documents that have
a higher ratio of unnatural language compared to
non-technical documents such as essays and nov-
els.

Document layout analysis aiming to identify doc-
ument format by classifying blocks into text, fig-
ures, and tables has been a long-studied problem
(O’Gorman, 1993; Simon et al., 1997). Most previ-
ous work have focused on image-based documents,
PDF and OCR formats, and used geometric anal-
ysis on the pages using the visual cues from its
layout. This was a clearly important problem in
many applications in NLP and IR.

This work was particularly motivated while we
attempted to cluster teaching documents (e.g., lec-
ture slides and reading materials from courses) in
technical topics. We discovered that unnatural
language blocks introduced significant noise for
clustering, causing spurious matches between doc-
uments. For example, code consists of reserved
programming keywords and variable names. Two
documents can contain two very different code
blocks from one another but their cosine similar-
ity is high because they share many terms by pro-
gramming convention (Figure 1). (Kohlhase and
Sucan, 2006) also recognized this problem by ex-
plaining main challenges of semantic search for
mathematical formula: (1) Mathematical notation
is context-dependent; without human’s capability
to understand the formula from the context, formu-
las are just noise. (2) Identical presentations can
stand for multiple distinct mathematical objects.

122



Figure 1: An example of how unnatural language confuses NLP tools. The left and right pseudo-code are
very different, but standard NLP similarity functions such as cosine similarity can easily be confused by
the terms highlighted in yellow.

This paper proposes a new approach for identify-
ing unnatural language blocks in plain text into four
types of categories: (1) TABLE (2) CODE (3) MATH-
EMATICAL FORMULA, and (4) MISCELLANEOUS

(MISC). Text is extracted from technical documents
in PDF, PPT, and HTML formats with little to no
explicit visual layout information preserved. We
focus on technical documents because they have
a significant amount of unnatural language blocks
(26.3% and 16% in our two corpora). Specifically,
we focus on documents in slide formats, which
have been underexplored.

We further study how removal of unnatural lan-
guage improves two NLP tasks: document simi-
larity and document clustering. Our experiments
show that clustering on documents with unnatu-
ral language removed consistently showed higher
accuracy on many of the settings than on original
documents, with the maximum improvements up
to 15% and 11% in two datasets, while it never
significantly hurts the original clustering.

2 Related Work

2.1 Table Extraction

Various efforts have been made for table extraction
using semi-supervised learning on the patterns of
table layouts within ASCII text documents (Ng
et al., 1999) web documents (Pinto et al., 2003;
Lerman et al., 2001; Zanibbi et al., 2004) PDF
and OCR image documents (Clark and Divvala,
2015; Liu et al., 2007). Existing techniques exploit
the graphical features such as primitive geometry
shapes, symbols, and lines to detect table borders.
(Khusro et al., 2015) introduces and compares the
state-of-the-art table extraction techniques from

PDF articles. However, there does not appear to be
any work that has attempted to process plain text
extracted from richer formats, where table layouts
are unpreserved.

2.2 Formula Extraction

Lin et al. (2011) categorized existing approaches
for mathematical formulas detection by ‘character-
based’ and ‘layout-based’ with respect to key fea-
tures. (Chan and Yeung, 2000) provides a com-
prehensive survey of mathematical formula extrac-
tion using various layout features available from
image-based documents. Since we have no access
to layout information, character-based approaches
are more relevant to our work. They use fea-
tures of mathematical symbols, operators, and posi-
tions and their character sizes (Suzuki et al., 2003;
Kacem et al., 2001).

2.3 Code Extraction

Tuarob et al. (2013) proposed 3 pseudo-code ex-
traction methods: a rule based, a machine learning,
and a combined method. Their rule based approach
finds the presence of pseudo-code captions using
keyword matching. The machine learning approach
detects a box surrounding a sparse region and clas-
sifies whether the box is pseudo-code or not. They
extracted four groups of features: font-style based,
context based, content based, and structure based.

