
Proceedings of The 10th International Natural Language Generation conference, pages 51–60,
Santiago de Compostela, Spain, September 4-7 2017. c©2017 Association for Computational Linguistics

What is the Role of Recurrent Neural Networks (RNNs) in an Image
Caption Generator?

Marc Tanti Albert Gatt
Institute of Linguistics

and Language Technology
University of Malta

marc.tanti.06@um.edu.mt
albert.gatt@um.edu.mt

Kenneth P. Camilleri
Deptartment of Systems
and Control Engineering

University of Malta
kenneth.camilleri@um.edu.mt

Abstract

In neural image captioning systems, a recur-
rent neural network (RNN) is typically viewed
as the primary ‘generation’ component. This
view suggests that the image features should
be ‘injected’ into the RNN. This is in fact the
dominant view in the literature. Alternatively,
the RNN can instead be viewed as only en-
coding the previously generated words. This
view suggests that the RNN should only be
used to encode linguistic features and that only
the final representation should be ‘merged’
with the image features at a later stage. This
paper compares these two architectures. We
find that, in general, late merging outper-
forms injection, suggesting that RNNs are bet-
ter viewed as encoders, rather than generators.

1 Introduction

Image captioning (Bernardi et al., 2016) has
emerged as an important testbed for solutions to the
fundamental AI challenge of grounding symbolic
or linguistic information in perceptual data (Har-
nad, 1990; Roy and Reiter, 2005). Most caption-
ing systems focus on what Hodosh et al. (2013) re-
fer to as concrete conceptual descriptions, that is,
captions that describe what is strictly within the im-
age, although recently, there has been growing inter-
est in moving beyond this, with research on visual
question-answering (Antol et al., 2015) and image-
grounded narrative generation (Huang et al., 2016)
among others.

Approaches to image captioning can be divided
into three main classes (Bernardi et al., 2016):

1. Systems that rely on computer vision tech-
niques to extract object detections and features
from the source image, using these as input to
an NLG stage (Kulkarni et al., 2011; Mitchell
et al., 2012; Elliott and Keller, 2013). The lat-
ter is roughly akin to the microplanning and
realisation modules in the well-known NLG
pipeline architecture (Reiter and Dale, 2000).

2. Systems that frame the task as a retrieval prob-
lem, where a caption, or parts thereof, is identi-
fied by computing the proximity/relevance of
strings in the training data to a given image.
This is done by exploiting either a unimodal
(Ordonez et al., 2011; Gupta et al., 2012; Ma-
son and Charniak, ) or multimodal (Hodosh et
al., 2013; Socher et al., 2014) space. Many
retrieval-based approaches rely on neural mod-
els to handle both image features and linguis-
tic information (Ordonez et al., 2011; Socher et
al., 2014).

3. Systems that also rely on neural models, but
rather than performing partial or wholesale
caption retrieval, generate novel captions us-
ing a recurrent neural network (RNN), usu-
ally a long short-term memory (LSTM). Typi-
cally, such models use image features extracted
from a pre-trained convolutional neural net-
work (CNN) such as the VGG CNN (Simonyan
and Zisserman, 2014) to bias the RNN towards
sampling terms from the vocabulary in such a
way that a sequence of such terms produces
a caption that is relevant to the image (Kiros
et al., 2014b; Kiros et al., 2014a; Vinyals et

51



al., 2015; Mao et al., 2015a; Hendricks et al.,
2016).

This paper focuses on the third class. The key
property of these models is that the CNN image fea-
tures are used to condition the predictions of the best
caption to describe the image. However, this can be
done in different ways and the role of the RNN de-
pends in large measure on the mode in which CNN
and RNN are combined.

It is quite typical for RNNs to be viewed as ‘gen-
erators’. For example, Bernardi et al. (2016) suggest
that ‘the RNN is trained to generate the next word
[of a caption]’, a view also expressed by LeCun et
al. (2015). A similar position has also been taken in
work focusing on the use of RNNs as language mod-
els for generation (Sutskever et al., ; Graves, 2013).
However, an alternative view is possible, whereby
the role of the RNN can be thought of as primar-
ily to encode sequences, but not directly to generate
them.

