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Abstract

A recently proposed encoding for non-
crossing digraphs can be used to imple-
ment generic inference over families of
these digraphs and to carry out first-order
factored dependency parsing. It is now
shown that the recent proposal can be sub-
stantially streamlined without information
loss. The improved encoding is less de-
pendent on hierarchical processing and it
gives rise to a high-coverage bounded-
depth approximation of the space of non-
crossing digraphs. This subset is presented
elegantly by a finite-state machine that rec-
ognizes an infinite set of encoded graphs.
The set includes more than 99.99% of the
0.6 million noncrossing graphs obtained
from the UDv2 treebanks through planari-
sation. Rather than taking the low proba-
bility of the residual as a flat rate, it can
be modelled with a joint probability dis-
tribution that is factorised into two un-
derlying stochastic processes — the sen-
tence length distribution and the related
conditional distribution for deep nesting.
This model points out that deep nesting
in the streamlined code requires extreme
sentence lengths. High depth is categori-
cally out in common sentence lengths but
emerges slowly at infrequent lengths that
prompt further inquiry.

Syntactic and semantic dependency structures
— rooted trees and more general digraphs — have
tremendous importance in multilingual language
analysis as demonstrated by the Universal Depen-
dencies (UD) initiative! and many applications of
dependency annotations. The main approaches
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to produce dependency structures include graph-
based parsers (Eisner and Satta, 1999; McDonald
et al., 2005) that build the structures in the bot-
tom up fashion and transition-based parsers that
produce structures while reading the input buffer
(Nivre, 2008; Bohnet et al., 2016).

Recently, Yli-Jyrd and Gomez-Rodriguez
(2017) have explored a perspective that combines
graph-based parsing with coding theory: instead
of rewriting digraphs directly, they propose a
linear encoding for noncrossing digraphs and
then manipulate the code strings using string
automata. This method brings the two parsing
approaches closer to each other as the graphical
parsing reduces to a combination of state-driven
processing of the underlying regular component
and graphical processing of context-free compo-
nent of the encoding. Their main result is that
some 50 natural families of dependency structures
reduce to unambiguous context-free languages.
Generic parsing to noncrossing digraphs can thus
be viewed as weighted context-free parsing.

The parsing objective in the framework of Yli-
Jyrd and Gémez-Rodriguez (2017) is to maximize
the total arc weight of the parse using an ex-
act cubic-time inference procedure over the lan-
guage associated with the input sentence. Poly-
nomial time is often too expensive as such alter-
native methods as transition-based parsing with
beam search may produce similar accuracy in lin-
ear time. Since higher efficiency is welcome in
many real-time data applications, one may ask
whether the encoded search space could be opti-
mized to allow efficient, linear-time inference over
the most plausible candidate graphs.

In this paper, we present an improved represen-
tation for the search space. First, the linear en-
coding of noncrossing graphs is streamlined by a
technique called weak edge bracketing. Second,
the context-free language of the streamlined en-
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coding is further approximated with a regular sub-
set that contains the most probable dependency
analyses. This gives us a finite-state representation
of the search space. We also construct a factored
Jjoint probability model for the event that the cor-
rect parse is outside of the search space. Under the
approximation and the current experiments, the
probability for a failure is less than 0.3% for all
languages and 0.006% on average.

The low error rate means that if the proposed
approximation was used to restrict the search
space of the state-of-the-art parsers, the obtained
finite-state approximation would potentially im-
prove the efficiency significantly while leaving the
parsing accuracy nearly intact. When used in this
way as a search space restriction, the currently
proposed regular approximations for the families
of digraphs — as proposed by Yli-Jyrd and Gémez-
Rodriguez (2017) — become available to higher-
order graphical parsers, neural transition-based
parsers and generative neural models of syntax.

The current paper focuses on the structure and
the motivation for the finite-state search space for
noncrossing digraphs. Section 2 presents the prob-
lem of finding a good finite-state approximation
of the search space. The streamlined context-free
encoding for the noncrossing digraphs is intro-
duced in Section 3. Sections 4 and 5 discuss its
minimum-DFA state complexity and coverage un-
der a bounded nesting depth. Before conclusion,
the results are related to the prior work and dis-
cussed critically in Section 6.

