
Proceedings of the 3rd Workshop on Noisy User-generated Text, pages 31–39
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

To Normalize, or Not to Normalize:
The Impact of Normalization on Part-of-Speech Tagging

Rob van der Goot Barbara Plank Malvina Nissim
Center for Language and Cognition, University of Groningen, The Netherlands

{r.van.der.goot,b.plank,m.nissim}@rug.nl

Abstract

Does normalization help Part-of-Speech
(POS) tagging accuracy on noisy, non-
canonical data? To the best of our knowl-
edge, little is known on the actual impact
of normalization in a real-world scenario,
where gold error detection is not available.
We investigate the effect of automatic nor-
malization on POS tagging of tweets. We
also compare normalization to strategies
that leverage large amounts of unlabeled
data kept in its raw form. Our results show
that normalization helps, but does not add
consistently beyond just word embedding
layer initialization. The latter approach
yields a tagging model that is competitive
with a Twitter state-of-the-art tagger.

1 Introduction

Non-canonical data poses a series of challenges
to Natural Language Processing, as reflected in
large performance drops documented in a variety
of tasks, e.g., on POS tagging (Gimpel et al., 2011;
Hovy et al., 2014), parsing (McClosky, 2010; Fos-
ter et al., 2011) and named entity recognition (Rit-
ter et al., 2011). In this paper we focus on POS tag-
ging and on a particular source of non-canonical
language, namely Twitter data.

One obvious way to tackle the problem of pro-
cessing non-canonical data is to build taggers that
are specifically tailored to such text. A prime ex-
ample is the ARK POS tagger, designed especially
to process English Twitter data (Gimpel et al.,
2011; Owoputi et al., 2013), on which it achieves
state-of-the-art results. One drawback of this ap-
proach is that non-canonical data is not all of the
same kind, so that for non-canonical non-Twitter
data or even collections of Twitter samples from

JJ NN NN NNS
new pix comming tomoroe
JJ NNS VBG NN
new pictures coming tomorrow

Figure 1: Example tweet from the test data, raw
and normalized form, tagged with Stanford NLP.

different times, typically a new specifically dedi-
cated tool needs to be created.

The alternative route is to take a general purpose
state-of-the-art POS tagger and adapt it to success-
fully tag non-canonical data. In the case of Twitter,
one way to go about this is lexical normalization.
It is the task of detecting “ill-formed” words (Han
and Baldwin, 2011) and replacing them with their
canonical counterpart. To illustrate why this might
help, consider the following tweet: “new pix com-
ming tomoroe”. An off-the-shelf system such as
the Stanford NLP suite1 makes several mistakes
on the raw input, e.g., the verb ‘comming’ as well
as the plural noun ‘pix’ are tagged as singular
noun. Instead, its normalized form is analyzed
correctly, as shown in Figure 1.

While being a promising direction, we see at
least two issues with the assessment of normal-
ization as a successful step in POS tagging non-
canonical text. Firstly, normalization experiments
are usually carried out assuming that the tokens
to be normalized are already detected (gold er-
ror detection). Thus little is known on how nor-
malization impacts tagging accuracy in a real-
world scenario (not assuming gold error detec-
tion). Secondly, normalization is one way to go
about processing non-canonical data, but not the
only one (Eisenstein, 2013; Plank, 2016). Indeed,
alternative approaches leverage the abundance of
unlabeled data kept in its raw form. For instance,

1http://nlp.stanford.edu:8080/parser/
index.jsp, accessed June 1, 2017.

31

such data can be exploited with semi-supervised
learning methods (Abney, 2007). The advantage
of this approach is that portability could be suc-
cessful also towards domains where normalization
is not necessary or crucial. These observations
lead us to the following research questions:

Q1 In a real-world setting, without assuming
gold error detection, does normalization help
in POS tagging of tweets?