(a) Conditioning by injecting the image means in-
jecting the image into the same RNN that processes
the words.

(b) Conditioning by merging the image means merg-
ing the image with the final state of the RNN in a
“multimodal layer” after processing the words.

Figure 1: The inject and merge architectures for
caption generation. The RNN’s previous state going
into the RNN is not shown. Legend: RNN - Recur-
rent Neural Network; FF - Feed Forward layer.

These two views can be associated with different
architectures for neural caption generators, which
we discuss below and illustrated in Figure 1. In one
class of architectures, image features are directly in-
corporated into the RNN during the sequence encod-
ing process (Figure 1a). In these models, it is natural
to think of the RNN as the primary generation com-
ponent of the image captioning system, making pre-

dictions conditioned by the image. A different archi-
tecture keeps the encoding of linguistic and percep-
tual features separate, merging them in a later mul-
timodal layer, at which point predictions are made
(Figure 1b). In this type of model, the RNN is func-
tioning primarily as an encoder of sequences of word
embeddings, with the visual features merged with
the linguistic features in a later, multimodal layer.
This multimodal layer is the one that drives the gen-
eration process since the RNN never sees the image
and hence would not be able to direct the generation
process.

While both architectural alternatives have been at-
tested in the literature, their implications have not, to
our knowledge, been systematically discussed and
comparatively evaluated. In what follows, we first
discuss the distinction between the two architectures
(Section 2) and then present some experiments com-
paring the two (Sections 3 and 4). Our conclusion is
that grounding language generation in image data is
best conducted in an architecture that first encodes
the two modalities separately, before merging them
to predict captions.

2 Background: Neural Caption
Generation Architectures

In a neural language model, an RNN encodes a pre-
fix (for example, the caption generated so far) and
either itself predicts the next item in the sequence
with the help of a feed forward layer or else it passes
the encoding to the next layer which will make the
prediction itself. This new item is added to the prefix
at the next iteration to predict another item, until an
end-of-sequence symbol is reached. Typically, the
prediction is carried out using a softmax function to
sample the next item according to a probability dis-
tribution over the vocabulary items, based on their
activation. This process is illustrated in Figure 2.

One way to condition the RNN to predict image
captions is to inject both visual and linguistic fea-
tures directly into the RNN, depicted in Figure 1a.
We refer to this as ‘conditioning-by-inject’ (or in-
ject for short). Different types of inject architectures
have become the most widely attested among deep
learning approaches to image captioning (Chen and
Zitnick, 2015; Donahue et al., 2015; Hessel et al.,
2015; Karpathy and Fei-Fei, 2015; Liu et al., 2016;

52



Figure 2: How RNNs work: each state of the
RNN encodes a prefix, which incorporates the out-
put word derived from the previous state. In prac-
tice the neural network does not output a single word
but a probability distribution over all known words
in the vocabulary. Legend: FF - feedforward layer;
<beg> - the start-of-sentence token; <end> - the
end-of-sentence token.

Yang et al., 2016; Zhou et al., 2016).1 Given train-
ing pairs consisting of an image and a caption, the
RNN component of such models is trained by expo-
sure to prefixes of increasing length extracted from
the caption, in tandem with the image.

An alternative architecture – which we refer to
as ‘conditioning-by-merge’ (Figure 1b) – treats the
RNN exclusively as a ‘language model’ to encode
linguistic sequences of varying length. The lin-
guistic vector resulting from this encoding is subse-
quently combined with the image features in a sepa-
rate multimodal layer. This amounts to viewing the
RNN as primarily an encoder of linguistic informa-
tion. This type of architecture is also attested in the
literature, albeit to a lesser extent than the inject ar-
chitecture (Mao et al., 2014; Mao et al., 2015a; Mao
et al., 2015b; Song and Yoo, 2016; Hendricks et al.,
2016; You et al., 2016). A limited number of ap-
proaches have also been proposed in which both ar-
chitectures are combined (Lu et al., 2016; Xu et al.,
2015).

