Poet’s Little Helper: A methodology for computer-based poetry generation.
A case study for the Basque language

Aitzol Astigarraga and José Maria Martinez-Otzeta
and Igor Rodriguez and Basilio Sierra and Elena Lazkano
Department of Computer Science and Artificial Intelligence
University of the Basque Country UPV/EHU
Donostia-San Sebastian 20018, Spain
aitzol.astigarraga@ehu.eus

Abstract

We present Poet’s Little Helper (PLH), a tool
that implements a methodology to generate
poetry using minimal language-dependent in-
formation. The user only needs to provide
a corpus with a set of sentences, a rhyme
checker and a syllable-counter. From these
building blocks, PLH produces: (1) an ex-
ploratory analysis of the suitability of the
given corpus for poetry generation. (2) a
novel and non-trivial poem grammatically cor-
rect under metrical and rhyming constraints.
This poem also shows content that is coher-
ent with a topic given by the user. The
process of poetry generation is a cycle with
three phases: lexical exploratory analysis, se-
mantic exploratory analysis and poem gener-
ation. The goal is twofold: on the one hand
PLH aims to be a useful open source poem-
generator for many languages with minimal
effort; on the other hand, analizes how the par-
ticularities of each corpus affect in the creation
of poems. The presented PHL tool is offered
in a public repository. The results of an exper-
iment with a corpus of Basque texts is shown.

1 Introduction

Poetry is a form of literary expression intended to
convey emotions in the audience, and in which the
expression of feelings and ideas is given intensity
by the use of style and rhythm according to pre-
defined formal rules. Poetry generation is a chal-
lenging field in the area of Natural Language Pro-
cessing. When a poem is automatically created by
computational means, usually the programmer takes
advantage of existing general semantic knowledge

from resources like WordNet for semantic valida-
tion, or of already known formalized grammars for
sentence generation. Furthermore, most of the ex-
isting poetry-generation systems are devoted to the
English language (Gongalo Oliveira, 2015). For mi-
nority languages with low presence in the natural
language processing community the most usual sce-
nario is a lack of such computational resources.

In this paper we present a methodology to help
researchers in generating poetry automatically. This
methodology is composed of two different phases:
the first one devoted to the exploratory analysis (lex-
ical and semantic) of the corpora provided for poetry
generation, and the second one focused on the auto-
matic generation of the final poem given the results
of the previous phase. We provide a tool which im-
plements the above mentioned steps.

The rest of the paper is organized as follows: sec-
tion 2 introduces the main poetry generation systems
and the strategy implemented in the PLH tool; sec-
tion 3 aims to give a formal definition of the pre-
sented methodology; section 4 describes the source
code of the PLH tool; section 5 shows an application
of the proposed method to the Basque language; and
the final section 6 presents the conclusions and pos-
sible future lines of research.

2 Poetry Generation

Computational modeling for poetry generation has
become a topic in the artificial intelligence commu-
nity in recent years. Before the computer science
community took an interest in the area, people with
a background closer to humanities made early ef-
forts in systematic generation of poetry. We could



mention works related to generating variations over
a predetermined set of verses (Queneau, 1961), or to
select a template to produce poems from it (Oulipo,
1981).

In recent years many different computer-based
poetry generation systems have been developed.
Among the most relevant ones we could include the
well-known WASP (Gervas, 2000; Gervas, 2010),
a Spanish verse-generation system developed fol-
lowing the generate-and-test strategy; Full-FACE
(Colton et al., 2012), a corpus-based poetry gener-
ation system which introduces emotions in the gen-
eration process; PoeTryMe (Gongalo Oliveira et al.,
2014; Gongalo Oliveira and Cardoso, 2015), a po-
etry generation platform used for Portuguese, Span-
ish and English; DopeLearning (Malmi et al., 2016),
where the task of lyric generation is formulated as an
information retrieval task. An approach using text
mining methods, morphological analysis, and mor-
phological synthesis to produce poetry in Finnish
is presented in (Toivanen et al., 2012). Constraint
programming for poetry composition is explored in
(Toivanen et al., 2013). In (Agirrezabal et al., 2013)
an approach of poetry generation based on POS-tag
is described. Markov chains are also widely used as
a basis of poetry generation systems. Popular and re-
cent examples of N-gram generators are (Barbieri et
al., 2012; Das and Gambick, 2014; Gervas, 2016).

