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Abstract

This work is on a previously formalized
semantic evaluation task of spatial role la-
beling (SpRL) that aims at extraction of
formal spatial meaning from text. Here,
we report the results of initial efforts to-
wards exploiting visual information in the
form of images to help spatial language
understanding. We discuss the way of de-
signing new models in the framework of
declarative learning-based programming
(DeLBP). The DeLBP framework facili-
tates combining modalities and represent-
ing various data in a unified graph. The
learning and inference models exploit the
structure of the unified graph as well as
the global first order domain constraints
beyond the data to predict the semantics
which forms a structured meaning repre-
sentation of the spatial context. Continu-
ous representations are used to relate the
various elements of the graph originating
from different modalities. We improved
over the state-of-the-art results on SpRL.

1 Introduction

Spatial language understanding is important in
many real-world applications such as geograph-
ical information systems, robotics, and naviga-
tion when the robot has a camera on the head
and receives instructions about grabbing objects
and finding their locations, etc. One approach to-
wards spatial language understanding is to map
the natural language to a formal spatial repre-
sentation appropriate for spatial reasoning. The
previous research on spatial role labeling (Ko-
rdjamshidi et al., 2010, 2017b, 2012) and ISO-
Space (Pustejovsky et al., 2011, 2015) aimed at
formalizing such a problem and providing ma-

chine learning solutions to find such a mapping
in a data-driven way (Kordjamshidi and Moens,
2015; Kordjamshidi et al., 2011). Such extrac-
tions are made from available textual resources.
However, spatial semantics are the most relevant
and useful information for visualization of the lan-
guage and, consequently, accompanying visual in-
formation could help disambiguation and extrac-
tion of the spatial meaning from text. Recently,
there has been a large community effort to prepare
new resources for combining vision and language
data (Krishna et al., 2017) though not explicitly fo-
cused on formal spatial semantic representations.
The current tasks are mostly image centered such
as image captioning, that is, generating image de-
scriptions (Kiros et al., 2014; Karpathy and Li,
2014), image retrieval using textual descriptions,
or visual question answering (Antol et al., 2015).
In this work, we consider a different problem,
that is, how images can help in the extraction of
a structured spatial meaning representation from
text. This task has been recently proposed as a
CLEF pilot task1, the data is publicly available and
the task overview will be published (Kordjamshidi
et al., 2017a). Our interest in formal meaning rep-
resentation distinguishes our work from other vi-
sion and language tasks and the choice of the data
since our future goal is to integrate explicit qual-
itative spatial reasoning models into learning and
spatial language understanding.

The contribution of this paper is a) we report
results on combining vision and language that ex-
tend and improve the spatial role labeling state-of-
the-art models, b) we model the task in the frame-
work of declarative learning based programming
and show its expressiveness in representing such
complex structured output tasks. DeLBP provides
the possibility of seamless integration of heteroge-

1http://www.cs.tulane.edu/˜pkordjam/
mSpRL_CLEF_lab.htm
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Figure 1: Given spatial ontology (Kordjamshidi
and Moens, 2015)

neous data in addition to considering domain on-
tological and linguistic knowledge in learning and
inference. To improve the state-of-the-art results
in SpRL and exploiting the visual information we
rely on existing techniques for continuous repre-
sentations of image segments and text phrases, and
measuring similarity to find the best alignments.

The challenging aspect of this work is that the
formal representation of the textual spatial seman-
tics is very different from the raw spatial infor-
mation extracted from image segments using their
geometrical relationships. To alleviate this prob-
lem the embeddings of phrases as well as the em-
beddings of the relations helped connecting the
two modalities. This approach helped improv-
ing the state of the art results on spatial role la-
beling (Kordjamshidi et al., 2012) for recognizing
spatial roles.

2 Problem Description

The goal is to extract spatial information from text
while exploiting accompanying visual resources,
that is, images. We briefly define the task which
is based on a previous formalization of spatial role
labeling (SpRL) (Kordjamshidi et al., 2011; Ko-
rdjamshidi and Moens, 2015). Given a piece of
text, S, here a sentence, which is segmented into
a number of phrases, the goal is to identify the
phrases that carry spatial roles and classify them
according to a given set of spatial concepts; iden-
tify the links between the roles and form spatial
relations (triplets) and finally classify the spatial
relations given a set of relation types. A more for-
mal definition of the problem is given in Section 5,
where we describe our computational model. The
spatial concepts and relation types are depicted in
Figure 1 which shows a light-weight spatial ontol-
ogy. Figure 2 shows an example of an image and
the related textual description. The first level of

this task is to extract spatial roles including,

(a) Spatial indicators (sp): these are triggers in-
dicating the existence of spatial information
in a sentence;

(b) Trajectors (tr): these are the entities whose
location are described;

(c) Landmarks (lm): these are the reference ob-
jects for describing the location of the trajec-
tors.

