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Abstract

We present a semi-supervised way of
training a character-based encoder-
decoder recurrent neural network for
morphological reinflection, the task
of generating one inflected word form
from another. This is achieved by using
unlabeled tokens or random strings as
training data for an autoencoding task,
adapting a network for morphological
reinflection, and performing multi-task
training. We thus use limited labeled
data more effectively, obtaining up to
9.9% improvement over state-of-the-art
baselines for 8 different languages.

1 Introduction

Morphologically rich languages use inflection—
the adaptation of a surface form to its syntactic
context—to mark the properties of a word, e.g.,
gender or number of nouns or tense of verbs.
This drastically increases the type-token ratio, and
thus negatively effects natural language process-
ing (NLP), making morphological analysis and
generation an important field of research.

In this work, we focus on morphological rein-
flection (MRI), the task of mapping one inflected
form of a lemma to another, given the morpholog-
ical properties of the target, e.g., (smiling, Past-
Part) → smiled. The lemma does not have to
be known. Recently, there have been some ad-
vances on the topic, motivated by the SIGMOR-
PHON 2016 shared task on morphological rein-
flection (Cotterell et al., 2016) and the CoNLL-
SIGMORPHON 2017 shared task on universal
morphological reinflection (Cotterell et al., 2017).
In 2016, neural sequence-to-sequence models,
specifically attention-based encoder-decoder mod-
els, outperformed all other approaches by a wide

Figure 1: Examples for labeled and unlabeled input. The
content of the red boxes (very left in both rows) signalizes if
the sample belongs to the MRI task or the autoencoding task.

margin (Faruqui et al., 2016; Kann and Schütze,
2016). However, those models require a lot of
training data, while in contrast many morpholog-
ically rich languages are low-resource, and little
work has been done so far on neural models for
morphology in settings with limited training data.
This makes sequence-to-sequence models not ap-
plicable to morphological generation in most lan-
guages.

An abundance of unlabeled data, in contrast,
can be assumed available for each language in
the focus of NLP. Thus, we propose a semi-
supervised training method for a state-of-the-art
encoder-decoder network for MRI using both la-
beled and unlabeled data, mitigating the need for
time-expensive annotations. We achieve this by
treating unlabeled words as training examples for
an autoencoding (Vincent et al., 2010) task and
multi-task training (cf. Figure 1). We intuit the
following reasons why this should be beneficial:
(i) The decoder’s character language model can
be trained using unlabeled data. (ii) Training on
a second task reduces the problem of overfitting.
(iii) By forcing the model to additionally learn au-
toencoding, we give it a strong prior to copy the
input string. This might be advantageous as often
many forms of a paradigm share the same stem,
e.g., smiling and smiled. In order to investigate
the importance of the latter, we further experiment
with autoencoding of random strings and find that
for our experimental settings and non-templatic
languages the performance gain is comparable to
using corpus words.
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2 Model Description

The log-likelihood for joint training on the tasks
of MRI and autoencoding is:

L(θ)=
∑

(fs,ft,t)∈T
log pθ (ft | e(fs, t)) (1)

+
∑
w∈W

log pθ(w | e(w)),

T is the MRI training data, with each example
consisting of a source form fs, a target form ft

and a target tag t. W denotes a set of words in the
language of the system. The encoding function e
depends on θ. The parameters θ are shared across
the two tasks, resulting in a share of information.
We obtain this by giving our model data from both
sets at the same time, and marking each example
with a task-specific input symbol, cf. Figure 1.
Following (Kann and Schütze, 2016), we employ
a neural encoder-decoder model.

Encoder. For the input of the encoder, we adapt
the format by Kann and Schütze (2016), but mod-
ify it to be able to handle unlabeled data: Given
the set of morphological subtags M each target tag
is composed of (e.g., the tag 1SgPresInd contains
the subtags 1, Sg, Pres and Ind), and the alphabet
Σ of the language of application, our input is of the
form B[A/M∗]Σ∗E, i.e., it consists of either a se-
quence of subtags or the symbol A signaling that
the input is not annotated and should be autoen-
coded, and (in both cases) the character sequence
of the input word. B and E are start and end sym-
bols. Each part of the input is represented by an
embedding.

We then encode the input x = x1, x2, . . . , xTx

using a bidirectional gated recurrent neural net-
work (GRU) (Cho et al., 2014b), i.e.,

−→
h i =

f
(−→

h i−1, xi

)
and
←−
h i = f

(←−
h i+1, xi

)
, with f

being the update function of the hidden layer. For-
ward and backward hidden states are concatenated
to obtain the input hi for the decoder.