Q2 In the context of POS tagging, is it more ben-
eficial to normalize input data or is it better to
work with raw data and exploit large amounts
of it in a semi-supervised setting?

Q3 To what extent are normalization and semi-
supervised approaches complementary?

To answer these questions, we run a battery of
experiments that evaluate different approaches.
Specifically:

1. We study the impact of normalization on POS
tagging in a realistic setup, i.e., we compare
normalizing only unknown words, or words
for which we know they need correction; we
compare this with a fully automatic normal-
ization model (Section 3).

2. We evaluate the impact of leveraging large
amounts of unlabeled data using two ap-
proaches: a) deriving various word rep-
resentations, and studying their effect for
model initialization (Section 4.1); b) apply-
ing a bootstrapping approach based on self-
training to automatically derive labeled train-
ing data, evaluating a range of a-priori data
selection mechanisms (Section 4.2).

3. We experiment with combining the most
promising methods from both directions, to
gain insights on their potential complemen-
tarity (Section 5).

2 Experimental Setup

We run two main sets of POS tagging experiments.
In the first one, we use normalization in a variety
of settings (see Section 3). In the second one, we
leverage large amounts of unlabeled data that does
not undergo any normalization but is used as train-
ing in a semi-supervised setting (Section 4). For
all experiments we use existing datasets as well as
newly created resources, cf. Section 2.1. The POS
model used is described in Section 2.2.

Figure 2: Labeled data for POS and normalization.
Gray area: no gold normalization layer available.

2.1 Data

The annotated datasets used in this study origi-
nate from two sources: Owoputi et al. (2013)
and Han and Baldwin (2011), which we will re-
fer to as OWOPUTI and LEXNORM, respectively.
All datasets used in this study are annotated with
the 26 Twitter tags as described in (Gimpel et al.,
2011).2 OWOPUTI was originally annotated with
POS labels, whereas LEXNORM was solely anno-
tated for normalization. Li and Liu (2015) added a
POS tag layer to the LEXNORM corpus, and a nor-
malization layer to 798 Tweets from OWOPUTI,
which we split into a separate DEV and TEST part
of 249 and 549 Tweets, respectively, keeping the
original POS labels. We use DEV throughout all
experiments during development, and test our fi-
nal best system on the held-out test sets (both con-
taining 549 tweets). An illustration of the data is
given in Figure 2.

For the different improvements to our baseline
tagger, we need raw data from the target domain
(Twitter). In addition, the normalization model
needs unlabeled canonical data. We use a snap-
shot of English Wikipedia as unlabeled canonical
data source. To get raw data for the social me-
dia domain, we collected Tweets during the whole
year of 2016 by means of the Twitter API. We
only collected Tweets containing one of the 100
frequent words in the Oxford English Corpus3 as
a rough language filter. This resulted in a dataset
of 760,744,676 English Tweets. We do some very
basic pre-processing in which we replace urls and
usernames by<URL> and<USERNAME>, and
remove duplicate tweets. Because of different cas-
ing strategies, we always apply a simple postpro-
cessing step to ‘rt’ (retweet) tokens.

2Some tags are rare, like M and Y. In fact, M occurs only
once in TEST L; Y never occurs in DEV and only once in
TEST L and three times in TEST O. Therefore our confusion
matrices (over DEV and TEST O, respectively) have different
number of labels on the axes.

3https://en.wikipedia.org/wiki/Most_
common_words_in_English

32

2.2 Model

We use BILTY, an off-the-shelf bi-directional
Long Short-Term Memory (bi-LSTM) tagger
which utilizes both word and character embed-
dings (Plank et al., 2016). The tagger is trained
on 1,576 training tweets (Section 2.1). We tune
the parameters of the POS tagger on the devel-
opment set to derive the following hyperparam-
eter setup, which we use throughout the rest of
the experiments: 10 epochs, 1 bi-LSTM layer,
100 input dimensions for words, 256 for charac-
ters, σ=0.2, constant embeddings initializer,
Adam trainer, and updating embeddings during
backpropagation.4

3 To Normalize

First we evaluate the impact of normalization on
the POS tagger.