In the textual description of Figure 2, the loca-
tion of kids (trajector) has been described with re-
spect to the stairs (landmark) using the preposition
on (spatial indicator). This is example of some
spatial roles that we aim to extract from the whole
text. The second level of this task is to extract spa-
tial relations.

(d) Spatial relations (sr): these indicate a link
between the three above mentioned roles
(sp.tr.lm), forming spatial triplets.

(e) Relation types: these indicate the type of re-
lations in terms of spatial calculi formalisms.
Each relation can have multiple types.

For the above example we have the triplet
spatial relation(kids, on, stairs). Recognizing
the spatial relations is very challenging because
there could be several spatial roles in the sentence
and the model should be able to recognize the right
links. The formal type of this relation could be
EC that is externally connected. The previous
research (Kordjamshidi and Moens, 2015) shows
the extraction of triplets is the most challenging
part of the task for this dataset, therefore we fo-
cus on (a)-(d) tasks in this paper. The hypothe-
sis of this paper is that knowing the objects and
their geometrical relationships in the companion
image might help the inference for the extraction
of roles as well as the relations from sentences.
In our training dataset, the alignment between the
text and image is very coarse-grained and merely
the whole text is associated with the image, that
is, no sentence alignment, no phrase alignment for
segments, etc is available.

Each companion image I contains a number of
segments each of which is related to an object and
the objects spatial relationships can be described
qualitatively based on their geometrical structure
of the image. In this paper, we assume the image
segments are given and the image object annota-
tions are based on a given object ontology. More-
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Figure 2: Image textual description:“About 20
kids in traditional clothing and hats waiting on
stairs. A house and a green wall with gate in the
background. A sign saying that plants can’t be
picked up on the right.”

over, the relationships between objects in the im-
ages are assumed to be given. The spatial relation-
ships are obtained by parsing the images and com-
puting a number of relations based on geometrical
relationships between the objects boundaries. This
implies the spatial representation of the objects in
the image is very different from the spatial ontol-
ogy that we use to describe the spatial meaning
from text; this issue makes combining information
from images very challenging.

3 Declarative Modeling

To extend the SpRL task to a multimodal setting,
we firstly, replicated the state-of-the-art models
using the framework of declarative learning based
programming (DeLBP) Saul (Kordjamshidi et al.,
2015, 2016). The goal was to extend the pre-
viously designed configurations easily and facil-
itate the integration of various resources of data
and knowledge into learning models. In DeLBP
framework, we need to define the following build-
ing blocks for an application program,

(a) DataModel: Declaring a graph schema to
represent the domain’s concepts and their re-
lationships. This is a first order graph called
a data-model and can be populated with the
actual data instances.

(b) Learners: Declaring basic learning models
in terms of their inputs and outputs; where the
inputs and outputs are properties of the data-
model’s nodes.

(c) Constraints: Declaring constraints among
output labels using first order logical expres-
sions.

(d) Application program: Specifying the final
end-to-end program that starts with reading
the raw data into the declared data-model
graph referred to as data population and then
calls the learners and constrained learners for
training, prediction and evaluation.

Each application program defines the configura-
tion of an end-to-end model based on the above-
mentioned components. In the following sections
we describe these components and the way they
are defined for multimodal spatial role labeling.

3.1 Data Model

A graph is used to explicitly represent the structure
of the data. This graph is called the data-model
and contains typed nodes, edges and properties.
The node types are domain’s basic data structures,
called base types. The base types are mostly pre-
established in Saul (Kordjamshidi et al., 2016),
including base types for representing documents,
sentences, phrases, etc, referred to as linguistic
units. In this work, we also have added a set of
preliminary image base types in Saul that could
be extended to facilitate working on visual data
task-independently in the future. The below code
shows a data model schema including nodes of lin-
guistic units and image segments. The typed nodes
are declared as follows:

val documents = node[Document]
val sentences = node[Sentence]
val tokens = node[Token]
val phrases = node[Phrase]
val pairs = node[Relation]
val images = node[Image]
val segments = node[Segement]
val segmentPairs = node[SegmentRelation]

(‘val‘ is a Scala keyword to define variables; documents, sen-

tences, etc, are the programmer-defined variables; ‘node‘ is a

Saul keyword to define typed graph nodes; Document, Sen-

tence, etc, are the NLP and other base types built-in for Saul.)