Notice that both architectures are compatible with
the inclusion of attentional mechanisms (Xu et al.,
2015). The effect of attention in the inject architec-

1See Tanti et al. (2017) for an overview of different versions
of the inject architecture and a systematic comparison among
models. In this paper we focus on parallel-inject.

ture is to combine a different representation of the
image with each word. In the case of merge, a dif-
ferent representation of the image can be combined
with the final RNN state before each prediction. At-
tentional mechanisms are however beyond the scope
of the present work.

The main differences between inject and merge
architectures can be summed up as follows: In an in-
ject model, the RNN is trained to predict sequences
based on histories consisting of both linguistic and
perceptual features. Hence, in this model, the RNN
is primarily responsible for image-conditioned lan-
guage generation. By contrast, in the merge archi-
tecture, RNNs in effect encode linguistic represen-
tations, which themselves constitute the input to a
later prediction stage that comes after a multimodal
layer. It is only at this late stage that image features
are used to condition predictions.

As a result, a model involving conditioning by in-
ject is trained to learn linguistic representations di-
rectly conditioned by image data; a merge architec-
ture maintains a distinction between the two repre-
sentations, but brings them together in a later layer.

Put somewhat differently, it could be argued that
at a given time step, the merge architecture pre-
dicts what to generate next by combining the RNN-
encoded prefix of the string generated so far (the
‘past’ of the generation process) with non-linguistic
information (the guide of the generation process).
The inject architecture on the other hand uses the full
image features with every word of the prefix during
training, in effect learning a ‘visuo-linguistic’ rep-
resentation of each word. One effect of this is that
image features can serve to further specify or dis-
ambiguate the ‘meaning’ of words, by disambiguat-
ing tokens of the same word which are correlated
with different image features (such as ‘crane’ as in
the bird versus the construction equipment). This
implies that inject models learn a larger vocabulary
during training.

The two architectures also differ in the number
of parameters they need to handle. As noted above,
since an inject architecture combines the image with
each word during training, it is effectively han-
dling a larger vocabulary than merge. Assume that
the image vectors are concatenated with the word
embedding vectors (inject) or the final RNN state
(merge). Then, in the inject architecture, the number

53



of weights in the RNN is a function of both the cap-
tion embedding and the images, whereas in merge,
it is only the word embeddings that contribute to the
size of this layer of the network. Let e be the size
of the word embedding, v the size of the vocabulary,
i the image vector size and s the state size of the
RNN. In the inject case, the number of weights in
the RNN is w ∝ (e+ i)× s, whereas it is w ∝ e× s
in merge. The smaller number of weights handled
by the RNN in merge is offset by a larger number of
weights at the final softmax layer, which has to take
as input the RNN state and the image, having size
∝ (s+ i)× v.

A systematic comparison of these two architec-
tures would shed light on the best way to con-
ceive of the role of RNNs in neural language gen-
eration. Apart from the theoretical implications
concerning the stage at which language should be
grounded in visual information, such a comparison
also has practical implications. In particular, if it
turns out that merge outperforms inject, this would
imply that the linguistic representations encoded in
an RNN could be pre-trained and re-used for a vari-
ety of tasks and/or image captioning datasets, with
domain-specific training only required for the fi-
nal feedforward layer, where the tuning required to
make perceptually grounded predictions is carried
out. We return to this point in Section 6.1.

In the following sections, we describe some ex-
periments to conduct such a comparison.