For a more thorough review of systems related to
automatic generation of poetry, we point the reader
to (Gervas, 2013) and (Lamb et al., 2016).

Our poetry generator is based on the following
principles:

e Form: rhyme and metric compound the tech-
nical requirements of a verse. Thus, find-
ing rhymes and counting syllables are essential
abilities that the system must perform.

e Content: the output of the verse generator mod-
ule must be meaningful. Methods to measure
the semantic coherence of the generated text
are needed.

The verse generation procedure relies in the ex-
traction of sentences from corpora and combining
them (under rhyme and metric constraints) to form
the final poem. Semantic relatedness or internal co-
herence between poem verses is measured with an

implementation of LSA (Latent Semantic Analysis)
method (Deerwester et al., 1990). The main assump-
tion of LSA is that words that are close in meaning
will occur in similar pieces of text. A matrix con-
taining word counts per verse is constructed from
a corpus and singular value decomposition (SVD)
is used to reduce the dimensionality of the seman-
tic space. Verses are then compared by taking the
cosine distance between their two vector represen-
tations, where a higher value is associated with a
higher semantic similarity.

Thus, in a basic scenario, the user provides a topic
and the kind of poem to be composed, and the sys-
tem aims to give as output a novel poem with content
semantically related to the proposed topic.

3 Methodology

In this section the proposed methodology is de-
scribed. The process of poetry generation is a cy-
cle with three phases: lexical exploratory analysis,
semantic exploratory analysis and poem generation.
Lexical and semantic richness is largely required for
acceptable poem generation, and exploring the lexi-
cal and semantic dimensions of the data could help
the researcher to focus on improving it along their
weaknesses.

3.1 Lexical exploratory analysis

Regarding the lexical exploratory analysis, we de-
fine the following actions:

o Count the number of potential verses.

o Find the number of verses which do not adjust
to the rhyming convention, and show their end-
ings.

e Find the number of verses which rhyme with a
given word, and list them.

o Compute the number of rhyming equivalence
classes of the set of verses. A rhyming equiv-
alence class is a set of verses which share the
same rhyming pattern.

o Compute the number of rhyming equivalence
classes of the set of verses that have more el-
ements than the minimum number of rhyming
verses in a poem. This is the number of valid



equivalence classes, in the sense that elements
from the other equivalence classes cannot form
part of a poem.

e Create a list with a verse from every equiva-
lence class along with the number of elements
in such equivalence class.

e Plot the number of verses in each equivalence
class.

e Plot the logarithm of the number of verses in
each equivalence class. Useful when the distri-
bution is very skewed.

e Plot the histogram of the number of equiv-
alence classes according to the equivalence
class size. Another way of exploring the distri-
bution of equivalence classes according to their
size.

e Plot the histogram of the number of equiva-
lence classes according to the logarithm of the
equivalence class size.

3.4 Formal definition

Let us start with some terminology. N will denote
the set of natural numbers. R will denote the set of
real numbers. A document d € D is a sequence of
words (w € W) and punctuation marks (m € M)
and spaces which follows the syntactic conventions
of the language. A verse v € V is a document d
under some restrictions. The power set of a set .S
will be denoted with P(S).

The elements that the user has to define before
applying this methodology are the following:

e A set of documents (Ds) which is used to infer
the semantic models used later.

o A set of documents (Dv) which is used to obtain
the verses.

o A set of (M) of punctuation marks. The el-
ements of this set will be removed when per-
forming semantic analysis.

e A natural number NV &€ Nq denoting the

3.2 Semantic analysis number of verses in a poem.

The semantic exploratory analysis subtask is com-

prised of several steps: e A sequence of rhyme patterns RP €

e Build a semantic model from the set of docu-
ments Ds provided by the user.

o Find the verses more similar to a given theme
according to the semantic models.

e Find the verses more similar to a given theme
according to the semantic models and that also
rhyme with a sentence.