Given the base types, domain sensors can be used
to populate raw data into the data-model. Sensors
are black box functions that operate on base types
and can generate instances of nodes, properties
and edges. An edge that connects documents to
sentences using a sensor called ‘documentToSen-
tenceMatching‘ is defined as:

val documentTosentence = edge(documents,
sentences)

documentTosentence.addSensor(
documentToSentenceMatching_)

(‘edge‘ is a Saul keyword, addSensor is a Saul function)
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The properties are assigned to the graph nodes
only and defined based on the existing domain
property sensors. The following example receives
a phrase and returns the dependency relation label
of its head:

val headDependencyRelation = property(
phrases){x => getDependencyRelation
(getHeadword(x))}

(‘property‘ is a keyword in Saul, getDependencyRelation and
getHeadword are two NLP sensors applied on words and
phrases respectively.)

3.2 Learners

The learners are basically a set of classic classi-
fiers each of which is related to a target variable
in the output space. The output variables are a
subset of elements represented in the ontology of
Figure 1. The previous work shows the challeng-
ing element of the ontology is the extraction of
spatial triplets. Therefore, in this work our goal
is to improve the extraction of the roles and spa-
tial triplets. Each classifier/learner is applied on
a typed node which is defined in the data-model.
For example, a trajector role classifier is applied
on the phrase nodes and defined as follows:

object TrajectorRoleClassifier extends
Learnable(phrases) {
def label = trajectorRole
override lazy val classifier = new
SparseNetworkLearner
override def feature = using(
headDependencyRelation,...)}

(‘label‘ is a Saul function to define the output of the classifier,

‘trajectorRole‘ is a name of a property in the datamodel to be

predicted. ‘feature‘ is a Saul function to define the list of

properties of the datamodel to be used as input features.)

All other learners are defined similarly and they
can use different types of data-model properties
as ‘feature‘s or as ‘label‘. In our proposed model,
only the role and pair classifiers are used and
triplets of relations are generated based on the re-
sults of the pair classifiers afterwards.

3.2.1 Role and Relation Properties
Spatial Roles are applied on phrases and most
of the features are used based on the previous
works (Kordjamshidi and Moens, 2015), however
the previous work on this data is mostly token-
based; we have extended the features to phrase-
based and added some more features. We use lin-
guistically motivated features such as lexical form
of the words in the phrases, lemmas, pos-tags, de-
pendency relations, subcategorization, etc. These

features are used sometimes based on the head-
word of the phrases and sometimes by concatena-
tion of the same features for all the tokens in a
phrase. The relations are, in-fact, a pair of phrases
and the pair features are based on the features of
the phrases. The relational features between two
phrases include their path, distance, before/after
information. In addition to the previously used
features, here, we add phrase and image embed-
dings described in the next section. The details of
the linguistic features are omitted due to the lack
of space and since the code is publicly available.

3.2.2 Image and Text Embeddings

Using continuous representations has several ad-
vantages in our models. One important aspect is
compensating for the lack of lexical information
due to the lack of training data for this problem.
Another aspect is the mapping between image seg-
ments and the phrases occurring in the textual de-
scriptions and establishing a connection between
the two modalities. The experiments show these
components improve the generalization capabil-
ity of our trained models. Since our dataset is
very small, our best embeddings were the com-
monly used word2vec (Pennington et al., 2014)
model trained over google’s gigaword+wikipedia
corpora.

Text Embeddings. We generate the embeddings
for candidate roles. More specifically, for each
phrase we find its syntactic head and then we use
the vector representation of the syntactic head as a
feature of the phrase. This is added to the rest of
linguistically motivated features.