3.1 Model

We use an in-house developed normalization
model (van der Goot and van Noord, 2017).5 The
model is based on the assumption that differ-
ent normalization problems require different han-
dling. First, since unintentional disfluencies can
often be corrected by the use of a spell checker,
the normalization model exploits Aspell6. Sec-
ond, since intentional disfluencies typically have
a much larger edit distance, the normalization
system uses word embeddings (Mikolov et al.,
2013);7 words close to the non-canonical word in
the vector space are considered potential normal-
ization candidates. On top of that, the model uses a
lookup list generated from the training data, which
works especially well for slang.

Features originating from the ranking are com-
bined with uni- and bi-gram probabilities from
Wikipedia data as well as from raw Tweets (Sec-
tion 2.1). A random forest classifier (Breiman,
2001) is then used to rank the candidates for each
word. Note that the original word is also a can-
didate; this enables the model to handle error de-
tection, which is not always the case in models of
previous work.

4Adam was consistently better than sgd on this small
training dataset. More LSTM layers lowered performance.

5Available at: https://bitbucket.org/
robvanderg/monoise

6www.aspell.net
7Using the tweets from Section 2.1 and the follow-

ing parameters: -size 400 -window 1 -negative
5 -sample 1e-4 -iter 5

We train the normalization model on
2,577 tweets from Li and Liu (2014). Our
model (van der Goot and van Noord, 2017)
achieves state-of-art performance on the erro-
neous tokens (using gold error detection) on the
LexNorm dataset (Han and Baldwin, 2011) as
well as state-of-art on another corpus which is
usually benchmarked without assuming gold error
detection (Baldwin et al., 2015). We refer the
reader to the paper (van der Goot and van Noord,
2017) for further details.

To obtain a more detailed view of the effect of
normalization on POS tagging, we investigate four
experimental setups:

• normalizing only unknown words;

• considering all words: the model decides
whether a word should be normalized or not;

• assuming gold error detection: the model
knows which words should be normalized;

• gold normalization; we consider this a theo-
retical upper bound.

Traditionally, normalization is used to make the
test data more similar to the train data. Since we
train our tagger on the social media domain as
well, the normalization of only the test data might
actually result in more distance between the train
and test data. Therefore, we also train the tagger
on normalized training data, and on the union of
the normalized and the original training data.

3.2 Results
The effects of the different normalization strate-
gies on the DEV data are shown in Table 1.
Throughout the paper we report average accura-
cies over 5 runs including standard deviation.

The first row shows the effect of normalization
at test-time only. From these results we can con-
clude that normalizing all words is beneficial over
normalizing only unknown words; this shows that
normalization has a positive effect that goes be-
yond changing unknown words.

The results of using the gold normalization sug-
gest that there is still more to gain by improving
the normalization model. In contrast, the results
for gold error detection (GOLDED) show that er-
ror detection is not the main reason for this dif-
ference, since the performance difference between
ALL and GOLDED is relatively small compared to
the gap with GOLD.

33

↓ Train→ Test RAW UNK ALL GOLDED GOLD

RAW 82.16 (±.33) 83.44 (±.25) 84.06 (±.32) 84.67 (±.23) 86.71 (±.25)

ALL 80.42 (±.71) 81.99 (±.64) 83.87 (±.28) 84.05 (±.31) 86.11 (±.14)
UNION 81.54 (±.27) 83.11 (±.31) 84.04 (±.34) 84.42 (±.24) 86.35 (±.17)

Table 1: Results of normalization (N) on DEV (macro average and stdev over 5 runs). RAW: no normal-
ization, ALL: automatic normalization, UNK: normalize only unknown words, GOLDED: use gold error
detection, GOLD: use gold normalization (Oracle). Row: whether training data is normalized. UNION

stands for the training set formed by the union of both normalized and original raw data.