3.3 Poetry generation

For the poetry generation subtask the steps are the
following:

e Ignore equivalence classes with fewer elements
that the minimum needed. In this step the
equivalence classes from which a poem cannot
be created are ignored.

e Compute the best poems given a theme accord-
ing to a goodness function. Several goodness
functions are available to create poems.

{0,1,..., NV}NV. The rhyme patterns in the
poem have to be encoded in the following man-
ner: the rhyme pattern of the first verse corre-
sponds to the number zero; for the pattern of a
new verse, if such a rhyming pattern already ex-
ists, the number corresponding to that pattern is
written, or the first natural number not yet cho-
sen otherwise. For example, four verses with
the same rhyming pattern would be written as
0, 0, 0, 0. Six verses with rhyming patterns by
consecutive pairs will be 0, 0, 1, 1, 2, 2. The
pattern O, 1, 1, 2, 2, 1, 1, O would correspond-
ing to eight verses where the last three patterns
are the same as the first three patterns, but re-
versed.

e A function (extract_verses : D — P(V)) that
extracts all the potential verses from a docu-
ment.

o A lemmatizer function (lemmatize : W —

W), which returns a lemmatized word.



e A rhyming function (is_-rhyme D? —
{T, F'}) that returns True if the two documents
rhyme, and False otherwise.

rules, and False otherwise, and a poem good-
ness function (poem_goodness : P(V) — R),
which returns a value for every set of verses
according to its quality.

The system should already have other elements
defined. In the following functions, S will denote
the set of semantic models.

4 Open source code

A public repository has been created with the basic

e A function (clean_document : D x M — D) code needed to implement this methodology I, The

o A

which returns the document without punctua-
tion marks.

e A function (semantics_extractor : D x N x
W* x N x R — S) that returns a semantic
model. This function takes five parameters to
generate a semantic model (LSA). The param-
eters are: a set of documents used to build the
semantic model; the number of topics which
should be used to create the semantic model;
a list of words to be removed from the doc-
uments; a parameter indicating the minimum
document number in which a word should ap-
pear; and a parameter indicating the maximum
fraction of the total documents in which a word
could appear.

e A similarity function (sim : D*> — R), which
returns the similarity between two documents.

rhyme detector function
(rhyme_generator : D x P(V) — P(V)),
which returns all the rhyming verses given a
document.

code is a collection of Python modules and Jupyter
notebooks, which, after installation, allows people
with little knowledge of the Python language to per-
form the analysis on their own.

The structure of the code is the following:

4.1

e Customize.

Modules

It contains the following defi-
nitions, that have to be customized accord-
ing to the needs of the researcher: the file-
names where D, and D, are stored, M and
RP as Python tuples, the natural number NV,
and the functions extract_verses, lemmatize and
is_rhyme.

General. General functions not directly related
to natural language processing or poetry gen-
eration. For instance, list manipulation or his-
togram drawing functions are defined here.

e NLP. Functions related to natural language pro-

cessing. The construction and manipulation of
semantic models takes place here.

. e Poetry. Functions related to poetry generation.
Several poem generator Junctions Rhyming and poem construction takes place
(poem_generator : V x D x Nx NVV xS — here.
P(V)), that given a set of verses, a document,
a number of verses, a rhyming pattern and 472 Notebooks
a semantic model, returns a poem under the . .
. . e Get_started. This notebook will be called from
constraints imposed by the number of verses
. ) . the other two. The researcher does not need to
and the rhyming pattern; the poem will be T ) ]
. open it, given that it only contains some code
semantically related to a document under ] : Co
. that is automatically executed to initialize the
a semantic model. The document above
referred can be viewed as the theme of the system.
poem. These generator functions will differ e Exploratory_analysis. Here, the code that al-

in their inner implementation of another two
auxiliary functions: a poem validator function
(poem_validator : P(V) — {T, F'}), which
returns True if the poem conforms to the poetry

lows exploration of the lexical and semantic
possibilities of the verses is located.

"https://github.com/rsait/PLH



e poem_generation. The notebook where the last
step, the poetry generation, is performed. The
researcher, after analyzing the data with the Ex-
ploratory_analysis notebook, is ready to exe-
cute this code and create automated poetry.