Image Embeddings. For the image side we rely
on a number of assumptions given the type of
image corpora available for our task. As men-
tioned in Section 1, the input images are assumed
to be segmented and the segments have been la-
beled according to a given ontology of concepts.
For example, the ontology for a specific object
like Bush can be entity->landscape-nature->

vegetation->trees->bush. Given the image
segments, the spatial relations between segments
are automatically extracted in a pairwise exhaus-
tive manner using the geometrical properties of the
segments (Escalante et al., 2010). These relations
are limited to relationships such as besides, dis-
joint, below, above, x-aligned, and y-aligned. In
this work, we employed the pre-processed images
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that were publicly available2. Since the segment
label ontology is independent from the textual de-
scriptions, finding the alignment between the seg-
ments and the words/phrases in the text is very
challenging. To alleviate this problem, we exploit
the embeddings of the image segment labels us-
ing the same representations that is used for words
in the text. We measure the similarity between
the segment label embeddings and word embed-
dings to help the fine-grained alignments between
the image segments and text phrases. To clar-
ify, we tried the following variations: we compute
the word embeddings of image segment labels and
words in the text candidate phrases, then we find
the most similar object in the image to each can-
didate phrase. We use the embedding of the most
similar object as a feature of the phrase. Another
variation that we tried is to exploit the embeddings
of the image segment ontologies. The vector rep-
resentation of each segment label is computed by
averaging over the representation of all the onto-
logical concepts related to that segment.

3.3 Global Constraints

The key point of considering global correlations
in our extraction model is formalizing a number
of global constraints and exploiting those in learn-
ing and inference. The constraints are declared us-
ing first order logical expressions, for example, the
constraint, ”if there exists a trajector or a landmark
in the sentence then an indicator should also exist
in the sentence” , we call it integrity constraint and
it is expressed as follows:

((sentences(s)∼>phraseEdge)._exists{x:
Phrase=>(TrajectorRoleClassifier on
x is "Trajector") or (
LandmarkRoleClassifier on x is "
Landmark"}))==>((sentences(s)∼>
phraseEdge)._exists{y:Phrase=>
IndicatorRoleClassifier on y is "
Indicator"})

The domain knowledge is inspired from this
work (Kordjamshidi and Moens, 2015).3 The
first order constraints are automatically converted
to linear algebraic constraints for our underlying
computational models.

4 Application program

Using the building blocks of a DeLBP includ-
ing a data-model, learners and constraints, we

2http://www.imageclef.org/photodata
3constraints code is available on GitHub.

are able to design various end-to-end configura-
tions for learning and inference. The first step
for an application program is to populate the an-
notated corpus in the graph schema, that is, our
declared data-model. To simplify the procedure
of populating the graph with linguistic annota-
tions, we have established a generic XML reader
that is able to read the annotated corpora from
XML into the Saul data-model and provide us a
populated graph. The nodes related to the lin-
guistic units (i.e. sentence, phrase, etc) are pop-
ulated with the annotations as their properties.
The population can be done in various ways, for
example, SpRLDatamodel.documents.populate

(xmlReader.documentList()) reads the content
of DOCUMENT tag or its pre-defined4 equivalent
into documents nodes in the data-model. Popu-
lating documents can lead to populating all other
types of nodes such as sentences, tokens, etc if the
necessary sensors and edges are specified before-
hand. Saul functions and data-model primitives
can be used to make graph traversal queries to ac-
cess any information that we need from either im-
age or text for candidate selection, feature extrac-
tion.

The feature extraction includes segmentation of
the text and candidate generation for roles and pair
relations. Not all tokens are candidates for playing
trajector roles, most certainly verbs will not play
this role. After populating the data into the graph
we program the training strategy. We have the pos-
sibility of training for each concept independently,
that is, each declared classifier can call the learn

, for example, trajectorClassifier.learn().
However, the independently trained classifiers can
exploit the global constraints like the one we de-
fined in Section 3.3 and be involved in a global
inference jointly with other role and relation clas-
sifiers. Such a model is referred to as L+I (Pun-
yakanok et al., 2008). Moreover, the parameters of
the declared classifiers can be trained jointly and
for this purpose we need to call joinTrain and
pass the list of classifiers and the constraints to be
used together. We use L+I models in this paper
due to the efficiency of the training.