3 Problem Definition

Input to our task is the plain text extracted from
PDF or PPT documents. The goal is to assign a
class label to each line in that plain text, identifying
it as natural language (regular text) or one of the

123



Figure 2: A table in a PDF document (left) and its text-extracted version (right). Note that it is hard to
distinguish the column headings from the extracted text without its layout.

Figure 3: An example of poor text extraction. The output from Apache Tika (right) has lost its original
structure. Experiments will show that document clustering is improved by removing this kind of noise
labeled as MISC

four types of unnatural language block components:
table, code, formula, or miscellaneous text. In this
work, we focus on these four specific types because
our observations lead us to believe they are the most
frequently occurring components in PPT lecture
slides and PDF articles. Figures are also a frequent
component but we do not consider them because
they are commonly pictures or drawings and cannot
be easily extracted to text. In this section, we briefly
discuss the characteristics of each component and
challenges in their identification from the raw text.

3.1 Table
Tables are prevalent in almost every domain of tech-
nical documents. Tables are usually conveyed by
its two-dimensional layout and its column and/or
row headings (Khusro et al., 2015). Tables typi-
cally have multiple cells merged for layout, which
makes them particularly difficult to distinguish as
a table once they are converted to flat text.

3.2 Mathematical Formula
Mathematical formulas exist in two ways: isolated
formulas on their own lines or as formulas embed-
ded within a line of text. In this work, we treat
both types as a formula component. Because not
all math symbols can be matched to Unicode char-
acters and because the extraction software may not
convert them correctly, the extracted text tends to
contain more oddly formatted or even completely
wrong characters. Superscripts and subscripts are
no longer distinguishable and the original visual

layout (e.g., math symbols over multiple lines such
as Π and

∑
) is lost.

3.3 Code

Articles in Computer Science or related fields often
contain pseudo-code or actual program code to
illustrate their algorithm. We assume that even
indents, one of the strong code visual cues, are
not preserved in the extracted text although some
extraction tool saves them, not to limit ourselves to
the detailed performances of text extraction tools.

3.4 Miscellaneous Non-text (Misc.)

In addition to the components mentioned above,
there are other types of unnatural language blocks
that are left during conversion to text and that may
provide spurious sub-topic matches between doc-
uments. To allow for those, we denote those com-
ponents as miscellaneous text. One example of
miscellaneous text is the text and caption that are
part of the diagrams in slides. Figure 3 shows an
example of miscellaneous text that lost its structure
and meaning while being converted to text without
the original diagram.

4 Corpus

4.1 Data Collection

We collected 1,561 lecture slides from various
Computer Science and Electrical Engineering
courses that are available online, and 5,898 aca-
demic papers from several years of ACL/EMNLP

124



Purpose Name Content

Classification Training
TSLIDES 35 lecture slides (8,514 lines) whose components are annotated
TACL 35 ACL papers (25,686 lines) whose components are annotated
TCOMBINED Combination of TSLIDES and TACL

Word Embedding Training TWORD2V EC
1,190 lecture slides and 5,863 ACL/EMNLP papers archived
over a few years that are used for training word embedding.

Clustering
CDSA 128 lecture slides from ‘data structure’ and ‘algorithm’ classes
COS 300 lecture slides from, ‘operating system’ classes

Table 1: Datasets used in our paper. All data are available for download at [http://cs.umass.edu/
~mhjang/publications.html]

archive1. We divided the dataset for several pur-
poses: training the classification model, training
word embedding model for feature extraction, and
clustering for extrinsic evaluation. The details of
the dataset we used are summarized in Table 1.
We make the data publicly available for down-
load at http://cs.umass.edu/~mhjang/
publications.html.