3 Experiments

To evaluate the performance of the inject and merge
architectures, and thus the roles of the RNN, we
trained and evaluated them on the Flickr8k (Ho-
dosh et al., 2013) and Flickr30k (Young et al.,
2014) datasets of image-caption pairs. For the pur-
poses of these experiments, we used the version
of the datasets distributed by Karpathy and Fei-Fei
(2015)2. The dataset splits are identical to that used
by Karpathy and Fei-Fei (2015): Flickr8k is split
into 6,000 images for training, 1,000 for validation,
and 1,000 for testing whilst Flickr30k is split into
29,000 images for training, 1,014 images for vali-
dation, and 1,000 images for testing. Each image

2http://cs.stanford.edu/people/karpathy/
deepimagesent/

(a) The merge architecture.

(b) The inject architecture.

Figure 3: An illustration of the different architec-
tures that are tested in this paper. The numbers or
letters at the bottom of each box refer to the vector
size output of a layer. ‘x’ is an arbitrary layer size
that is varied in the experiments and ‘v’ is the vocab-
ulary size which is also varied in the experiments.
‘Dense’ means fully connected layer with bias.

in both datasets has five different captions. 4,096-
element image feature vectors that were extracted
from the pre-trained VGG CNN (Simonyan and Zis-
serman, 2014) are also available in the distributed
datasets. We normalised the image vectors to unit
length during preprocessing.

Tokens with frequency lower than a threshold in
the training set were replaced with the ‘unknown’
token. In our experiments we varied the threshold
between 3 and 5 in order to measure the perfor-
mance of each model as vocabulary size changes.
For thresholds of 3, 4, and 5, this gives vocabulary
sizes of 2,539, 2,918, and 3,478 for Flickr8k and
7,415, 8,275, 9,584 and for Flickr30k.

Since our purpose is to compare the performance
of architectures, we used the ‘barest’ models pos-
sible, with the fewest number of hyperparameters.
This means that complexities that are usually intro-
duced in order to reach state-of-the-art performance,
such as regularization, were avoided, since it is dif-
ficult to determine which combination of hyperpa-
rameters do not give an unfair advantage to one ar-
chitecture over the other.

We constructed a basic neural language model
consisting of a word embedding matrix, a basic
LSTM (Hochreiter and Schmidhuber, 1997), and a

54



softmax layer. The LSTM is defined as follows:

in = sig(xnWxi + sn−1Wsi + bi) (1)

fn = sig(xnWxf + sn−1Wsf + bf ) (2)

on = sig(xnWxo + sn−1Wso + bo) (3)

gn = tanh(xnWxc + sn−1Wsc + bc) (4)

cn = fn � cn−1 + in � gn (5)

sn = on � tanh(cn) (6)

where xn is the nth input, sn is the hidden state after
n inputs, s0 is the all-zeros vector, cn is the cell state
after n inputs, c0 is the all-zeros vector, in is the
input gate after n inputs, fn is the forget gate after
n inputs, on is the output gate after n inputs, in is
the input gate after n inputs, gn is the modified input
used to calculate cn after n inputs,Wαβ is the weight
matrix between α and β, bα is the bias vector for α,
� is the elementwise vector multiplication operator,
and ‘sig’ refers to the sigmoid function. The hidden
state and the cell state always have the same size.

In the experiments, this basic neural language
model is used as a part of two different architec-
tures: In the inject architecture, the image vector
is concatenated with each of the word vectors in a
caption. In the merge architecture, it is only con-
catenated with the final LSTM state. The layer sizes
of the embedding, LSTM state, and projected image
vector were also varied in the experiments in order
to measure the effect of increasing the capacity of
the networks. The layer sizes used are 128, 256, and
512. The details of the architectures used in the ex-
periments are illustrated in Figure 3.

Training was performed using the Adam optimi-
sation algorithm (Kingma and Ba, 2014) with de-
fault hyperparameters and a minibatch size of 50
captions. The cost function used was sum cross-
entropy. Training was carried out with an early stop-
ping criterion which terminated training as soon as
performance on the validation data started to de-
teriorate (validation performance is measured after
each training epoch). Initialization of weights was
done using Xavier initialization (Glorot and Bengio,
2010) and biases were set to zero.

Each architecture was trained three separate
times; the results reported below are averages over
these three separate runs.