5 Computational Model

The problem we address in this paper is formu-
lated as a structured prediction problem as the out-

4The programmer is able to specify the tags that are re-
lated to the base types before reading the xml.
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put contains a number of spatial roles and relation-
ships that obey some global constraints. In learn-
ing models for structured output prediction, given
a set of N input-output pairs of training examples
E = {(xi, yi) ∈ X × Y : i = 1..N}, we learn
an objective function g(x, y;W ) which is a linear
discriminant function defined over the combined
feature representation of the inputs and outputs de-
noted by f(x, y) (Ioannis Tsochantaridis and Al-
tun, 2006):

g(x, y;W ) = 〈W, f(x, y)〉. (1)

W denotes a weight vector and 〈, 〉 denotes a dot
product between two vectors. A popular discrimi-
native training approach is to minimize the follow-
ing convex upper bound of the loss function over
the training data:

l(W ) =
N∑
i=1

max
y∈Y

(g(xi, y;W )− g(xi, yi;W ) +∆(yi, y)),

the inner maximization is called loss-augmented
inference and finds the so called most violated
constraints/outputs (y) per training example. This
is the base of inference-based-training models
(IBT). However, the inference over structures can
be limited to the prediction time which is known
as learning plus inference (L+I) models. L+I uses
the independently trained models (this is known
as piece-wise training as well (Sutton and McCal-
lum, 2009)) and has shown to be very efficient and
competitive compared to IBT models in various
tasks (Punyakanok et al., 2005). Given this gen-
eral formalization of the problem we can easily
consider both configurations of L+I and IBT using
a declarative representation of our inference prob-
lem as briefly discussed in Section 4. We define
our structured model in terms of first order con-
straints and classifiers.

Here in Saul’s generic setting, inputs x and out-
puts y are sub-graphs of the data-model and each
learning model can use parts and substructures of
this graph. In other words, x is a set of nodes
{x1, . . . , xK} and each node has a type p. Each
xk ∈ x is described by a set of properties; this set
of properties will be converted to a feature vector
φp. Given the multimodal setting of our problem,
xi ’s can represent segments of an image or various
linguistic units of a text, such as a phrase (atomic
node) or a pair of phrases (composed node), and
each type is described by its own properties (e.g. a

phrase by its headword, the pair by the distance of
the two headwords, an image segment by the vec-
tor representation of its concept). We refer to the
text-related nodes and image-related nodes differ-
ently as xT and xI , respectively. The goal is to
map this pair to a set of spatial objects and spatial
relationships, that is f : (xT , xI) 7→ y.

The output y is represented by a set of la-
bels l = {l1, . . . , lP } each of which is a prop-
erty of a node. The labels can have semantic
relationships. In our model the set of labels is
l = {tr, lm, sp, sp.tr, sp.lm, sp.tr.lm}. Note that
these labels are applied merely to the parts of the
text, tr, lm and sp are applied on the phrase of
a sentence, sp.tr and sp.lm are applied on pairs
of phrases in the sentence, and finally sp.tr.lm is
applied on triplets of phrases. According to the
terminology used in (Kordjamshidi and Moens,
2015), the labels of atomic components of the text
(here phrases) are referred to as single-labels and
the labels that are applied to composed compo-
nents of the input such as pairs or triplets are re-
ferred to as linked-labels. These labels help to rep-
resent y with a set of indicator functions that indi-
cate which segments of the sentence play a specific
spatial role and which are involved in relations.
The labels are defined with a graph query that ex-
tracts a property from the data-model. The lp(xk)
or shorter lpk denotes an indicator function indi-
cating whether component xk has the label lp. For
example, sp(on) shows whether on plays a spa-
tial role and sp.tr(on, kids) shows whether kids
is a trajector of on. As expected, the form of the
output is dependent on the input since we are deal-
ing with a structured output prediction problem. In
our problem setting the spatial roles and relations
are still assigned to the components of the text and
the connections, similarities and embeddings from
image are used as additional information for im-
proving the extractions from text.
The main objective g is written in terms of the
instantiations of the feature functions, labels and
their related blocks of weights wp in w =
[w1,w2, . . . ,wP ],

g(x,y;w) =
∑
lp∈l

∑
xk∈Clp

〈wp, fp(xk, lp)〉 (2)

=
∑
lp∈l

∑
xk∈Clp

〈wp, φp(xk)〉 lpk

=
∑
lp∈l

〈
wp,

∑
xk∈Clp

(φp(xk)lpk)

〉
,
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where fp(xk, lp) are the local joint feature vector
for each candidate xk. This feature vector is com-
puted by scalar multiplication of the input feature
vector of xk (i.e. φp(xk)), and the output label lpk.