Decoder. The decoder is an attention-based
GRU, defining a probability distribution over
strings in Σ∗:

p(y | x) =
Ty∏
t=1

p(yt | y1, . . . , yt−1, st, ct),

with st being the decoder hidden state for time
t and ct being a context vector, calculated using

the encoder hidden states together with attention
weights. A detailed description of the model can
be found in Bahdanau et al. (2015).

3 Experiments

Dataset. We experiment on the task 3 dataset
of the SIGMORPHON 2016 shared task on MRI
(Cotterell et al., 2016) and all standard languages
provided: Arabic, Finnish, Georgian, German,
Navajo, Russian, Spanish and Turkish. German,
Spanish and Russian are suffixing and exhibit stem
changes. Russian differs from the other two in
that those stem changes are consonantal and not
vocalic. Finnish and Turkish are agglutinating,
almost exclusively suffixing and have vowel har-
mony systems. Georgian uses both prefixiation
and suffixiation. In contrast, Navajo mainly makes
use of prefixes with consonant harmony among
its sibilants. Finally, Arabic is a templatic, non-
concatenative language.

For each language, we further add randomly
sampled words from the respective Wikipedia
dumps. We exclude tokens that are not exclu-
sively composed from characters of the language’s
alphabet, e.g., digits, or do not appear at least 2
times in the corpus. The exact amount of unla-
baled data added is treated as a hyperparameter
depending on the number of available annotated
examples and optimized on the development set,
cf. Section 4.1. Evaluation is done on the official
shared task test set.

Training, hyperparameters and evaluation.
We mainly adopt the hyperparameters of (Kann
and Schütze, 2016). Embeddings are 300-
dimensional, the size of all hidden layers is 100
and for training we use ADADELTA (Zeiler, 2012)
with a batch size of 20. We train all models which
use 1

8 or more of the labeled data for 200 epochs,
and models that see 1

16 and 1
32 of the original data

for 400 and 800 epochs, respectively. In all cases,
we apply the last model for testing.

We evaluate using two metrics: accuracy and
edit distance. Accuracy reports the percentage of
completely correct solutions, while the edit dis-
tance between the system’s guess and the gold so-
lution gives credit to systems that produce forms
that are close to the right form.

Baselines. We compare our system to three
baselines: The first one is MED1, the winning sys-

1http://cistern.cis.lmu.de/med/
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1
4

acc .188 .094 .716 .722 .293 .325 .809 .854 .814 .831 .910 .912 .721 .687 .882 .888 .317 .403 .706 .711 .641 .638 .825 .824 .558 .539 .939 .942 .181 .129 .904 .910
ED 2.26 3.06 0.94 0.92 1.90 1.47 0.47 0.35 0.42 0.38 0.28 0.30 0.47 0.54 0.33 0.31 2.04 1.95 1.01 0.97 0.69 0.65 0.43 0.43 0.96 0.97 0.15 0.15 2.92 3.33 0.27 0.23

1
8

acc .104 .063 .600 .640 .207 .227 .687 .732 .798 .791 .883 .894 .618 .593 .851 .873 .247 .350 .516 .619 .516 .523 .766 .772 .441 .409 .896 .916 .120 .080 .846 .832
ED 2.76 3.32 1.37 1.20 2.32 1.91 0.85 0.77 0.47 0.44 0.45 0.42 0.67 0.73 0.42 0.35 2.40 2.23 1.75 1.40 0.95 0.92 0.60 0.60 1.36 1.35 0.26 0.22 3.42 3.80 0.47 0.54

1
16

acc .052 .043 .470 .533 .126 .149 .543 .620 .709 .751 .860 .875 .504 .495 .791 .839 .204 .329 .350 .473 .384 .422 .645 .695 .317 .308 .807 .862 .070 .049 .717 .739
ED 3.36 3.53 1.80 1.59 2.84 2.34 1.33 1.16 0.62 0.50 0.58 0.52 0.90 0.94 0.60 0.45 2.71 2.41 2.63 2.05 1.23 1.17 0.94 0.82 1.80 1.70 0.47 0.36 3.81 4.09 0.99 0.94