Considering the normalization of the training
data, we see that it has a negative effect. The table
suggests that training on the raw (non-normalized)
training data works best. Adding normalized data
to raw data (UNION) does not yield any clear
improvement over RAW only, but requires more
training time. For the test data, normalization is
instead always beneficial.

To sum up, normalization improved the base
tagger by 1.9% absolute performance on the devel-
opment data, reaching 84.06% accuracy. Overall,
our state-of-art normalization model only reaches
approximately 50% of the theoretical upper bound
of using gold normalization. We next investigate
whether using large amounts of unlabeled data can
help us to obtain a similar effect.

4 Or Not to Normalize

An alternative option to normalization is to leave
the text as is, and exploit very large amounts of
raw data via semi-supervised learning. The ratio-
nale behind this is the following: provided the size
of the data is sufficient, a model can be trained to
naturally learn the POS tags of noisy data.

4.1 Effect of Word Embeddings

An easy and effective use of word embeddings in
neural network approaches is to use them to ini-
tialize the word lookup parameters.

We train a skip-gram word embeddings model
using word2vec (Mikolov et al., 2013) on 760M
tweets (as described in Section 3.1). We also ex-
periment with structured skip-grams (Ling et al.,
2015), an adaptation of word2vec which takes
word order into account. It has been shown to
be beneficial for syntactically oriented tasks, like
POS tagging. Therefore we want to evaluate struc-
tured skip-grams as well.

The normalization model uses word embed-
dings with a window size of 1; we compare this

with the default window size of 5 for structured
skip-grams.

Results Table 2 shows the results of using the
different skip-gram models for initialization of the
word embeddings layer. Structured skip-grams
perform slightly better, confirming earlier find-
ings. Using a smaller window is more benefi-
cial, probably because of the fragmented nature of
Twitter data.

Structured skip-grams of window size 1 result
in the best embedding model. This results in an
improvement from 82.16% (Table 1) to 88.51%
accuracy. This improvement is considerably larger
than what obtained by normalization (82.16).

4.2 Effect of Self-training

We work with a rather small training set, which is
all that is available to us in terms of gold data. This
is due to the use of an idiosyncratic tagset (Gim-
pel et al., 2011). Adding more data could be ben-
eficial to the system. To get an idea of how much
effect extra annotated data could potentially have
on POS tag accuracy, we plot the performance us-
ing smaller amounts of gold training data in Fig-
ure 3. We can see that there is still a slight up-
ward trend; however, even when adding manually
annotated data, the performance sometimes drop,
especially after adding 55% of the training data.

To create more training data, we use an iterative
indelible self-training setup (Abney, 2007) to ob-
tain automatically labeled data. Specifically: 100

WINDOW SIZE

1 5

SKIPG. 88.14 (±.30) 87.56 (±.08)
STRUCT.SKIPG. 88.51 (±.24) 88.11 (±.49)

Table 2: Accuracy on raw DEV: various pre-
trained skip-gram embeddings for initialization.

34

Figure 3: Effect of increasing amounts of training
data (100% training data == 1,576 tweets).

tweets are tagged, they get added to the training
data, and after this a new model is trained.

While we do not adopt any filtering strategy
on the predictions (e.g., confidence thresholds),
we do explore different strategies of a-priori data
selection, from two corpora: raw tweets (Sec-
tion 3.1), and the English Web Treebank (Petrov
and McDonald, 2012).

For the English Web Treebank (EWT), we di-
rectly use raw text. Moreover, because the texts
in the EWT are distributed by domains, i.e., an-
swers, emails, weblogs, newsgroups, and reviews,
we preserve this information and keep the data
separate according to their domain to see whether
adding data from the different domains can pro-
vide a more useful signal.