Given this objective, we can view the inference
task as a combinatorial constrained optimization
given the polynomial g which is written in terms
of labels, subject to the constraints that describe
the relationships between the labels (either single
or linked labels). For example, the is-a relation-
ships can be defined as the following constraint,
(l(xc) is 1) ⇒ (l′(xc) is 1), where l and l′ are
two distinct labels that are applicable on the node
with the same type of xc. These constraints are
added as a part of Saul’s objective, so we have the
following objective form, which is in fact a con-
strained conditional model (Chang et al., 2012),
g = 〈w, f(x,y)〉 − 〈ρ, c(x,y)〉, where c is the
constraint function and ρ is the vector of penalties
for violating each constraint. This representation
corresponds to an integer linear program, and thus
can be used to encode any MAP problem. Specif-
ically, the g function is written as the sum of local
joint feature functions which are the counterparts
of the probabilistic factors:

g(x,y;w) =
∑
lp∈l

∑
xk∈{τ}

〈wp, fp(xk, lpk)〉

+

|C|∑
m=1

ρmcm(x,y),

(3)

where C is a set of global constraints that can
hold among various types of nodes. g can repre-
sent a general scoring function rather than the one
corresponding to the likelihood of an assignment.
Note that this objective is automatically generated
based on the high level specifications of learners
and constraints as described in Section 3.

6 Experimental Results

In this section, we experimentally show the in-
fluence of our new features, constraints, phrase
embeddings and image embeddings and compare
them with the previous research.
Data. We use the SemEval-2012 shared tasks
data (Kordjamshidi et al., 2012) that consists of
textual descriptions of 613 images originally se-
lected from the IAPR TC-12 dataset (Grubinger
et al., 2006), provided by the CLEF organiza-
tion. In the previous works only the text part
of this data has been used in various shared

task settings (Kordjamshidi et al., 2012; Olek-
sandr Kolomiyets and Bethard, 2013; Pustejovsky
et al., 2015) and with a variation in the annota-
tion schemes. This data includes about 1213 sen-
tence containing 20,095 words with 1706 anno-
tated relations. We preferred this data compared
to more recent related corpora (Pustejovsky et al.,
2015; Oleksandr Kolomiyets and Bethard, 2013)
for two main reasons. First is the availability of
the aligned images and the second is the static na-
ture of the most spatial descriptions.
Implementation. As mentioned before, we used
Saul (Kordjamshidi et al., 2015, 2016) framework
that allows flexible relational feature extraction as
well as declarative formulation of the global infer-
ence. We extend Saul’s basic data structures and
sensors to be able to work with multimodal data
and to populate raw as well as annotated text eas-
ily into a Saul multimodal data-model. The code
is available in Github.5 We face the following
challenges when solving this problem: the training
data is very small; the annotation schemes for the
text and images are very different and they have
been annotated independently; the image annota-
tions regarding the spatial relations include very
naively generated exhaustively pairwise relations
which are not very relevant to what human de-
scribes by viewing the images. We try to address
these challenges by feature engineering, exploit-
ing global constraints and using continuous repre-
sentations for text and image segments. We report
the results of the following models in Table 1.

BM: This is our baseline model built with
extensive feature engineering as described in
Section 3.2.1. We train independent classi-
fiers for the roles and relations classification
in this model;

BM+C: This is the BM that uses global con-
straints to impose, for example, the integrity
and consistency of the assignments of the
roles and relation labels at the sentence level.

BM+C+E: To deal with the lack of lexical in-
formation, the features of roles and relations
are augmented by w2vec word embeddings,
the results of this model without using con-
straints (BM+E) are reported too;

BM+E+I+C: In this model in addition to text
embeddings, we augment the text phrase fea-

5https://github.com/HetML/SpRL
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Trajector Landmark Spatial indicator Spatial triplet
Pr R F1 Pr R F1 Pr R F1 Pr R F1