1
32

acc .028 .027 .263 .381 .073 .088 .314 .402 .595 .648 .818 .852 .384 .386 .661 .722 .174 .303 .174 .369 .249 .293 .406 .502 .196 .245 .657 .756 .044 .028 .524 .571
ED 3.73 3.73 2.79 2.22 3.18 2.76 2.48 2.00 0.87 0.70 0.76 0.65 1.15 1.18 1.01 0.90 2.94 2.65 3.85 2.73 1.61 1.45 1.71 1.38 2.22 2.06 0.97 0.62 4.19 4.27 1.98 1.80

Table 1: Accuracy (the higher the better) and edit distance (the lower the better) for our system and the three baselines on
the official test set of task 3 of the SIGMORPHON 2016 shared task. Only the indicated amount (row labels) of the original
training data is used, emulating a low-resource setting. Best results for each language in bold.

tem of the 2016 shared task. The network architec-
ture is the same as in our system, but it is trained
exclusively on labeled data. Thus, we expect it to
suffer stronger from a lack of resources.

The second baseline is the official SIGMOR-
PHON 2016 shared task baseline (SIG16) (Cot-
terell et al., 2016), which is similar in spirit to the
system described by Nicolai et al. (2015). The
system treats the prediction of edit operations to
be performed on the input string as a sequential
decision-making problem, greedily choosing each
edit action given the previously chosen actions.
The selection of operations is made by an averaged
perceptron, using the binary features described in
(Cotterell et al., 2016).2

Third, we compare to the baseline system of the
CoNLL-SIGMORPHON 2017 shared task on uni-
versal morphological reinflection (SIG17) (Cot-
terell et al., 2017), which is extremely suitable for
low-resource settings. It splits all source and tar-
get forms in the training set into prefix, middle
part and suffix, and uses those to find prefix or suf-
fix substitution rules. Every evaluation example is
searched for the longest contained prefix or suffix
and the rule belonging to the affix and given target
tag is applied to obtain the output.

Results and discussion. As shown in Table 1,
additionally training on unlabeled examples im-
proves the performance of the encoder-decoder
network for nearly all settings and languages, es-
pecially for the very low-resource scenarios with
1
16 and 1

32 of the training data. The biggest
increase in accuracy can be seen for Russian
and Spanish, both in the 1

32 setting, with 0.0963
(0.5023− 0.4060) and 0.0992 (0.7564− 0.6572),
respectively. For the settings with bigger amounts

2Note that our use of the system differs from the offi-
cial baseline in that we perform a direct form-to-form map-
ping. The shared task system predicts first form-to-lemma
and then lemma-to-form. However, we assume no lemmata
to be given, and thus are unable to train such a system.

of training data available, the unlabeled data does
not change performance a lot. This was ex-
pected, as the model already gets enough infor-
mation from the annotated data. However, semi-
supervised training never hurts performance, and
can thus always be employed. Overall, our semi-
supervised training method shows to be a useful
extension of the original system.

Furthermore, there are only two cases—
Georgian, 1

16 , and Navajo, 1
32—where any of the

SIGMORPHON baselines outperforms the neural
methods. This clearly shows the superiority of
neural networks for the task and emphasizes the
need to reduce the amount of labeled training data
required for their training.

4 Analyses

4.1 Amount of Unlabeled Data

We now consider the amount of unlabeled exam-
ples as a function of the number of annotated ex-
amples. Data and training regime are the same as
in Section 3. This analysis is performed on the de-
velopment set and we report the highest accuracy
obtained during training.

The resulting accuracies for Arabic and Ger-
man can be seen in Figure 2. The other languages
behave similarly to German. The loss of perfor-
mance for reducing the training data varies a lot
between languages, depending on how regular and
thus ”easy to learn” those are. Concerning the
amount of unlabeled examples, it seems that even
though in single cases other ratios are slightly bet-
ter, using 4 times more unlabeled examples mostly
obtains highest accuracy. Thus, a general rule
could be that the more additional examples are
used the better. The only exception is Arabic in
the 1

32 setting, where using half as many unlabeled
as labeled examples obtains much better results.
We explain this with the Semitic language being
templatic. Since words in Arabic paradigms do
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Figure 2: Comparison of different amounts of unlabeled data,
sorted by the amount of labeled training examples in portions
of the original data. Evaluated on the development set.

not share a connected stem, we expect that giving
the model too much bias to copy might be harm-
ing performance in low-resource settings. How-
ever, even for low-resource Arabic, using a ratio
of 1:4 of labeled to unlabeled examples still yields
a better performance than not using unlabeled ex-
amples at all. Thus, we can conclude that if aiming
for a language-independent setup, this is a good
ratio.