For classification, we constructed three datasets
using two different data sources: (1) lecture slides,
(2) ACL papers, and (3) a combination of both. We
chose these two types of data sources because they
have different ratios of unnatural language com-
ponents and complement each other for coverage.
Table 2 shows the ratio of the four components
from each annotated dataset. For example, 1.4% of
lines in TSLIDES are annotated as part of table.

4.2 Text Extraction

We extracted plain text from our datasets using an
open-source software package, Apache Tika. The
package is available for text extraction from various
formats including PDF, PPT, and HTML.

4.3 Annotation

To train a statistical model, we need ground-truth
data. We created annotation guidelines for the 4
types of unnatural language components and anno-
tated 35 lectures slides (7,943 lines) and 35 ACL
papers (25,686 lines). We developed an annota-
tion tool to support the task and also to enforce
annotators to follow certain rules2. We hired four
undergraduate annotators who have knowledge of
the Computer Science domain for this task.

1https://aclweb.org/anthology
2The guidelines and the tool are available at http://cs.

umass.edu/~mhjang/publications.html

TABLE CODE FORMULA MISC All

TSLIDES 1.4% 14.6% 0.5% 9.8% 26.3%
TACL 4.0% 0.6% 5.0% 6.4% 16%

Table 2: % of lines by unnatural category. Both
datasets have quite a bit of unnatural language
(26.3% for TSLIDES and 16% for TACL), though
TACL has more TABLES and FORMULAS and less
CODE.

5 Features

We find line-based prediction has an advantage
over token-based prediction because it allows us
to observe the syntactic structure of the line, how
statistically common the grammar structure is, and
how layout patterns compare to neighboring lines.
We introduce five sets of features used to train our
classifier and discuss each feature’s impact on the
accuracy.

5.1 N-gram (N)
Unigrams and bigrams of each line are included as
features.

5.2 Parsing Features (P)
Unnatural languages are not likely to form any
grammar structure. When we attempt to parse the
unnatural language line, the resultant parsing tree
would form unusual syntactic structure. To capture
this insight, we parse each line using the depen-
dency parser in ClearNLP (Choi and McCallum,
2013) and extract features such as the set of depen-
dency labels, the ratio of each POS tag, and POS
tags of each dependent-head pair from each parse
tree.

5.3 Table String Layout (T)
Text extracted from tables loses its visual layout as
a table but still preserves implicit layout through
its string patterns. Tables tend to convey the same

125



type of data along the same column or row. For ex-
ample, if a column in a table reports numbers, it is
more likely to contain numeral tokens in the same
location of the lines of the table in parallel. Hence,
a block of lines will more likely be a table if they
share the same pattern. We encode each line by
replacing each token as either S (String) or N (Nu-
meral). We then compute the edit distance among
neighboring lines weighted by language modeling
probability computed from the table corpus (Equa-
tion 1, 2).

Ptable(li) ∝ Ptable(li|li−1)
= TableLanguageModel(li)·

editDistance(encode(li), encode(li−1)) (1)

TableLanguageModel(li)
= Πn

j (P (encode(ti,j+1)|encode(ti,j)) (2)

where li refers to a i-th line in a document, ti,j
refers to a j-th token in li.

5.4 Word Embedding Feature (E)

We train word embeddings using TWORD2V EC us-
ing WORD2VEC (Mikolov et al., 2013). The train-
ing corpus contained 278,719 words. Since we
do a line-based prediction, we need a vector that
represents the line, not each word. We consider
three ways of computing a line embedding vector:
(1) by averaging the vector of the words, (2) by
computing a paragraph vector introduced in (Le
and Mikolov, 2014), and (3) by using both.

5.5 Sequential Feature (S)

The sequential nature of the lines is also an impor-
tant feature because the component most likely oc-
curs over a block of contiguous lines. We train two
models. The first model uses the annotation for the
previous line’s class. We then train another model
using the previous line’s predicted label, which is
the output of the first model.