For the raw tweets, we compare different strate-
gies of sampling. In addition to selecting random
tweets, we experimented with selections aimed at
providing the tagger with specific information that
we knew was missing or confusing in the origi-
nal training data. One strategy thus was to include
tweets that contained words occurring in the de-
velopment data but not in the training data. Note
that this would result in a very slow tagger in a
real-world situation, since the tagger needs to be
retrained for every new unknown word. Another
strategy was based on a preliminary analysis of er-
rors on the development data: from the confusion
matrix we observed that a frequently confounded
tag was proper noun. Considering named entities
as adequate proxies for proper nouns in this con-
text, we also experimented with adding tweets that
contained named entities. The detection of named
entities was performed using a Twitter-specific
named entity recognizer (Ritter et al., 2011). For
control and comparison, we also collect additional

training data where only tweets that do not con-
tain named entities are selected. Hence, we end up
with the following four sampling strategies:

• random sampling

• tweets containing words which occur in the
development data, but not in the training data

• tweets containing named entities

• tweets not containing named entities

Results Adding more automatically-labeled
data did not show any consistent improvement.
This holds for both selection methods regarding
named entities (presence/absence of NERs) and
different domains of the Web treebank. Therefore
we do not elaborate further here. We hypothesize
that post-selection based on e.g., confidence
sampling, is a more promising direction. We
consider this future work.

5 Normalizing and Not Normalizing

In the previous sections, we explored ways to
improve the POS tagging of Tweets. The most
promising directions were initializing the tagger
with pre-trained embeddings and using normaliza-
tion. Self-training was not effective. In this Sec-
tion, we report on additional experiments on the
development data aimed at obtaining insights on
the potential of combining these two strategies.

5.1 Consequences of Normalization

BILTY +NORM +VECS +COMB

CANONICAL 86.1 85.6 91.2 90.1
NON-CANON. 50.8 70.3 71.1 78.5

Table 3: Effect of different models on
canonical/non-canonical words.

Table 3 shows the effect of the two approaches
on the two subsets of tokens (canonical/non-
canonical) on the DEV set. Word embeddings have
a higher impact on standard, canonical tokens. It
is interesting to note that word embeddings and
normalization both have a similar yet complemen-
tary effect on the words to be normalized (non-
canonical). The improvements on non-canonical
words seem to be complementary. The combined
model additionally improves on words which need
normalization, whereas it scores almost 1% lower
on canonical words. This suggests that both strate-
gies have potential to complement each other.

35

Figure 4: Differences in numbers of errors on de-
velopment data between best normalization setting
and best word embeddings. Dark means normal-
ization makes more errors.

5.2 Performance per POS

We compare the type of errors made by the best
normalization setting versus the best word embed-
dings setting in a confusion matrix which displays
the difference in errors in Figure 4. To recall: the
best normalization setting was to use the raw train-
ing data, normalizing all words at test time; the
best word embeddings model was a structured skip
gram embeddings model with a window of 1.

In the confusion graph it becomes clear that nor-
malization results in over-predicting nouns (N),
which often get confused with verbs (V), adjec-
tives (A) and proper nouns (ˆ). Normalization
is better at recognizing prepositions (P), which it
confuses less with numerals ($) compared to the
embedding model. This is due to normalizing ‘2’
and ‘4’. Instead, the embedding model has bet-
ter predictions for proper nouns, nouns and verbs,
presumably due to the higher coverage.

6 Evaluation

In this section we report results on the test data, as
introduced in Section 2.1.

Our main aim is to compare different ap-
proaches for successfully applying a generic state-
of-the-art POS tagger to Twitter data. Therefore

! # $ & , @ A D E G L M N O P R S T U V X Y Z ^ ~

Gold label

!
#
$
&
,

@
A
D
E
G
L
M
N
O
P
R
S
T
U
V
X
Y
Z
^
~

P
re

d
ic

te
d
 l
a
b
e
l

20

15

10

5

0

5

10

15

20

Figure 5: Comparison of errors per POS between
our best model and the ARK tagger on TEST O;
darker means our system performs better.

we have to assess the contribution of the two meth-
ods we explore (normalization and using embed-
dings) and see how they fare, not only to each
other but also in comparison to a state-of-the-art
Twitter tagger. We use the ARK tagger (Owoputi
et al., 2013) and retrain it on our dataset for direct
comparison with our models. The ARK system is
a conditional random fields tagger, which exploits
clusters, lexical features and gazetteers.