4.2 Autoencoding of Random Strings
We expect the network to benefit from a bias to
copy strings. This suggests that any random com-
bination of characters from the language’s alpha-
bet could be autoencoded in order to improve the
performance in low-resource settings. To verify
this, we train models on new datasets with 1

32 of
the labeled examples from task 3 of the SIGMOR-
PHON 2016 shared task and the optimal number
of unlabeled examples for each language, cf. §4.1.
However, the unlabeled examples are now random
strings of a length between 3 and 20. All mod-
els are trained as before. Accuracies on the offi-
cial test sets are shown in Table 2, and compared
to (i) training without unlabeled examples and (ii)
the data being enhanced by corpus words. Sev-
eral aspects of the results are eye-catching. First,
for Arabic, the gap to the performance with cor-

ar fi ka de nv ru es tu
MED .2628 .3144 .8184 .6608 .1738 .4060 .6572 .5238
MED+corpus .3811 .4015 .8523 .7221 .3688 .5023 .7564 .5713
MED+random .3064 .3793 .8531 .7313 .3250 .4958 .7676 .5706

Table 2: Accuracies for MED (Kann and Schütze (2016)),
MED+corpus and MED+random. Descriptions in the text.

pus words is the biggest, showing that indeed the
tendency of languages to copy the stem when in-
flecting is playing an important role. Second, for
some languages the performance gains for corpus
words and random words are comparable. Third,
the performance of random strings is closer to the
performance of corpus words the higher the over-
all accuracy is. The additional unlabeled examples
might be acting as regularizers in this case.

Overall, this experiment shows clearly that giv-
ing the model a bias to copy strings helps for in-
flection in non-templatic languages, and that ran-
dom strings can improve a network for MRI.

5 Related Work

For the SIGMORPHON 2016 and the CoNLL-
SIGMORPHON 2017 shared tasks (Cotterell
et al., 2016, 2017), multiple MRI systems were
developed, e.g., (Nicolai et al., 2016; Taji et al.,
2016; Kann and Schütze, 2016; Aharoni et al.,
2016; Östling, 2016; Makarov et al., 2017).
Encoder-decoder neural networks (Cho et al.,
2014a; Sutskever et al., 2014; Bahdanau et al.,
2015) performed best, such that we extend them
in this work. Earlier work on paradigm comple-
tion included (Faruqui et al., 2016; Nicolai et al.,
2015; Durrett and DeNero, 2013). Work directly
tackling MRI was more rare, e.g., (Dreyer and Eis-
ner, 2009). Our work relates to the line of re-
search on minimally supervised and unsupervised
methods for morphology, e.g., Creutz and Lagus
(2007) and Goldsmith (2001) presenting the un-
supervised morphological segmentation systems
Morfessor and Linguistica, or (Dreyer and Eis-
ner, 2011; Poon et al., 2009; Snyder and Barzilay,
2008). However, none of those focused directly on
MRI or on training neural networks for morphol-
ogy. The only case we know of where this was
done was work by Kann et al. (2017). They lever-
aged morphologically annotated data in a closely
related high-resource language to reduce the need
for labeled data in the target language. This works
well for similar languages, but has the shortcom-
ing to require annotations in such a language to
be at hand. A similar approach was presented
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by Ha et al. (2016) for machine translation (MT).
Unlabeled corpora were used for semi-supervised
training of models for MT, e.g., by Cheng et al.
(2016); Vincent et al. (2010); Socher et al. (2011);
Ramachandran et al. (2016). Those approaches
differ from ours, due to a fundamental difference
between the two tasks: For MRI, the source vo-
cabulary and the target vocabulary are mostly the
same. This makes it intuitive for MRI to train the
final model jointly on MRI and autoencoding.

6 Conclusion

We presented a way of semi-supervised training
of a state-of-the-art model for low-resource MRI,
using words from an unlabeled corpus. We found
that the best ratio of labeled to unlabeled data de-
pends of the morphological typology of the lan-
guage. Finally, we showed that autoencoding ran-
dom strings also increases performance, for some
languages as much as using corpus words.

Acknowledgments

We would like to thank the anonymous reviewers
for their insightful comments. This work was sup-
ported by DFG (SCHU2246/10).

References
Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.

2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In SIGMORPHON.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
arXiv preprint arXiv:1606.04596 .

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In SSST .

Kyunghyun Cho, Bart Van Merriënboer, Çalar
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