1 Definitions

In this section, I follow Yli-Jyrd and Goémez-
Rodriguez (2017) to define noncrossing depen-
dency graphs and describe how they can be en-
coded as linear strings.

Graphs A graph is a pair (V,E) where V is a fi-
nite set of vertices and E C {{u,v} CV} is a set
of edges. It is common to assume that the edges
do not contain self-loops of the form {v,v}. For
convenience, the vertices in graphs are ordered
V =[1,...,n]. Two edges {i,j}, {k,I} in an or-
dered graph are said to be crossing if min{i, j} <
min{k,/} < max{i,j} < max{k,l}. A graph is
noncrossing if it has no crossing edges.

Yli-Jyrd and Goémez-Rodriguez (2017) have
proposed a scheme according to which any non-
crossing ordered graph ([1,...,n],E) is encoded as
a string of brackets using the algorithm enc in
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func enc(n,E): func dec(stdin) :

for 1 in [1,...,n]: n=1;, E={}; s =[]
for j in [i-1,...,2,1]: while ¢ in stdin:
if {j,1i} in E: if ¢ == "[":
print "1" s.push (n)
for j in [n,n-1,...,1i+1]): if ¢ == "]":
if {i,3j} in E: i = s.pop()
print "[" E.insert ((i,n))
if i<n: if ¢ == "{":
print "{}" n=n+1

return (n,E)

Figure 1: The encoding and decoding algorithms

Fig. 1. For example, the output for the ordered
graph
— _ J{L2y }
AN s {{274}, {1.4)
is the string [ [{}]1 [{}{}1]. Intuitively, pairs of

brackets of the form {} can be interpreted as spaces
between vertices, and then each set of matching
brackets [...] encodes an arc that covers the
spaces represented inside the brackets.

The noncrossing ordered graphs are encoded
with strings that constitute a context-free lan-
guage. These encoded graphs are generated ex-
actly by the context-free grammar S — [S'] S |
{}S|e, S 1S1T|{}S, T—1S1S5|{}S.
This language of encoded graph corresponds bi-
jectively to the set of all non-crossing graphs.

Digraphs The encoding scheme extends to di-
graphs. A digraph is a pair (V,A) where A C
V x V is a set of arcs u — v. Its underlying graph,
(V,E,), has edges Ex = {{u,v} | (u,v) € A}. A
noncrossing digraph is a digraph whose underly-
ing graph is noncrossing. Any noncrossing or-
dered digraph ([1,...,n],A) can be encoded with
slight modifications to the encoding algorithm. In-
stead of printing [ ] foranedge {i,j} € E4, i < j,
the algorithm should now print

if (i,)) €
if (i, j)
if (i, ),

A(j,i) € A
(J:0) € 4;
i) €A.

/ >
<\ ¢A
[ ] (J,
In this way, we can simply encode the digraph
({1,2,3,4},{(1,2), (4,1),(4,2)}) as the string
</{3><{3{3\\. Again, there is a bijection be-
tween noncrossing digraphs and their encodings,
Lpigrapus. All n-vertex noncrossing digraphs are
represented with the language

(D

Lpigrapus NW"

where W” = B ({}B")"~! describes the alterna-
tion between vertex boundaries { } and edge brack-
ets B that exclude these boundaries.



Yli-Jyrd and Goémez-Rodriguez (2017) con-
struct representations of context-free languages
that encode important families of digraphs and
graphs. Accordingly, there are context-free lan-
guages that correspond to the rooted noncrossing
trees, projective trees, noncrossing dags etc.