5 Case study

Verse improvisation (under the name of Bertsolar-
itza) is a traditional cultural expression in the Basque
Country. With ancient roots, it has undergone a re-
vival in the last times, being widely popular.

In this section we present the experiments made
with a corpus of Basque texts to produce poems un-
der the formal requirements of Basque poetry. This
corpus is the set of all the news that appeared in
the Basque newspaper Egunkaria in the years 2002-
2003, which comprises 1,277,457 sentences. The
results of the exploratory analysis are shown along
with some automatically produced poetry. The
selected poetry meter for experiments is Zortziko
Txikia, a composition of eight lines in which odd
lines have seven syllables and even ones have six.
The union of each odd line with the next even line,
forms a verse. Each verse has 13 syllables with a
caesura after the 7th syllable (7 + 6) and must rhyme
with the others?.

5.1 Building blocks

As previously said, some building blocks are needed
in order to apply the proposed methodology. In this
case those blocks were defined in the following man-
ner:

e The set of documents Ds from which the se-
mantics models are created is the Basque cor-
pus previously referenced.

e The set of documents Dv from which extract
the potential verses is equivalent to D's.

e The set of punctuation marksis M =(,.? !’

/).

e A syllable_counter function that counts the
syllables of the input text.

http://www.bertsozale.eus/en/
bertsolaritza/what-is—a-bertso

e The rhyming function is_rhyme that returns
all the rhyming lines given an input line. It is
based on (Amuriza, 1981) and implemented us-
ing regular expressions.

e The natural number NV that denotes the num-
ber of verses in a poem. In Zortziko Txikia this
number is 4.

e The sequence of rhyme patterns RP. In
Zortziko Txikia this sequence is (0, 0, 0, 0). It
means that all the verses have to rhyme among
themselves.

5.2 Lexical exploratory analysis

The following actions have been performed auto-
matically with the help of our lexical exploratory
software:

e Count the number of potential verses: 41659.

e Find the number of verses which do not adjust
to the Basque rhyming conventions: 139. Per-
centage of the total: 0.33%.

e Find the last words of such verses. Analyz-
ing these words we find the sign %, mak-
ing us wonder if we should expand the set
M, filter these kind of characters or make
another decision. We also find interjections
(’eh”, ”hi”), foreign proper names (“olaf”,
”jerusalem”, “bush”), Basque proper names
“unanue”, “orue”), Roman numerals (”’xix”,
”xx”, 7xxi”), acronyms (“eajk”, "ugt”, “upn”)
and other words not easily classifiable. After
these step we could decide what to do in ev-
ery case: for example, we could modify the
rhyming function to add those Basque names,
expand acronyms or Roman numerals in the
original documents and repeat the verse ex-
traction process, or remove all the no rhyming
verses. We have chosen this last option, that is
provided by our software.

e Compute the number of equivalence classes of
the set of verses, according to the rhyme. In
this example the number of partitions is 184.

e Compute the number of equivalence classes of
the set of verses that have more elements than



the minimum number of rhyming verses in a
poem. In Zortziko Txikia the rhyme pattern
(RP) is (0, 0, 0, 0), which means any valid
partition has to contain at least four elements,
because a poem is composed by four rhyming
verses. The number of equivalence classes of
minimum size in our example is 141. If RP
would be (0, 1, 0, 1, 0, 1), the minimum equiv-
alence class size would be three, and in the case
of (0, 1, 0, 1, 2, 2), the minimum size would be
two.

Create a list with a verse of every equivalence
class along with the number of elements in such
equivalence class. Our list is of the form [(’a
aita zenarekin joan zen bertara’, 4441), (’a ar-
rieta hartu zituzten mendean’, 4209), ... , ('zee-
landarrekin ez da ariko lomu’, 1), (’ziganda ba-
diola zalakain gaztelu’, 1)].

Plot the number of verses in each equivalence
class (figure 1), the logarithm of the number of
verses in each equivalence class (figure 2), the
histogram of the number of equivalence classes
according to the equivalence class size (figure
3) and the histogram of the number of equiva-
lence classes according to the logarithm of the
equivalence class size (figure 4).