To evaluate the trained models we generated cap-
tions for images in the test set using beam search

with a beam width of 3 and a clipped maximum
length of 20 words. The MSCOCO evaluation code3

was used to measure the quality of the captions
by using the standard evaluation metrics BLEU-
(1,2,3,4) (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), CIDEr (Vedantam et al., 2015),
and ROUGE-L (Lin and Och, 2004). We also calcu-
lated the percentage of word types that were actually
used in the generated captions out of the vocabulary
of available word types. This measure indicates how
well each architecture exploits the vocabulary it is
trained on.

The code used for the experiments was imple-
mented with TensorFlow and is available online4.

4 Results

Table 1 reports means and standard deviations over
the three runs of all the MSCOCO measures and the
vocabulary usage. Since the point is to compare
the effects of the architectures rather than to reach
state-of-the-art performance, we do not include re-
sults from other published systems in our tables.

Across all experimental variables (dataset, vocab-
ulary, and layer sizes), the performance of the merge
architecture is generally superior to that of the in-
ject architecture in all measures except for ROUGE-
L and BLEU (ROUGE-L is designed for evaluating
text summarization whilst BLEU is criticized for its
lack of correlation with human-given scores). In
what follows, we focus on the CIDEr measure for
caption quality as it was specifically designed for
captioning systems.

Although merge outperforms inject by a rather
narrow margin, the low standard deviation over the
three training runs suggests that this is a consistent
performance advantage across train-and-test runs. In
any case, there is clearly no disadvantage to the
merge strategy with respect to injecting image fea-
tures.

One peculiarity is that results on Flickr8k are
better than those on Flickr30k. This could mean
that Flickr8k captions contain less variation, hence
are easier to perform well on. Preliminary results
on the larger dataset MSCOCO (Lin et al., 2014)
(currently in progress) show CIDEr results over 0.7

3https://github.com/tylin/coco-caption
4https://github.com/mtanti/rnn-role

55



% Vocabulary CIDEr METEOR ROUGE-L
Layer Vocab. Merge Inject Merge Inject Merge Inject Merge Inject

128 2539 14.730 (0.40) 10.555 (0.34) 0.460 (0.01) 0.431 (0.01) 0.192 (0.00) 0.183 (0.00) 0.445 (0.00) 0.430 (0.00)
128 2918 13.719 (0.49) 8.876 (0.24) 0.456 (0.00) 0.431 (0.00) 0.191 (0.00) 0.185 (0.00) 0.437 (0.00) 0.434 (0.00)
128 3478 11.223 (0.35) 8.175 (0.31) 0.458 (0.01) 0.433 (0.01) 0.192 (0.00) 0.187 (0.00) 0.442 (0.00) 0.432 (0.00)
256 2539 15.439 (0.84) 11.448 (0.71) 0.462 (0.01) 0.456 (0.01) 0.192 (0.00) 0.189 (0.00) 0.439 (0.00) 0.436 (0.00)
256 2918 13.697 (0.19) 10.430 (0.34) 0.456 (0.01) 0.451 (0.01) 0.190 (0.00) 0.189 (0.00) 0.438 (0.00) 0.440 (0.00)
256 3478 11.252 (0.51) 8.405 (0.39) 0.470 (0.01) 0.449 (0.02) 0.191 (0.00) 0.189 (0.00) 0.439 (0.00) 0.437 (0.00)
512 2539 15.741 (0.40) 12.761 (0.81) 0.452 (0.01) 0.464 (0.00) 0.191 (0.00) 0.192 (0.00) 0.437 (0.00) 0.442 (0.00)
512 2918 13.114 (0.75) 10.155 (0.42) 0.469 (0.01) 0.457 (0.00) 0.193 (0.00) 0.189 (0.00) 0.440 (0.00) 0.437 (0.00)
512 3478 11.501 (0.49) 8.587 (0.50) 0.458 (0.01) 0.439 (0.01) 0.192 (0.00) 0.188 (0.00) 0.439 (0.00) 0.434 (0.00)