Dependency Parsing The complete digraph
(V,A) of a sentence S = x;...x, consists of vertices
V ={1,...,n} and all possible arcs A = {(i, ) |
i # j}. In the arc-factored model (McDonald
et al., 2005), every arc i — j in this digraph is
equipped with a positive weight w;; that is pre-
dicted on the basis of the feature vectors associ-
ated with tokens i and j in the sentence. To facili-
tate local weight assignment to the pairs of brack-
ets in the encoding, the brackets in the encoded
digraphs (1) can be indexed with the correspond-
ing vertex numbers. This indexing turns string
{3 ({311 into 4 [i{}1202{}{}1414. The total
weight of this string is computed using a dynam-
ically constructed semiring-weighted context-free
grammar

S—e|{};

wi3 wig

S™8 11812885 11513888 [1514S;
S™E [1,8738;8 8 [1,8745:8 2 [3574S.

Let ® be a commutative monoid operation used to
compute the total weight of a derivation under the
grammar. For the above string, the grammar then
returns the total weight wio, ®@ wyq @ wig.

The task of arc-factored dependency parsing is
to find in the specified family of the graphs (e.g.
noncrossing dags), the maximal subgraph (V,A’)
of the complete digraph (V,A). When the infer-
ence is restricted to a noncrossing family Lgamiry
of digraphs, the natural choice is to carry out the
inference using a cubic-time algorithm that recog-
nises the weighted context-free language and finds
the indexed string w € Lpanviy N W, that maxi-
mizes the total weight of the derivation.

2 The Problem

For long sentences, a linear-time parsing algo-
rithm can be considerably more efficient and at-
tractive than a cubic-time parsing algorithm. Since
the encoded digraphs support generic parsing to
different families of digraphs, we would now like
to provide foundations for a linear time variant of
this generic parsing architecture. The most obvi-
ous approach would be to replace the context-free
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grammar of (di)graphs with a regular subset ap-
proximation.

Since the approximation is regular, there are at
most a finite number of equivalence classes over
possible parser states at any moment. The num-
ber of equivalence classes tells the size of a deter-
ministic finite automaton. The search space of an
arbitrary sentence consists of those digraphs that
are encoded by the intersection of the language
Liamiy recognized by this automaton and the lan-
guage W, defining the position-indexed brackets.

A good, practical approximation must satisfy at
least three requirements:

e Complete core. A language-independent
and generic approximation for the set of di-
graphs should certainly contain all digraphs
over a small number (n < 7) of tokens.

Convenient size. The amount of the mem-
ory needed to carry out inference over long
sentences should not stretch the limits of a
convenient implementation.

Good coverage. The approximation should
have a good coverage of the existing analyses
in treebanks.

During the inference for the best parse, the
memory of a typical algorithm stores the parse
candidates either as a non-center-embedding
grammar or a fully expanded finite-state automa-
ton that represents the crossproduct of two finite-
state representations, one for the search space and
one for the strings with vertex indexed bracket.
Since the convenience of the expanded represen-
tation is not at all obvious, the current work fo-
cuses on its deterministic state complexity, i.e. the
number of states in a minimal DFAs recognizer.

With the encoding scheme of Yli-Jyrd and
Goémez-Rodriguez (2017), the state complexity of
the DFA-based search space representation grows
rapidly when the length of the sentence increases.
This comes from the fact that the states must keep
track of four kinds of open brackets: [, <, /, {.

n encoded digraphs states
1 1 1
2 4 12
3 64 80
4 1792 490
5 62464 2952
6 2437120 27040
7 101 859328 106372
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Figure 2: An example of a parse tree that requires weak bracketing with nesting depth 5.

By the Complete core requirement, we obtain
a rough lower-bound state complexity for the re-
quired approximation Lp,yyy- The search space
for n = 7 equals to the intersection W,—7 N Lgayy
whose state complexity is 106372 states. Since
the recognizer for Wy requires exactly 14 states,
the recognizer G for Li;,yyy should contain at
least [106372/14] = 7598 states as the cross
product of these automata cannot have fewer than
106372 states. With this 7 598-state automaton
G, the parsing of a 500-token sentence would re-
quire at least |Wsgo||G| = 7 598 000 states.> But an
automaton of this size is usually inconvenient to
operate with and does not satisfy the Convenient
size requirement.® Since only 6 overlapping edges
are observed in 7-word sentences, this approxima-
tion would also fail to cover treebanks where more
than 10 nested edges are quite common (Figure 2),
breaking the Good coverage requirement. Thus, a
DFA approximation based on the prior encoding is
doomed to fail in the real life scenario.*

The current research problem is to improve the
representation of the search space in such a way
that fewer DFA states are needed and more com-
plex structures can be captured with a convenient
number of equivalence classes.