6 Classification Experiments

We use the Liblinear Support Vector Machine
(SVM) (Chang and Lin, 2011) classifier for train-
ing and run 5-fold cross-validation for evaluation.
To improve the robustness of structured prediction,
we adopt a learning to search algorithm known as
DAGGER to SVM (Ross et al., 2010). We first intro-
duce two baselines to compare the accuracy against
our statistical model.

6.1 Baselines
Since no existing work is directly applicable to
our scenario, we consider two straightforward base-
lines.

• Weighted Random (W-Random)
This assigns the random component class to
each line. Instead of uniform random predic-
tion, we made more educated guesses using
the ratio of components known from the anno-
tated dataset (Table 2).

• Component Language Modeling (CLM)
Among the five language models of the five
component classes (the four non-textual com-
ponents and text component) generated from
the annotations, we predict the component for
each line by assigning the component whose
language model gives the highest probability
to the line.

6.2 Classification Result
We first conduct single-domain classification. An-
notations within each dataset, TSLIDES and TACL

are split for training and testing using 5-fold cross
validation scheme. Table 3 reports F1-score for pre-
diction of the four components in the two dataset
using our method as well as baselines.

Precision Recall F1-score

TABLE 94.60 76.39 84.53
CODE 89.56 84.01 86.69

FORMULA 85.07 79.32 82.10
MISC 85.59 90.24 87.86
TEXT 97.76 98.79 98.27

Table 4: Multi-domain classification improves the
single-domain classification in Table 3. Identifica-
tion of categories with particularly low accuracy in
each datasets (TABLE and FORMULA in TSLIDES

and CODE in TACL) are improved to be as good as
the other categories.

The proposed method dramatically increased the
prediction accuracies for all of the components
against the baselines. CLM baseline showed the
highest accuracy on CODE among the four cate-
gories in both datasets. Because pseudo-code use
more controlled vocabulary (e.g., reserved words
and common variable names), the language itself
becomes distinctive characteristics. We also in-
clude the numbers reported by Tuarob et al. (2013)

126



TSLIDES TACL

TABLE CODE FORMULA MISC TABLE CODE FORMULA MISC

W-Random 1.69 14.62 2.82 10.57 4.15 0.62 4.44 6.08
CLM 5.41 28.62 0.00 10.47 13.10 16.45 10.32 5.18

Proposed Method 67.89 90.22 29.09 89.63 86.58 63.70 80.98 87.63
PC-CB (Tuarob et al., 2013) N/A 75.95 N/A N/A N/A 75.95 N/A N/A

Table 3: Single-domain Classification Result in F1-score: Proposed method is much better than baselines
for classifying unnatural language. Note that we borrowed the F1-score reported on their dataset for
reference. The number is not directly comparable to other numbers since the datasets are different.

for comparison. Since their dataset was 258 PDF
scholarly articles, TACL is more a comparable
dataset than TSLIDES , but our training set is much
smaller than their dataset. However, their number
reported on Table 3 is not directly comparable to
other numbers because the numbers are on different
datasets.

In TSLIDES , the classification F1-score for FOR-
MULA is relatively low as 29.09% compared to
the other components in the same dataset, and also
compared to the FORMULA prediction in TACL

(80.98%). This is due to too small amount of train-
ing data (only 0.5% of FORMULA in TACL), which
is overcome in TSLIDES that contain 5% of FOR-
MULA training data (refer to Table 2).

In the proposed method, classification of CODE

and MISC was significantly improved in TSLIDES

(around 90%), while that of TABLE and FOR-
MULA was improved in TACL (over 80%). This
shows the complementary nature between the two
datasets, which suggests that a combination of both,
Tcombined, would further improve classification per-
formance. Table 4 shows the multi-domain clas-
sification result using Tcombined, in which all four
categories are identified with an F1-score higher
than 80%.

6.3 Feature Analysis

We conducted feature analysis to understand the
impact of single feature and their combination. We
started from single features and incrementally com-
bined them to observe the performance (Figure 5).
Features are added in a greedy fashion such that a
feature that gives the higher accuracy when used
alone is added first.