These four figures can help the user in the inter-

pretation of the distribution of the rhyming equiva-
lence classes and their relative size, that appears to
follow a power law (Piantadosi, 2014).

mber of verses
3 B
g g
S 8

0 20 40 60 80 100 20 140 160
Partition ordinal

Figure 1: Number of verses in each equivalence class

5.3 Semantic exploratory analysis

The following actions have been performed auto-
matically with the help of our semantic exploratory
software:

ETS

Log of the number of verses
N

N w

%

60 80 140 160
Partition ordinal

Figure 2: Logarithm of the number of verses in each equiva-

lence class

Number of partitions
5

10

oi—. 1 X n 1
0 500 1000 1500 2000 2500 3000 3500 7000 500

Partition size

Figure 3: Histogram of the number of equivalence classes ac-

cording to the equivalence class size

Number of partitions

3 7 8

4 5 6
Log of the partition size

Figure 4: Histogram of the number of equivalence class ac-

cording to the logarithm of the equivalence class size

e Build a semantic model from the set of docu-

ments Ds provided by the user. The number
of topics has been assigned to 100, filtering all
the words that do not appear in at least 5 doc-
uments, and all the words that appear in more
than 20% of the documents. We have also fil-
tered the stopwords.

e Find the verses more similar to a given theme

according to the semantic models. Taking for
example the theme “itsaso” (sea), we find sen-



tences with the word “itsaso”, but also sen-
tences without that word, but other related
words, as “txalupa” (small boat) or "ur” (wa-
ter). We find sentences with the word ontzi”,
that could be translated as “’ship” but also as a
“generic container”, highlighting the challeng-
ing issues which polysemy implies.

e Find the verses which are more similar to a
given theme according to the semantic models
and that also rhyme with a sentence. Follow-
ing with the “itsaso” example, the more simi-
lar verse is ’oliobideetan eta itsasoan’, with a
similarity value of 0.99833471). The three sen-
tences more similar to itsaso” that also ful-
fil the rhyming restrictions, along with their
similarity values, are (’zenbait otzara eta ontzi
hareatzan’, 0.91221404), (’paper eta ontzien
birziklapenean’, 0.88736451), and (’delas eta
izura oraindik ontzian’, 0.83049005).

5.4 Poetry generation

For a poem to be valid, it has to be composed of
the number of verses given by NV and follow the
rhyming pattern given by RP. No two verses are al-
lowed to share the same final word. In the following
we will refer to the document to which the poem has
to be semantically related, as the theme ¢. Two dif-
ferent poem_generator strategies have been used to
build a poem.

1. Choose the verse v more similar to the theme ¢.
Then choose the NV — 1 verses more similar
to ¢ that follow the rhyming pattern RP.

2. Choose the ten verses v more similar to the
theme t. Then, for each of the ten verses,
choose the NV — 1 verses more similar to ¢
that follow the thyming pattern RP. The poem
with highest score is chosen.

For each of these two functions, two examples are
shown, using different themes ¢. In the first exam-
ple, the theme ”itsaso” (sea) has been chosen, and in
the other ”gurasoak™ (parents) has been used. NV
is equal to four, and the RP pattern is (0, 0, 0, 0),
meaning that all the verses have to share the same
rhyming pattern.

The verse more similar to the theme is *oliobidee-
tan eta itsasoan’ (in oil paths and in the sea). The

Table 1: Poem created with the verse more similar to the theme

“itsaso” (”sea”) (in Basque and its English translation)
oliobideetan eta itsasoan

atentatu susmoak itsaso beltzean
itsaso baretura itzuli nahian
zenbait otzara eta ontzi hareatzan

Basque

in oil paths and in the sea

attack rumors in the sea’s darkness
trying to return to calm sea

several container and ships are going on

English

Table 2: Best poem in our opinion with the theme “itsaso”

(sea”) (in Basque and its English translation)
Kantauri itsasoa haserre zeharo

ozeano haunditan egin dugu txango

putz egitea ere tokatu ezkero

maitatu eta negar egin baitut Bilbo

Basque

Cantabrian Sea very angry

we have made a trip to the vast stormy ocean
if we are emerged to make blow

I have loved and cried, Bilbao

English

poem generated choosing the three verses more sim-
ilar to to theme is shown in Table 1.