3 The Improved Encoding

The prior encoding can be improved through
weak, reduced bracketing that packs adjacent clos-
ing or opening brackets into a single symbol. The
idea has historical links to superbrackets in In-
terlisp (Teitelman, 1978), but similar ideas have
been introduced to the bracketing of phrase struc-

2The seven longest sentences in the UDv?2 dataset viewed
by the author consist of 399, 428, 493, 496, 504, 534 and 610
tokens.

3A hierarchical grammar representation would be much
more succinct but it assumes richer structures that we would
like to preserve for optimizations of the implementation.

4We did not even consider the latent encoding of Yli-Jyri
and Gémez-Rodriguez. The latent encoding has a more com-
plex local structure and requires drastically more states in a
DFA representation.
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ture trees (Langendoen, 1975; Krauwer and des
Tombe, 1981; Yli-Jyrd, 2003). In the context of
edge brackets, the idea of weak bracketing appears
partially in Yli-Jyréd (2004).

3.1 Nested Sibling Edges

The key observation is that nested sibling edges
give rise to adjacent copies of one-sided brackets:

e g4

N——
similar

The idea is that if we indicate both sides of the out-

ermost sibling edge, its nested siblings share one

of its ends and thus need only a one-sided bracket:

g1 0148

—~—~

shareable

gy
shareable
Our current contribution to this idea is to observe
that (1) both sides of the outermost brackets can
be shared and (2) that every edge can be indepen-
dently directed or undirected:

L7 80>8010<870 2\
>0 148<0748 1

Figure 2 shows how this encoding is applied to a
real dependency tree.

Figure 3: Language C and functions Y and E and
relation Ty



3.2 Re-encoder

There is a transducer that converts the original
”strong” edge bracketing into weak edge bracket-
ing. The transducer is represented with four com-
ponents in Figure 3:

1. Sequential function Y that replaces the super
brackets 1!, [', the redundant brackets 10,
[0 and the weak brackets 1, [ with standard
edge brackets ], [, respectively.

2. Language C that states the property that weak
brackets ], [ are not appearing at the position
of redundant brackets and that the redundant
brackets 10, [0 are attached locally to a simi-
lar super bracket 1!, [!.

3. Sequential function E that elides the redun-
dant brackets.

4. A reflexive regular relation 7; whose iterated
application implements the fact that balanced
brackets may cancel each other.

If X is a finite set of encoded graphs, we can
re-encode these graphs as the corresponding set of
weakly bracketed graphs X,,. We compute

X,, =Dom(E~'oDom(Y 0 X)oCoTyo...0T0¢)

...0 Ty o Ty until fixed point

where Dom returns the input projection and X, C
and € are viewed as identity relations. Since the
composition closure 7y o Ty o ... o Ty o € maps the
balanced bracket strings to the empty word, its in-
put projection is actually a Dyck language Dy — a
balanced language over the four kinds of balanced
brackets. With this context-free language, we can
define the re-encoder as function

X, =E(Y '(X)nCnDy).

that maps the strongly bracketed strings X to the
weakly bracketed strings X,,. This re-encoder
function extends to encoded digraphs in the nat-
ural way by extending the set of brackets.

3.3 Improved State Complexity

The state complexity of the set of all n-vertex non-
crossing digraphs for the streamlined encoding is
essentially smaller than previously:

n encoded digraphs states

5 62464 207

6 2437120 704
7 101859328 1327

216 4
-+ digraphs (strong)

914 1 -0 proj. trees (strong)
-a graphs (strong)
212 4

21() 4
28 4

26,

=& digraphs (weak)
-®- proj. trees (weak)
-&- graphs (weak)

24,

22,

states in DFA representation of the search space

20,

tokens in the sentence

Figure 4: Weak bracketing brings exponential sav-
ings in the size of the DFA representing the search
space of a sentence when the search space consists
of digraphs, projective trees, or graphs