We first compare the three ways of computing
sentence vector features mentioned in Section 5
(Figure 4). When we experiment with only embed-
ding features, averaging word vectors performed
9-12 times better than paragraph vectors. When

Figure 4: Three ways of computing sentence em-
bedding vector

both features were used, there are some gains in
CODE and MISC but losses in TABLE and FOR-
MULA. However, when we experiment with all the
other features in addition to embedding features,
losses were covered by the other features such that
combined vectors give overall the highest perfor-
mances.

N-gram (N) features was the most powerful fea-
ture with 68% of F1-score when used alone. The
next useful features are parsing feature (P), table
layout (T), and embedding features (E) in order
for TABLE, while embedding vectors were more
effective than parsing feature for CODE (Figure 5).

7 Removal Effects of Unnatural
Language on NLP tools

We observe how removal of unnatural language
from documents affects the performance of two
NLP tools: document similarity and document clus-
tering. For the set of experiments, we prepared a
gold standard clustering for each dataset, CDSA

and COS .

127



Figure 5: Feature analysis for TABLE and FOR-
MULA identification in Tcombined. N: N-gram, E:
Embedding, P: Parsing, T: Table String Layout, S:
Sequential.

7.1 Document Similarity

If two documents are similar, they must be topically
relevant to each other. A good similarity measure
should reflect that; two topically relevant docu-
ments should have a high similarity score. To test
whether the computed similarity reflects the actual
topic relevance better once the unnatural language
is removed, we conduct regression analysis.

We convert the gold standard clustering to pair-
wise binary relevance. If two documents are in the
same ground-truth cluster, they are relevant, and
otherwise irrelevant. We then fit a log-linear model
in R for predicting binary relevance from the cosine
similarity of document pairs.

Regression models fitted in R are evaluated using
AIC (Akaike, 1974). The AIC is a measure used as
a means for model selection, which measures the
relative quality of statistical models learned from
the given data. When AIC is smaller, the fit is better
and the complexity of the model is smaller since
it requires fewer parameters. Table 5 shows that
AIC was reduced by 53 and 118 respectively on the
models trained with documents whose unnatural
language blocks are removed, compared to the orig-
inal documents. Since AIC does not provide a test
for a model, AIC does not suggest anything about
the quality of the model in an absolute sense, but
relative quality. From this result, we can conclude
that cosine similarity can fit a better model that
predicts documents’ topic relevance with signifi-
cance after unnatural language blocks have been
removed.

AIC(Doriginal) AIC(Dremoved) Improvement
CDSA -40975 -41028 -53
COS -61404 -61522 -118

Table 5: The statistical model is trained better
with documents whose unnatural language cate-
gories are removed (Dremoved) than the model with
the original documents (Doriginal) in both datasets.
Smaller AIC scores imply better models.

Figure 6: Clustering result on two datasets, CDSA

(top) and COS (bottom). X axis referes to the the
size of document vector K, which controls the top-
K TF-IDF terms included from documents. Y axis:
Clustering F1-score.

7.2 Document Clustering

Comparing general clustering performance on two
document sets is tricky because clustering perfor-
mance varies by many factors, e.g., clustering algo-
rithm, similarity function, document representation,
and parameters. To make a safe claim that cluster-
ing quality of one set of documents is better than
the other, clustering on one set should consistently
outperform the other under many different settings.
To validate this, we perform clustering experiments
with multiple settings such as different document
vector size and and initialization schemes.

In this experiment, we consider seeded K-means
clustering algorithm (Basu et al., 2002) for teach-
ing documents. In our application scenario, users
initially submit a topic list (e.g., syllabus) of the
course. Then lecture slides are grouped into the
given topic cluster. Depending on users’ interac-
tion level, we consider a semi-interactive scenario
where users only provide a topic list, and a fully-
interactive setting where users not only provide a
topic list but also provide an answer document for
each topic cluster, further specifying the intended
topic.