Table 4 shows the performance of our best mod-
els and the ARK tagger on the test datasets.

Embeddings work considerably better than nor-
malization, which confirms what we found on the
DEV data. The combined approach yields the
highest accuracy over all evaluation sets, however,
it significantly differs from embeddings only on
TEST L. This can be explained by our earlier ob-
servation (cf. Table 3), which shows that COMB

yields the highest improvement on non-canonical
tokens, but the same does not hold for canonical
tokens. Notice that TEST L does indeed contain
the highest proportion of non-canonical tokens.

Our best results on all datasets are comparable
to the state-of-the-art results achieved by the ARK
tagger. In Figure 5 we compare the errors made
by our system (COMB in Table 4) and ARK on
TEST O, which is the test set on which both tag-

36

DEV TEST O TEST L

% non-canonical tokens 11.75% 10.95% 12.09%

BILTY 82.16 (±.33) 83.81 (±.23) 80.78 (±.32)
+NORM 84.06 (±.32) 84.73 (±.19) 84.61 (±.21)
+EMBEDS 88.51 (±.24) 90.02 (±.35) 88.53 (±.41)
+COMB 88.89 (±.25) 90.25 (±.19) 89.63 (±.13)

ARK 89.08 90.65 89.67

Table 4: Results on test data (average over 5 runs) compared to ARK-tagger (Owoputi et al., 2013).
Bold: best result (in case of multiple: no stat.significant difference according to randomization test).

gers obtain the highest performance.
The ARK tagger has difficulties with preposi-

tions (P), which are mistagged as numerals ($).
These are almost all cases of ‘2’ and ‘4’, which
represent Twitter slang for ‘to’ and ‘for’, respec-
tively. Our system performs a lot better on these,
due to the normalization model as already ob-
served earlier. Still regarding prepositions, ARK
is better at distinguishing them from adverbs (R),
which is a common mistake for our system. Our
tagger makes more mistakes on confusing proper
nouns (ˆ) with nouns (N) in comparison to ARK.

7 Related Work

Theoretically, this works fits well within the
debate on normalization vs domain adaptation
(Eisenstein, 2013). For a practical comparison,
the work most related to ours is that of Li and
Liu (2015). They propose a joint model for nor-
malization and POS tagging. The candidate lists
of six different normalization models, including
spell checkers and machine translation systems,
are combined with all their possible POS tags as
found by the ARK Twitter POS tagger. Note that
they use gold error detection, while we perform
fully automatic normalization. These combined
units of words and POS tags are then used to build
joint Viterbi decoding (Viterbi, 1973). The opti-
mal path in this decoding does not only contain
a sequence of normalized tokens, but also a se-
quence of POS tags. This joint model proves to be
beneficial for both tasks.

Work on normalization for improving POS tag-
ging has also been done on other languages. For
example, Ljubešić et al. (2017) show that perform-
ing normalization, in addition to using external re-
sources, can remove half of the errors of a stan-
dard POS tagger for South Slavic languages. Quite
surprisingly, instead, of all systems participating

in shared tasks on POS tagging of Twitter data
for both Italian (Bosco et al., 2016) and German
(Beißwenger et al., 2016), none of the participat-
ing systems incorporated any normalization strat-
egy before performing POS tagging.