BM 56.72 69.57 62.49 72.97 86.21 79.05 94.76 97.74 96.22 75.18 45.47 56.67
BM+C 65.56 69.91 67.66 77.74 87.78 82.46 94.83 96.86 95.83 75.21 48.46 58.94
BM+E 55.87 77.35 64.88 71.47 89.18 79.35 94.76 97.74 96.22 66.50 57.30 61.56
BM+E+C 64.40 76.77 70.04 76.99 89.35 82.71 94.85 97.48 96.15 68.34 57.93 62.71
BM+E+I 56.53 79.29 66.00 71.78 87.44 78.84 94.76 97.74 96.22 64.12 57.08 60.39
BM+E+I+C 64.49 77.92 70.57 77.66 89.18 83.02 94.87 97.61 96.22 66.46 57.61 61.72
BM+E+C-10f 78.49 77.67 78.03 86.43 88.93 87.62 91.70 94.71 93.17 80.85 60.23 68.95
SOP2015-10f - - - - - - 90.5 84 86.9 67.3 57.3 61.7
SemEval-2012 78.2 64.6 70.7 89.4 68.0 77.2 94.0 73.2 82.3 61.0 54.0 57.3

Table 1: Experimental results on SemEval-2012 data including images. BM: Baseline Model, C: Con-
straints, E: Text Embeddings, I: Image Embeddings.

tures with the embeddings of the most similar
image segments. The version without con-
straints is denoted as BM+E+I.
SemEval-2012: This model is the best per-
forming model of SemEval-2012 (Roberts
and Harabagiu, 2012). It generates the candi-
date triplets and classifies them as spatial/not-
spatial. It does an extensive feature extraction
for the triplets. The roles then are simply in-
ferred from the relations. The results are re-
ported with the same train/test split.
SOP2015-10f: This model is an structured
output prediction model that does a global in-
ference on the whole ontology including the
prediction of relations and relation types (Ko-
rdjamshidi and Moens, 2015).

The experimental results in Table 1 show that
adding constraints to our baseline and other model
variations consistently improves the classifica-
tion of trajectors and landmarks dramatically al-
though it slightly decreases the F1 of spatial in-
dicators in some cases. Adding word embed-
dings (BM+C+E) shows a significant improve-
ment on roles and spatial relations. The re-
sults on BM+E+I+C show that image embeddings
improves trajectors and landmarks compared to
BM+E+C, though the results of triples are slightly
dropped (62.71→ 61.72).

Our results exceed the state of the art models
reported in SemEval-2012 (Kordjamshidi et al.,
2012). The SemEval-2012 best model uses same
train/test split as ours (Roberts and Harabagiu,
2012). The results of the best performing model
in (Kordjamshidi and Moens, 2015), SOP2015-
10f, are lower than our best model in this work.
Although that model uses structured training but
here the embeddings make a significant improve-
ment. While SOP2015-10f performance results
on triples, spatial indicators, pairs of trajector

and landmarks with indicators have been reported,
there is no reports on trajecotrs and landmarks pre-
diction accuracy as designated independent roles
–those are left empty in the table. There are
some differences in our evaluation and the previ-
ous systems evaluations.The SOP2015-10f is eval-
uated by 10-fold cross validation rather than the
train/test split. To be able to compare, we re-
port the 10-fold cross validation results of our
best model BM+E+C and refer to it as BM+E+C-
10f in Table 1 which is outperforming other mod-
els. Note that the folds are chosen randomly and
might be different from the previous evaluation
setting. Another difference is that our evaluation
is done phrase-based and overlapping phrases are
counted as true predictions. The SemEval-2012
and SOP2015-10f models operate on classifying
tokens/words which are the headwords of the an-
notated roles. However, our identified phrases
cover the headwords of role (trajectors and land-
marks) phrases with 100% and for spatial indica-
tors 98% which keeps the comparisons fair yet.

Our results exceed the stat-of-the-art models
significantly. Both word and image embeddings
help expanding our semantic dimensions for spa-
tial objects but interestingly the spatial indicators
can not be improved using embeddings. Since the
indicators are mostly prepositions, it seems cap-
turing the semantic dimensions of prepositions us-
ing continuous vectors is harder than other lexical
categories such as nouns and verbs. This is even
worse when we use images since the terminology
of the relations in the images is very different from
the way the relations are expressed in the language
using prepositions. Though the improvement on
objects can improve the relations but it will be in-
teresting to investigate how the semantics of the
relations can be captured using richer representa-
tions for spatial prepositions. A possible direction
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for our work could have been to train deep models
that map the images to the formal semantic repre-
sentations of the text’s content, however for train-
ing such models using only 2013 sentences related
to about 600 images will not be feasible. The ex-
isting large corpora which contain image and text,
do not contain formal semantic annotation with the
textual description. Dealing with this problems re-
mains as our future work.