128



Input: Set of document vectors D =
{d1, ...dn}, di ∈ RT , set of seed vectors S =
{s1, ...sk}, user-provided topic keywords
vector T = {t1, ...tk}
Result: Disjoint K partitioning of D into Ck

l=1

Seed Initialization:
if Topic-keywords seeding then

si = ti

if Top-1 document seeding then
si = dj ,
argmaxj(COSINESIMILARITY(ti, dj))

if User-selected document seeding then
si =DOCSELECTEDBYUSER(ti)

while convergence do
K-means clustering document selection
process

Algorithm 1: Seeded K-means with User Interac-
tion

In a semi-interactive setting, topic keywords are
sparse seeds as they usually consist of two or three
words. Therefore, we expand the topic keywords
by finding the top-1 document retrieved from the
keywords and use it as a seed. For experiments,
we simulate the fully-interactive setting; instead of
having an actual user to pick an answer document,
we use an answer document randomly chosen from
a gold cluster. The seeded K-means clustering
algorithm with three interactive seeding schemes
is described in Algorithm 1.

A simulated setting is more realistic when the
selected document is suggested to the user as the
top or near-top choice. In our dataset, 60% of
the selected documents were ranked in top 10 in
CDSA, and 13% of the selected documents were
ranked in top 10 in COS , which implies that the
simulated setting in CDSA was more realistic than
in CDSA. For top-1 document seeding, 64% and
78% of document seeds matched with the gold
standard in CDSA and COS , respectively.

Figure 6 shows the clustering result of original
documents (Doriginal) and documents whose un-
natural language blocks are removed (Dremoved),
with three different seeding schemes over two lec-
ture slide datasets. In CDSA, Dremoved consistently
outperformed with all three seeding schemes. The
clustering performed the best with Dremoved when
top-1 document was used as a seed. Overall, in
CDSA, clustering was improved 94% of the time
with the maximum absolute gain of 14.7% and
the average absolute gain of 4.6%. The average

absolute loss was 0.8% when 6% of the time the
removal of unnatural language made the cluster-
ing worse. In COS , clustering was improved 73%
of the times with the maximum absolute gain of
11.4% and the average absolute gain of 3.9%. The
average absolute loss was 1.7%. Our results sug-
gest that removal of unnatural language blocks can
significantly improve clustering most of the times
with a bigger gain than occasional losses.

8 Conclusion

In this paper, we argued that unnatural language
should be distinguished from natural language in
technical documents for NLP tools to work effec-
tively. We presented an approach to the identifi-
cation of four types of unnatural language blocks
from plain text, which is not dependent on docu-
ment format. The proposed method extracts five
sets of line-based textual features, and had an F1-
score that was above 82% for the four categories of
unnatural language. We showed how existing NLP
tools can work better on documents if we remove
unnatural language from documents. Specifically,
we demonstrated removing unnatural language im-
proved document clustering in many settings by
up to 15% and 11% at best, while not significantly
hurting the original clustering in any setting.

Acknowledgments

This work was supported in part by the Center
for Intelligent Information Retrieval and in part by
NSF grant #IIS-1217281. Any opinions, findings
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect those of the sponsor.

References
Hirotugu Akaike. 1974. A new look at the statisti-

cal model identification. Automatic Control, IEEE
Transactions on, 19(6):716–723.

Sugato Basu, Arindam Banerjee, and Raymond J.
Mooney. 2002. Semi-supervised clustering by seed-
ing. In Proceedings of the Nineteenth International
Conference on Machine Learning, ICML ’02, pages
27–34, San Francisco, CA, USA. Morgan Kaufmann
Publishers Inc.

Kam-Fai Chan and Dit-Yan Yeung. 2000. Mathemati-
cal expression recognition: A survey.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology,
2:27:1–27:27.