Finally, normalization for POS tagging is cer-
tainly not limited to non-canonical data stemming
from social media. Indeed, another stream of re-
lated work is focused on historical data, usually
originating from the 15th till the 18th century. The
motivation behind this is that in order to apply cur-
rent language processing tools, the texts need to be
normalized first, as spelling has changed through
time. Experiments on POS tagging historical data
that was previously normalized have been inves-
tigated for English (Yang and Eisenstein, 2016),
German (Bollmann, 2013), and Dutch (Hupkes
and Bod, 2016; Tjong Kim Sang, 2016). In this
latter work, different methods of ‘translating’ his-
torical Dutch texts to modern Dutch are explored,
and a vocabulary lookup-based approach appears
to work best.8 In this paper we focused on normal-
ization and POS tagging for Twitter data only.

8 Conclusion

We investigated the impact of normalization on
POS tagging for the Twitter domain, presenting
the first results on automatic normalization and
comparing normalization to alternative strategies.
We compared a generic tagger to a tagger specifi-
cally designed for Twitter data.

Regarding Q1, we can conclude that normaliza-
tion does help. However, using large amounts of
unlabeled data for embedding initialization yields
an improvement that is twice as large as the one

8Interestingly, this work also resulted in a shared task on
normalization of historical Dutch, in which the secondary
evaluation metric was POS tagging accuracy: https://
ifarm.nl/clin2017st/.

37

obtained using normalization (Q2).
Combining both methods (Q3) does indeed

yield the highest scores on all datasets. This sug-
gests that the two approaches are complementary,
also because in isolation their most frequent errors
differ. However, the contribution of normalization
on top of embeddings alone is relatively small and
only significant on one test set, which was specifi-
cally developed for normalization and contains the
largest proportion of non-canonical tokens.

Overall, our best model is comparable to the
ARK tagger. As a general direction, our results
suggest that exploiting large amounts of unlabeled
data of the target domain is preferable. However,
if the data is expected to include a large propor-
tion of non-canonical tokens, it is definitely worth
applying normalization in combination with em-
beddings.

Our investigation was limited by the amount
of available training data. Adding data via self-
training did not help. We observed mixed results
for different types of a-priori filtering, but none
of them yielded a steady improvement. A more
promising direction might be post-selection, based
on confidence scores or agreement among differ-
ent taggers. Obviously another way to go is to add
manually labeled data, some of which is available
for more canonical domains. This would require
a mapping of tagsets, and might be another good
testbed to assess the contribution of normalization,
which we leave for future work.

All code and distributable data used in this pa-
per are available at https://github.com/
bplank/wnut-2017-pos-norm.

Acknowledgments

We want to thank Héctor Martı́nez Alonso and
Gertjan van Noord for valuable comments on ear-
lier drafts of this paper. We are also grateful to
the anonymous reviewers. This research has been
supported by the Nuance Foundation and the Uni-
versity of Groningen High Performance Comput-
ing center.

References
Steven Abney. 2007. Semisupervised learning for com-

putational linguistics. CRC Press.

Timothy Baldwin, Marie-Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei Xu.
2015. Shared tasks of the 2015 workshop on noisy
user-generated text: Twitter lexical normalization

and named entity recognition. In Proceedings of the
Workshop on Noisy User-generated Text, pages 126–
135, Beijing, China. Association for Computational
Linguistics.

Michael Beißwenger, Sabine Bartsch, Stefan Evert,
and Kay-Michael Würzner. 2016. Empirist 2015:
A shared task on the automatic linguistic annotation
of computer-mediated communication and web cor-
pora. In Proceedings of the 10th Web as Corpus
Workshop (WAC-X) and the EmpiriST Shared Task.
Berlin, Germany, pages 44–56.

Marcel Bollmann. 2013. POS tagging for historical
texts with sparse training data. In Proceedings of the
7th Linguistic Annotation Workshop and Interoper-
ability with Discourse, LAW-ID@ACL 2013, August
8-9, 2013, Sofia, Bulgaria, pages 11–18. The Asso-
ciation for Computer Linguistics.