(a) Flickr8k: % of vocabulary used, CIDEr, METEOR and ROUGE-L results.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
Layer Vocab. Merge Inject Merge Inject Merge Inject Merge Inject

128 2539 0.600 (0.00) 0.592 (0.01) 0.410 (0.00) 0.405 (0.01) 0.272 (0.00) 0.270 (0.01) 0.179 (0.00) 0.177 (0.00)
128 2918 0.595 (0.01) 0.590 (0.00) 0.405 (0.01) 0.406 (0.00) 0.267 (0.01) 0.271 (0.00) 0.175 (0.00) 0.178 (0.00)
128 3478 0.608 (0.01) 0.586 (0.01) 0.416 (0.01) 0.401 (0.01) 0.276 (0.01) 0.268 (0.01) 0.182 (0.01) 0.178 (0.01)
256 2539 0.594 (0.00) 0.591 (0.00) 0.407 (0.01) 0.408 (0.00) 0.269 (0.01) 0.276 (0.00) 0.176 (0.01) 0.184 (0.00)
256 2918 0.596 (0.01) 0.596 (0.01) 0.405 (0.01) 0.413 (0.01) 0.265 (0.00) 0.278 (0.01) 0.172 (0.00) 0.184 (0.00)
256 3478 0.601 (0.00) 0.596 (0.01) 0.411 (0.00) 0.409 (0.01) 0.272 (0.01) 0.274 (0.01) 0.179 (0.01) 0.181 (0.01)
512 2539 0.597 (0.01) 0.603 (0.00) 0.406 (0.01) 0.419 (0.00) 0.267 (0.01) 0.283 (0.00) 0.176 (0.01) 0.188 (0.00)
512 2918 0.593 (0.01) 0.589 (0.01) 0.404 (0.01) 0.409 (0.00) 0.268 (0.00) 0.277 (0.00) 0.177 (0.00) 0.185 (0.00)
512 3478 0.597 (0.01) 0.587 (0.00) 0.407 (0.01) 0.405 (0.00) 0.270 (0.01) 0.272 (0.00) 0.178 (0.00) 0.180 (0.01)

(b) Flickr8k: BLEU-n scores.

% Vocabulary CIDEr METEOR ROUGE-L
Layer Vocab. Merge Inject Merge Inject Merge Inject Merge Inject

128 7415 6.253 (0.06) 5.255 (0.02) 0.362 (0.01) 0.339 (0.01) 0.174 (0.00) 0.169 (0.00) 0.417 (0.00) 0.415 (0.00)
128 8275 5.402 (0.20) 4.939 (0.08) 0.376 (0.00) 0.351 (0.00) 0.174 (0.00) 0.171 (0.00) 0.420 (0.00) 0.417 (0.00)
128 9584 4.793 (0.01) 4.090 (0.18) 0.378 (0.00) 0.355 (0.00) 0.175 (0.00) 0.171 (0.00) 0.420 (0.00) 0.419 (0.00)
256 7415 6.150 (0.18) 5.597 (0.11) 0.363 (0.00) 0.361 (0.01) 0.174 (0.00) 0.173 (0.00) 0.414 (0.00) 0.420 (0.00)
256 8275 5.559 (0.08) 5.410 (0.10) 0.364 (0.01) 0.359 (0.00) 0.174 (0.00) 0.173 (0.00) 0.416 (0.00) 0.417 (0.00)
256 9584 4.873 (0.07) 4.309 (0.18) 0.364 (0.01) 0.359 (0.01) 0.175 (0.00) 0.173 (0.00) 0.416 (0.00) 0.420 (0.00)
512 7415 6.330 (0.56) 5.732 (0.32) 0.365 (0.01) 0.367 (0.01) 0.173 (0.00) 0.173 (0.00) 0.416 (0.00) 0.422 (0.01)
512 8275 5.619 (0.09) 5.221 (0.49) 0.370 (0.00) 0.369 (0.01) 0.174 (0.00) 0.174 (0.00) 0.419 (0.00) 0.422 (0.00)
512 9584 4.887 (0.16) 4.309 (0.25) 0.357 (0.01) 0.360 (0.01) 0.172 (0.00) 0.172 (0.00) 0.414 (0.00) 0.417 (0.00)

(c) Flickr30k: % of vocabulary used, CIDEr, METEOR and ROUGE-L results.