The same experiment has been performed choos-
ing the best ten verses and then computing the best
poem among the ten ones generated. The same
poem is ranked the first with this approach, but in
our opinion, the poem in Table 2 (which ranked 8th
of 10) is the best of all ten.

Table 3: Poem created with the verse more similar to the theme

”gurasoak” ("parents”) (in Basque and its English translation)
nire gurasoentzat Peret kristona zen

haiekin bi urteko alaba zeukaten

familia osoak topa zitezkeen

noizbait haur bat badator nahiz ez jakin nor den

Basque

Peret was very good in my parents’ opinion

with these people they had a two years old daughter

for all the family to get together

sometimes a child comes and I do not know who (s)he is

English

In the second example the theme “gurasoak”
("’parents”) has been chosen. With the same proce-
dure as in the first example, the verse more similar
to the theme is "nire gurasoentzat Peret kristona zen’
(Peret® was very good in my parents’ opinion), and
the poem generated choosing the three verses more
similar to the theme is shown in Table 3. When
performing the same experiment with the best ten
verses, another poem, shown in Table 4 is chosen.
As in the previous example, we found the poem in
Table 5 (ranked 10th of 10) the best for our liking.

3A Spanish singer



Table 4: Best poem built from the ten verses more similar to

the theme “gurasoak™ (“parents”) (in Basque and its English

translation)
° ikastolako haurren txanda izango da
2 | haurtzaindegietatik haur eskoletara
é haur danborradarako Easo Ederra

eta gero eta haur gehiago dira

It will be school children turn

from nursery to school

children drum performance in San Sebastian
there are more and more kids

English

Table 5: Best poem in our opinion with the theme “gurasoak”

(parents”) (in Basque and its English translation)
ahizpa ere haurrei irakasten dabil

aitona hola dabil makur eta ixil

zuk errondak atera bai ibili trankil
Londreseko Paddington geltokitik hurbil

(S)he is teaching to his/her sister and children
the grandfather goes on bowed and silent

you carry on calm proposing challenges
close to London’s Paddington station

Basque

English

Let us remember that the goal of the methodology
and the associated code is to help the user to explore
the possibilities of their data. In this example we find
that the generated poems are not of high quality, and
that even we do not agree with the relative ordering
of them given by the code. So, which conclusions
could we extract from these facts? We already have
tools to find all the verses related to a theme ordered
by relevance, so one first step could be to check if
such ordering is suitable. If that it is not the case, it
is very likely the process of the semantic model con-
struction needs some tuning. Or maybe the problem
lies in the few number of verses that rhyme with the
most promising candidates. This could be also ex-
plored with our tool. In our case, it looks as if the
verses with a haiku-like structure are better valued
by our ear. This makes us wonder if the poem good-
ness function could take into account this fact, and
weight down the poems with all the verses very re-
lated to the theme, or those with too many repeated
words between verses.

6 Conclusions and further work

In this work a methodology to guide the exploration
of the possibilities of a collection of documents to
perform automatic poetry generation has been de-
scribed. Along with it a tool and its source code
written in Python has been presented. The possibili-
ties of the system have been shown with an example

in Basque language.

As further work, we intend to add more function-
alities to the lexical and semantic exploratory sub-
systems, as well as to the poetry generation subsys-
tem. Another ways of building poems, as for ex-
ample using genetic algorithms or Markov chains,
would be of interest. The poem_goodness functions
are fixed and predefined, but it would be possible
to be customizable by the researcher. Another idea
would be to get a feedback from the researcher or
a knowledgeable user about the subjective goodness
of a poem, in order to improve the goodness func-
tions that the system uses. At this moment a brute
force approach is applied in the lexical and seman-
tic exploration and in the poetry generation, which
could imply a heavy computational load with big
corpora. We plan to tackle these issues in new ver-
sions of the software.

Acknowledgements

This paper has been supported by the Spanish
Ministerio de Economia y Competitividad, contract
TIN2015-64395-R (MINECO/FEDER, UE), as well
as by the Basque Government, contract IT900-16.