We are also able to go beyond n = 7 and build
complete search spaces of undirected graphs with
more vertices:

n encoded graphs states
10 21292 032 490
19 29312424612 462592 12 395
20 314739971287 154688 18 276
21 3393951437605 044224 24 925
30 ~7.681-10*7 589 598

Figure 4 shows that the state complexity differ-
ence between the original and the new encoding
scheme for digraphs, projective trees and graphs
is indeed exponential to the length of the sen-
tences. With the simple trick that replaces /! and
<! with [!, but otherwise separates the brack-
ets /, >, 1, [, <, \, [!', 1!, \!, >!, the
search space generalizes from noncrossing graphs
to noncrossing digraphs without any increase in
the state complexity. This gives another significant
saving in the state complexity of digraph search
space compared to the original encoding.’

3.4 The Context-Free Set of Digraphs

There is an extended context-free grammar that
generates all encoded undirected graphs using the

3Some further savings could be obtained by joining the
adjacent curly brackets { } into an atomic symbol.
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s'= ((318)

S— ({} | T({}] S)*U>]! where
=) T ((H8) )
U= (119" s

Figure 5: Top left: the level grammar. Top right: a bottom-up recognizer G for S.

weak edge bracketing:

s — s @)
S={enferson 3)
T— {3 {}s1(s571)" (4)
U—{}](1857) 15*(} (5)

The derivation steps of this grammar do not corre-
spond exactly to nesting of brackets. The gram-
mar can, however, be converted to an extended
context-free grammar where each derivation step
corresponds to a new nesting level. This is illus-
trated in the left of Figure 5.

We implement the grammar as a transducer that
is iterated until the sentential form is in the lan-
guage ({} | §)". The iterated transducer Gs is
shown in the right of Figure 5.

4 Finite-State Search Space

A finite-state approximation is obtained from the
grammar by composing copies of the bottom-up
recognizer Gg and by restricting the output lan-

guage to ({} | s)". The language Lipapyss) i
constructed using 6 copies of the Gy transducer:

Dom(Gs0GsoGsoGsoGsoGso ({}]5)”)

The language Ly ApHS(5) has 442 distinguishable
DFA states and 1388 transitions. This approxi-
mation of the grammar can be used to represent
most of the search space of n-vertex sentences
with fewer states than the length-limited finite sub-
set of context-free language Lgrapus that contains
all graphs. When L, ApHs(s) and LGrapus are
constrained with W,,, we obtain regular languages
whose state complexity can be measured. The dif-
ference between these is illustrated in Figure 6.

It is interesting that although the approxima-
tion captures only 6 levels (5 nested ones) of su-
per brackets, it gives exact results until the graphs

10000 + 100%

search space coverage
9000 + 99% of the approximation
8000 + 98%
4+ 0,
7000 1 97% DFA states in the exact
tation

6000 - 96% represen
3 2
1§ 5000 T+ 95% g
s 8

4000 + 94%

3000 + 93%

DFA states in
4 0,
2000 T 92% the approximation
1000 + 91%
0 T T T T T T T T T T
4 6 8 10 12 14 16 18 20 22
tokens in the sentence
Figure 6: In terms of space complexity, the ap-

proximation grows only linearly to the sentence
length while the exact search space representation
explodes quickly. Meanwhile, the finite nesting
depth has only a slowly growing proportional ef-
fect on the the search space when the length of the
sentence increases.

have 14 vertices. This is because each pair of su-
perbrackets encode an edge whose two endpoints
are non-incident with the edges that correspond to
nested superbrackets.

Since the approximated search space grows lin-
early to the sentence length, the approximated
search space of 21-vertex graphs requires 5501
states. Interestingly, this subset approximation
still covers 99% of the complete search space as
it contains 3 358 682 892 406 358 016 graphs.