129



Jinho D. Choi and Andrew McCallum. 2013.
Transition-based dependency parsing with se-
lectional branching. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics, ACL’13, pages 1052–1062.

Christopher Clark and Santosh Divvala. 2015. Looking
beyond text: Extracting figures, tables and captions
from computer science papers. In AAAI Workshops.

Afef Kacem, Abdel Belaïd, and Mohamed Ben Ahmed.
2001. Automatic extraction of printed mathematical
formulas using fuzzy logic and propagation of con-
text. IJDAR, 4(2):97–108.

Shah Khusro, Asima Latif, and Irfan Ullah. 2015. On
methods and tools of table detection, extraction and
annotation in pdf documents. J. Inf. Sci., 41(1):41–
57.

Michael Kohlhase and Ioan Sucan. 2006. A search en-
gine for mathematical formulae. In AISC, volume
4120 of Lecture Notes in Computer Science, pages
241–253. Springer.

Quoc V. Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. CoRR,
abs/1405.4053.

Kristina Lerman, Craig Knoblock, and Steven Minton.
2001. Automatic data extraction from lists and ta-
bles in web sources. In In Proceedings of the work-
shop on Advances in Text Extraction and Mining
(IJCAI-2001), Menlo Park. AAAI Press.

Xiaoyan Lin, Liangcai Gao, Zhi Tang, Xiaofan Lin,
and Xuan Hu. 2011. Mathematical Formula Iden-
tification in PDF Documents. In International Con-
ference on Document Analysis and Recognition, IC-
DAR, pages 1419–1423.

Ying Liu, Kun Bai, Prasenjit Mitra, and C. Lee Giles.
2007. TableSeer: automatic table metadata extrac-
tion and searching in digital libraries. In Joint Con-
ference on Digital Library, JCDL, pages 91–100.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Hwee Tou Ng, Chung Yong Lim, and Jessica Li Teng
Koo. 1999. Learning to recognize tables in free
text. In Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics on
Computational Linguistics, ACL ’99, pages 443–
450, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

L. O’Gorman. 1993. The document spectrum for page
layout analysis. IEEE Trans. Pattern Anal. Mach.
Intell., 15(11):1162–1173.

David Pinto, Andrew McCallum, Xing Wei, and
W. Bruce Croft. 2003. Table extraction using con-
ditional random fields. In Proceedings of the 26th

Annual International ACM SIGIR Conference on Re-
search and Development in Informaion Retrieval,
SIGIR ’03, pages 235–242, New York, NY, USA.
ACM.

Stéphane Ross, Geoffrey J. Gordon, and J. Andrew
Bagnell. 2010. No-regret reductions for imita-
tion learning and structured prediction. CoRR,
abs/1011.0686.

Anikó Simon, Jean-Christophe Pret, and A. Peter John-
son. 1997. A fast algorithm for bottom-up document
layout analysis. IEEE Trans. Pattern Anal. Mach. In-
tell., 19(3):273–277.

Masakazu Suzuki, Fumikazu Tamari, Ryoji Fukuda,
Seiichi Uchida, and Toshihiro Kanahori. 2003.
Infty- an integrated ocr system for mathematical doc-
uments. In Proceedings of ACM Symposium on
Document Engineering 2003, pages 95–104. ACM
Press.

Suppawong Tuarob, Sumit Bhatia, Prasenjit Mitra,
and C. Lee Giles. 2013. Automatic detection of
pseudocodes in scholarly documents using machine
learning. In Proceedings of the 2013 12th Interna-
tional Conference on Document Analysis and Recog-
nition, ICDAR ’13, pages 738–742, Washington,
DC, USA. IEEE Computer Society.

Richard Zanibbi, Dorothea Blostein, and R. Cordy.
2004. A survey of table recognition: Models, ob-
servations, transformations, and inferences. Int. J.
Doc. Anal. Recognit., 7(1):1–16.

130