References

Manex Agirrezabal, Bertol Arrieta, Aitzol Astigarraga,
and Mans Hulden. 2013. POS-Tag based poetry gen-
eration with WordNet. In ENLG 2013 - Proceedings
of the 14th European Workshop on Natural Language
Generation, August 8-9, 2013, Sofia, Bulgaria, pages
162-166.

Xabier Amuriza. 1981. Hiztegi Errimatua (Rhyming
Dictionary). Lanku Kultur Zerbitzuak (publisher).

Gabriele Barbieri, Francois Pachet, Pierre Roy, and
Mirko Degli Esposti. 2012. Markov constraints for
generating lyrics with style. In Proceedings of the 20th
European Conference on Artificial Intelligence, pages
115-120. IOS Press.

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full-FACE poetry generation. In Proceedings of
the Third International Conference on Computational
Creativity, pages 95-102.

Amitava Das and Bjorn Gambick. 2014. Poetic ma-
chine: Computational creativity for automatic poetry
generation in bengali. In 5th International Conference
on Computational Creativity, ICCC, pages 230-238.

Scott Deerwester, Susan T Dumais, George W Furnas,
Thomas K Landauer, and Richard Harshman. 1990.



Indexing by latent semantic analysis. Journal of the
American society for information science, 41(6):391—
407.

Pablo Gervas. 2000. WASP: Evaluation of differ-
ent strategies for the automatic generation of Spanish
verse. In Proceedings of the AISB-00 Symposium on
Creative & Cultural Aspects of Al, pages 93—-100. Cite-
seer.

Pablo Gervds. 2010. Engineering linguistic creativ-
ity: Bird flight and jet planes. In Proceedings of
the NAACL HLT 2010 Second Workshop on Computa-
tional Approaches to Linguistic Creativity, pages 23—
30. Association for Computational Linguistics.

Pablo Gervias. 2013. Computational modelling of poetry
generation. In Artificial Intelligence and Poetry Sym-
posium, AISB Convention 2013, University of Exeter,
United Kingdom. The Society for the Study of Artifi-
cial Intelligence and the Simulation of Behaviour.

Pablo Gervas. 2016. Constrained creation of poetic
forms during theme-driven exploration of a domain
defined by an N-gram model. Connection Science,
28(2):111-130.

Hugo Gongalo Oliveira and Amilcar Cardoso. 2015.
Poetry generation with PoeTryMe. In Computa-
tional Creativity Research: Towards Creative Ma-
chines, pages 243-266. Springer.

Hugo Gongalo Oliveira, Raquel Hervas, Alberto Diaz,
and Pablo Gervés. 2014. Adapting a generic platform
for poetry generation to produce spanish poems. In
ICCC, pages 63-71.

Hugo Gongalo Oliveira. 2015. Automatic genera-
tion of poetry inspired by twitter trends. In In-
ternational Joint Conference on Knowledge Discov-
ery, Knowledge Engineering, and Knowledge Man-
agement, pages 13-27. Springer.

Carolyn Lamb, Daniel G Brown, and Charles LA Clarke.
2016. A taxonomy of generative poetry techniques. In
Bridges Finland Conference Proceedings, pages 195—
202.

E. Malmi, P. Takala, H. Toivonen, T. Raiko, and A. Gio-
nis. 2016. Dopelearning: a computational approach
to rap lyrics generation. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 195-204.

Association Oulipo. 1981. Atlas de litterature poten-
tielle. Collection Idees. Gallimard.

Steven T Piantadosi. 2014. Zipf’s word frequency law
in natural language: A critical review and future di-
rections. Psychonomic bulletin & review, 21(5):1112—
1130.

Raymond Queneau. 1961. 700.000.000.000.000 de po-
emes. Gallimard Series. Schoenhof’s Foreign Books.

Jukka Toivanen, Hannu Toivonen, Alessandro Valitutti,
Oskar Gross, et al. 2012. Corpus-based generation
of content and form in poetry. In Proceedings of
the Third International Conference on Computational
Creativity, pages 175-179.

Jukka Toivanen, Matti Jarvisalo, Hannu Toivonen, et al.
2013. Harnessing constraint programming for poetry
composition. In Proceedings of the Fourth Interna-
tional Conference on Computational Creativity, pages
160-167.