5 Data Coverage

The length of real sentences in treebanks and in
texts varies a lot. At very high lengths, it is not
easy to tell without real data how probable it is



Table 1: The coverage of UD v.2 data with depth bounded weak edge bracketing
lang N depth 0 depth 1 depth 2 depth 3 depth 4 depth 5 [ depth 6 depth 7
Arabic 26722 442% 2093%  65.09%  94.39%  99.64%  99.99% | +0.011% (3)
Catalan 14832 127%  1901%  7039%  96.07%  99.62%  99.99% | +0.007% (1)
Czech 102660  10.60%  43.11%  86.77%  98.47%  99.89%  99.99% | +0.010% (10)
German 14917 2.06% 43.11%  87.52%  98.56%  99.91%  99.97% | +0.027% (4)
English 19785 16.61%  53.59%  91.10%  9921%  99.96%  100.00%
Spanish 31546 1.59%  24.61%  7727%  9724%  99.79%  100.00% | +0.003% (1)
Finnish 30437 3003%  7746%  96.54%  99.55%  99.96%  99.99% | +0.007% (2)
French 19204 2.86% 37.87%  88.24%  98.89%  99.94%  99.99% | +0.005% (1)
Greek 28478 1647%  61.77%  9575%  99.73%  99.98%  100.00%
Hebrew 5725 161%  24.63% 80.61%  98.72%  99.93%  100.00%
Hindi 14963 045%  37.19%  82.74%  98.04%  99.90%  99.98% | +0.020% (3)
Croatian 8280 2.23% 33.78%  8639%  98.90%  99.93%  100.00%
Hungarian 1351 111%  2295% 6891% 9489%  98.96%  99.78% | +0.148% (2)  +0.074% (1)
Ttalian 14992 4.93%  47.62%  88.22%  98.63%  99.92%  100.00%
Japanese 7675 1.98%  48.60%  96.73%  99.96%  100.00%  100.00%
Latin 33166 20.14%  61.14%  90.57%  98.86%  99.94%  100.00%
Latvian 3054 1650%  57.50%  88.93%  98.23%  99.80%  99.97% +0.033% (1)
Dutch 19891 1832%  60.86%  93.81%  99.56%  99.98%  100.00%
Polish 7127 13.03%  7528%  98.58%  99.94%  99.99%  100.00%
Portuguese 19765 461%  3202%  81.33%  97.98%  99.83%  99.99% | +0.005% (1)
Romanian 8795  0.80% 25.78%  8451%  98.53%  99.87%  99.99% | +0.011% (1)
Russian 59827 1257%  73.86%  97.03%  99.76%  99.98%  100.00% | +0.002% (1)
Slovenian 9349  17.82%  57.60%  9434%  99.68%  99.99%  100.00%
Scandinavian 47574 1246%  5527%  92.52%  9935%  99.96%  100.00%
Turkish 4660  22.08%  71.20%  92.68%  98.88%  99.89%  99.98% | +0.021% (1)
Chinese 4497 0.00%  19.64%  7049%  9453%  9951%  99.96% | +0.044% (2)
other UD trecbanks 71147 12.55%  57.43%  91.58%  9921%  99.96%  100.00%

630518 11.07% _ 50.38% _ 88.38% _ 98.66% _ 99.01% _ 99.994% | +0.005% (33) __+0.0003% (2)

that a finite-state approximation does not contain
the correct analysis graph or digraph. In order
to learn about the probability of the out-of-the-
search-space event, we used the UD treebanks as
the first proxy to find out how often a given nesting
depth is exceeded in gold trees.

Our current encoding can handle only noncross-
ing trees such as projective trees. However, the
trees in UD version 2 treebanks do not have this
restriction. It is well known that the propor-
tion of non-projective, and thus crossing, trees
is relatively high for some languages (G6mez-
Rodriguez, 2016). If all nonprojective analyses
were discarded, most of the long sentences would
have been excluded, with significant effect on our
experiments.