7 Related Research

This work can be related to many research works
from various perspectives. However, for the sake
of both clarity and conciseness, we limit our ex-
ploration in this section to two research directions.
First body of related work is about the specific
SpRL task that we are solving. This direction is
aiming at obtaining a generic formal spatial mean-
ing representation from text. The second body
of the work is about combining vision and lan-
guage which itself has a large research community
around it recently and has turned to a hot topic.

Several research efforts in the past few years
aimed at defining a framework for the extrac-
tion of spatial information form natural language.
These efforts start from defining linguistic an-
notation schemes (Pustejovsky and Moszkowicz,
2008; Kordjamshidi et al., 2010; Pustejovsky and
Moszkowicz, 2012; jeet Mani, 2009), annotating
data and defining tasks (Kordjamshidi et al., 2012;
Oleksandr Kolomiyets and Bethard, 2013; Puste-
jovsky et al., 2015) to operate on the annotated
corpora and learn extraction models. However,
there exists, yet, a large gap between the current
models and the ones that can perform reasonably
well in practice for real world applications in vari-
ous domains. Though we follow that line of work,
we aim at exploiting the visual data in improving
spatial extraction models. We exploit the visual in-
formation accompanying the text which is mostly
available nowadays. We aim at text understanding
while assuming that the text highlights the most
important information that might be confirmed by
the image. Our goal is to use the image to rec-
ognize and disambiguate the spatial information
from text.

Our work is very related to the research done
by computer vision community and in the inter-
section of vision and language. There are many
progressive research works on generating image
captions (Karpathy and Li, 2014), retrieving im-

ages and visual question answering (Antol et al.,
2015). However the center of attention has been
understanding images. Here, our aim is to exploit
the images for text understanding.This task is as
challenging as the former ones or even more chal-
lenging because among the many possible objects
and relationships in the image a very small subset
of those are important and have been expressed in
the text. Therefore the available visual corpora are
not exactly the type of the data that can be used
to train supervised models for our task though it
could provide some indirect supervision particu-
larly for having a unified semantic representation
of spatial objects (Ludwig et al., 2016).

This work can be improved by exploiting exter-
nal models and corpora (Pustejovsky and Yocum,
2014) but this will remain for our future investiga-
tion. Our task can benefit from the research per-
formed on reference resolution that targets identi-
fying the objects in the image that are mentioned
in the text (Schlangen et al., 2016). Having a high-
quality alignment by training explicit models for
resolving references should help recognizing the
spatial objects mentioned in the text and the type
of spatial relations according to the image. Ex-
plicit reference resolution between modalities in
dialogue systems are also inspiring (Fang et al.,
2014). In the mentioned reference a graph repre-
sentation of the scene is gradually made by ma-
chine based on the grasped static visual informa-
tion and the representation is corrected and com-
pleted dynamically as the dialogue between the
machine and human is going on. However, in this
work there is no learning component and there
is no spatially annotated data to be used for our
goal of formal spatial meaning representation for
a generic text.

In this work we take a small step and investi-
gate the ways to integrate information from both
modalities for our textual extraction target. Our
results are compared to the previous work (Kord-
jamshidi and Moens, 2015) that exploit the text
part of the same spatially annotated corpora and
improve the results when exploiting the accompa-
nying images.

8 Conclusion

In this paper, we deal with the problem of spa-
tial role labeling which targets at mapping natural
language text to a formal spatial meaning repre-
sentation. We use the information from accom-
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panying segmented images to improve the spatial
role extractions. Although, there are many recent
research on combining vision and language, none
of them consider obtaining a formal spatial mean-
ing representation as a target while we do and our
approach will be helpful for adding explicit rea-
soning component to the learning models in the
future. We manifest the expressivity of declarative
learning based programming paradigm for design-
ing global models for this task. We put both the
image and text related to a scene in a unified data-
model graph and use them as structured learning
examples. We extract features by traversing the
graph and using the continuous representations to
connect the image segment nodes to the nodes re-
lated to the text phrases. We exploit the continu-
ous representation to align the similar concepts in
the two modalities. We exploit global first order
constraints for global inference over roles and re-
lations. Our models improve the state of the art
results on previous spatial role labeling models.
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