Cristina Bosco, Fabio Tamburini, Andrea Bolioli, and
Alessandro Mazzei. 2016. Overview of the evalita
2016 part of speech on twitter for italian task. In
Proceedings of Third Italian Conference on Compu-
tational Linguistics (CLiC-it 2016) & Fifth Evalua-
tion Campaign of Natural Language Processing and
Speech Tools for Italian. Final Workshop (EVALITA
2016). Associazione Italiana di Linguistica Com-
putazionale (AILC).

Leo Breiman. 2001. Random forests. Machine learn-
ing, 45(1):5–32.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the 2013 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 359–369, Atlanta, Geor-
gia. Association for Computational Linguistics.

Jennifer Foster, Özlem Cetinoglu, Joachim Wagner,
Joseph Le Roux, Joakim Nivre, Deirdre Hogan, and
Josef van Genabith. 2011. From news to comment:
Resources and benchmarks for parsing the language
of web 2.0. In Proceedings of the 5th International
Joint Conference on Natural Language Processing
(IJCNLP).

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flani-
gan, and Noah A. Smith. 2011. Part-of-speech tag-
ging for twitter: Annotation, features, and experi-
ments. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 42–47,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Rob van der Goot and Gertjan van Noord. 2017.
Monoise: Modeling noise using a modular normal-
ization system. Computational Linguistics in the
Netherlands Journal, 7.

38

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 368–378, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
When pos data sets don’t add up: Combatting sam-
ple bias. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), pages 4472–4475.

Dieuwke Hupkes and Rens Bod. 2016. Pos-tagging
of historical dutch. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), Paris, France. European
Language Resources Association (ELRA).

Chen Li and Yang Liu. 2014. Improving text normal-
ization via unsupervised model and discriminative
reranking. In Proceedings of the ACL 2014 Student
Research Workshop, pages 86–93, Baltimore, Mary-
land, USA. Association for Computational Linguis-
tics.

Chen Li and Yang Liu. 2015. Joint POS tagging and
text normalization for informal text. In Proceedings
of the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 1263–1269.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1299–
1304, Denver, Colorado. Association for Computa-
tional Linguistics.

Nikola Ljubešić, Tomaž Erjavec, and Darja Fišer. 2017.
Adapting a state-of-the-art tagger for south slavic
languages to non-standard text. In Proceedings of
the 6th Workshop on Balto-Slavic Natural Language
Processing, pages 60–68, Valencia, Spain. Associa-
tion for Computational Linguistics.

David McClosky. 2010. Any domain parsing: auto-
matic domain adaptation for natural language pars-
ing. Ph.D. thesis, Brown University.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 380–390, Atlanta, Georgia. Association for
Computational Linguistics.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 shared task on parsing the web. In Notes
of the First Workshop on Syntactic Analysis of Non-
Canonical Language (SANCL), volume 59.

Barbara Plank. 2016. What to do about non-standard
(or non-canonical) language in NLP. In KONVENS.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 412–
418, Berlin, Germany. Association for Computa-
tional Linguistics.

Alan Ritter, Sam Clark, Mausam, and Oren Etzioni.
2011. Named entity recognition in tweets: An ex-
perimental study. In Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1524–1534, Edinburgh, Scotland,
UK. Association for Computational Linguistics.

Erik Tjong Kim Sang. 2016. Improving Part-of-Speech
Tagging of Historical Text by First Translating to
Modern Text. In 2nd IFIP International Work-
shop on Computational History and Data-Driven
Humanities. Springer Verlag.

A. Viterbi. 1973. Error bounds for convolutional codes
and an asymptotically optimum decoding algorithm.
IEEE Trans. Inform. Theory, 13(2):260–269.

Yi Yang and Jacob Eisenstein. 2016. Part-of-speech
tagging for historical english. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies, pages 1318–
1328, San Diego, California. Association for Com-
putational Linguistics.

39