For the experiments, we had to enforce non-
crossing structure to the data. The standard ap-
proach is to perform lift transformations that move
crossing edges higher in the dependency tree. Al-
though there are methods to minimize the num-
ber of lifts either heuristically or exactly, the out-
put of such a transformation is not uniquely de-
termined. The second way to projectivise trees is
to keep the dominance tree intact but reorder the
nodes of the tree into a canonical order that main-
tains the relative order of the immediate depen-
dents of each head. The third approach, actually
used by us, views the trees as undirected trees and
takes advantage of the algebraic properties of bal-

36

anced bracketing. For example, if we combine the
edge brackets in [{}{}] [{}] and {} [{}{}]1, we
obtain [{} [{}] [{}]] thatencodes a slightly dif-
ferent set of edges. This method works also with
reduced bracketing where the opening and clos-
ing superbrackets cancel one another. The result-
ing code string preserves the number of edges but
some ends of these edges may change. The re-
sult may be a cyclic or disconnected graph but
it preserves noncrossing parts of the graph intact
because there the brackets match the two ends of
each edge.

The total number of sentences in the sample
was 630518. This includes both the training and
the development sections of the UD v.2 treebanks.
The data was encoded with our new encoding
scheme and automatically converted to noncross-
ing undirected graphs before the nesting depth of
each sentence was computed.®

Table 1 describes how the nesting depth corre-
sponds to coverage in the UD2 data set. It indi-
cates that the depth 5 is a good compromise be-
tween depth and coverage. Under this depth, the
search space contains 99.994% of all the trees in
the treebanks. Only 35 sentences require weak
bracketing whose nesting depth is more than 5.
Thus the flat out-of-the-search-space failure rate
is 0.006% of the sentences only.

5The code for the encoding script is in https://
github.com/amikael/depconv.
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Figure 7: Left: the sentence length distribution P(n-bucket) =count(n—bucket)/all sentences and
the conditional probability P(d > k | n) =count(d,n—bucket)/count(n—bucket) of exceeding depth

of weak bracketing, given the sentence length.

Right: the joint distribution P(d > k | n-

bucket) =count(d,n—bucket) /bucketsize/total for the event of exceeding depth, given sentence length
and the conditional distribution P(< n | d) =count(< n—bucket,d)/count(d) of maximum sentence
length, given the bracketing depth. Scaling of some distributions was necessary as the numeric values of
some nearby distributions are of different orders of magnitude.

The error rate leaves us with doubts about
the representativeness of the sample. To
gain more insight into the underlying pro-
cess, a more sophisticated statistical model
was constructed. For this purpose, the mul-
tilingual data was smoothed by splitting the
sentence lengths into buckets that contained
typically some 30k sentences. The length
ranges were [2,2],..., [9,9], [10,11],..., [24,25],
[26,28],[29,31],[32,35],[36,41],[42,52],[53,610].
Each was represented by the length of the median
sentence in the range. E.g. the range [53,610] was
represented by the median length 62.

The sentence length and nesting depth combine
to form a joint distribution P(d > k,n) that can
be factored in different ways. Figure 7 presents
the distribution of sentence lengths and the related
conditional and joint distributions as they could be
observed. The statistics reveal the following ob-
servations:

1. The shape of the sentence length distribution
resembles a Poisson distribution.’

2. Although the sentence length increases, the
probability of shallow bracketing still re-
mains high (e.g. P(d <4 |n € [42,52]) =
0.93%), as the probability of a deep nesting
event increases slowly according to the sen-
tence length.

"For a sophisticated sentence length model, see e.g.
Sichel (1974).
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3. The observed probability of a deep sen-
tence grows almost linearly when the sen-
tence length increases. Thus, high sentence
length does not necessarily mean very deep
nesting (P(d > 6 | n € [42,610]) < 0.2%).
Even extremely long sentences are rarely
deep (P(d > 6| n € [53,610]) = 0.15%).

4. The current experiments seem to break the
direct link from long sentences to deep nest-
ing but supports the opposite tendency. The
probability of a sentence being deep is zero
when the number of tokens is less than 14,
but very deep nesting predicts high sentence
length (P(n > 45| d = 6) > 99%).

5. The proportion of deep analyses in the search
space is higher than the corresponding pro-
portion in the real data for each length. In
particular, deep nesting in sentences with 20-
21 tokens is expected to happen almost at the
probability 1% if all analyses were equally
probable (Figure 6), but observed probability
of the event is under 0.002% (P(d > 6| n €
[20,21]) = 0.002%).

6 Discussion

There are three factors that contribute to deep nest-
ing structures in bracketed binarised trees:

e Tail Recursion. Repeated left- and right-
branching structures generate initial and final
forms of tail recursion, as well as zigzag em-
bedding that involves both.



e Unit Rules. Non-branching trees embed
trees in a way that may generate new nesting
levels in bracketing.

e Local Factorization. Local factorization of
unranked parse trees and unbounded sibling
edges can generate unbounded recursion.

Unit rules and tail recursion have been addressed
in several prior studies as their naive bracketing
may involve unbounded stack or nested brackets.
The prior approaches include grammar transfor-
mations in parsers (Langendoen, 1975; Johnson,
1998; Nederhof, 2000), weak bracketing of con-
stituent trees (Langendoen and Langsam, 1984;
Krauwer and des Tombe, 1981; Black, 1989;
Koskenniemi, 1990; Yli-Jyrd, 2003), edge brack-
eting of dependency trees (Oflazer, 2003; Yli-Jyra,
2005, 2012; Yli-Jyrid et al., 2012) and further ideas
(Church, 1980; Langendoen, 2008; Hulden and
Silfverberg, 2014).

The current work goes another mile in the study
of bounded nesting by introducing weak edge
bracketing that avoids unbounded recursion when
unbounded local trees are binarized and brack-
eted.® The work also shows that the classic tech-
nique can be extended to all noncrossing digraphs.
This extends the relevance of finite-state trans-
ducer techniques from syntax to semantic depen-
dency parsing.

The weak edge bracketing is effective in im-
proving the state complexity of finite sets of non-
crossing digraphs (Figure 4). Thanks to the
new bracketing scheme, the coverage of depth-
bounded approximations is very high and seems
to deteriorate slower than the state complexity of
the exact search space grows (Figure 6). A further
improvement was obtained by the trick that main-
tained the state complexity when the encoding for
graphs was generalized to digraphs.

A careful comparison between methods that
ensure noncrossing structures could reveal some
interesting differences. While the nonprojective
trees can be projectivised (and thus turned into
noncrossing graphs) with optimal number of lifts,
the lifted tree is still not unique and it may be in-
tractable to optimize the nesting depth over the
choices. It may also be a problem if the input is
not a tree and therefore the existing graph banks
should be also explored in the statistics.

8The idea started to develop already in Yli-Jyri (2004).
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Natural next steps in the proposed methodol-
ogy would be to adapt the parametrizable pars-
ing framework of Yli-Jyrd and Gémez-Rodriguez
(2017) to weak bracketing and to implement a
linear-time arc-factored parser to important fam-
ilies of non-crossing digraphs. It is also important
to find ways to combine the current encoding with
higher-order dependency parsing and neural net-
work grammars that weight local trees. The main
challenge is, however, to extend the current work
to crossing graphs and nonprojective trees.

7 Conclusion

In this paper, we have presented the first weak
edge bracketing scheme for noncrossing digraphs
and described the bijectively related context-free
language of code strings. Our scheme improves
over (Yli-Jyrd and Gémez-Rodriguez, 2017) as the
minimum DFA state complexity of search space
representations is smaller and unranked dependen-
cies can be processed without recursion.

The experiments indicate that 5 nested levels of
balanced brackets are sufficient to cover nearly all
noncrossing UD v.2 data. According the joint dis-
tribution of length and depth, deep nesting is a rare
event that correlates with an exceptional sentence
length.

The language Lgp pys(s) representing the sub-
set approximation of the search space for all non-
crossing graphs with nesting depth 5 can be ap-
plied beyond the Yli-Jyrd and Gémez-Rodriguez
(2017) framework to guide and restrict syntac-
tic parsing and generation. This is expected to
lead to linear time syntactic and semantic de-
pendency parsing with noncrossing output struc-
tures. If combined with multiplanar/book em-
bedding methods (Yli-Jyrd, 2003; Kuhlmann and
Johnsson, 2015), the techniques might extend to
non-projective parsing and crossing graphs.
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