BLEU-1 BLEU-2 BLEU-3 BLEU-4
Layer Vocab. Merge Inject Merge Inject Merge Inject Merge Inject

128 7415 0.601 (0.01) 0.595 (0.01) 0.403 (0.01) 0.400 (0.01) 0.268 (0.01) 0.265 (0.01) 0.179 (0.01) 0.175 (0.01)
128 8275 0.605 (0.01) 0.604 (0.00) 0.411 (0.01) 0.409 (0.00) 0.276 (0.01) 0.275 (0.00) 0.185 (0.00) 0.183 (0.00)
128 9584 0.610 (0.01) 0.605 (0.00) 0.414 (0.01) 0.411 (0.00) 0.278 (0.00) 0.275 (0.01) 0.186 (0.00) 0.184 (0.01)
256 7415 0.593 (0.01) 0.606 (0.00) 0.400 (0.01) 0.412 (0.00) 0.268 (0.01) 0.277 (0.00) 0.179 (0.01) 0.186 (0.01)
256 8275 0.594 (0.01) 0.603 (0.01) 0.402 (0.01) 0.409 (0.00) 0.269 (0.01) 0.275 (0.00) 0.180 (0.00) 0.183 (0.00)
256 9584 0.596 (0.01) 0.614 (0.01) 0.404 (0.00) 0.419 (0.01) 0.270 (0.00) 0.283 (0.00) 0.181 (0.00) 0.189 (0.00)
512 7415 0.598 (0.02) 0.617 (0.01) 0.404 (0.02) 0.422 (0.01) 0.270 (0.01) 0.285 (0.00) 0.181 (0.01) 0.191 (0.00)
512 8275 0.603 (0.00) 0.609 (0.01) 0.406 (0.00) 0.419 (0.01) 0.271 (0.00) 0.284 (0.01) 0.181 (0.00) 0.191 (0.00)
512 9584 0.596 (0.00) 0.609 (0.01) 0.399 (0.00) 0.414 (0.01) 0.265 (0.00) 0.278 (0.01) 0.177 (0.00) 0.185 (0.00)

(d) Flickr30k: BLEU-n scores.

Table 1: Results on the captions generated using the inject and merge architectures. Values are means over
three separately retrained models, together with the standard deviation in parentheses. Legend: Layer - the
layer size used (‘x’ in Figure 3); Vocab. - the vocabulary size used.

which means that either Flickr8k is too easy or
Flickr30k is too hard when compared to the much
larger MSCOCO.

The best-performing models are merge with state
size of 256 on Flickr8k, and merge with state size
128 on Flickr30k, both with minimum token fre-

56



quency threshold of 3. Inject models tend to im-
prove with increasing state size, on both datasets,
while the relationship between the performance of
merge and the state size shows no discernible trend.
Inject therefore does not seem to overfit as state size
increases, even on the larger dataset. At the same
time, inject only seems to be able to outperform the
best scores achieved by merge if it has a much larger
layer size. Therefore, in practical terms, inject mod-
els have to have larger capacity to be at par with
merge. Put differently, merge has a higher perfor-
mance to model size ratio and makes more efficient
use of limited resources (this observation holds even
when model size is defined in terms of number of
parameters instead of layer sizes).

Given the same layer sizes and vocabulary, the
number of parameters for merge is greater than for
inject. The difference becomes greater as the vo-
cabulary size is increased. For a vocabulary size of
2,539 and layer size of 512, merge has about 3%
more parameters than inject whilst for a vocabulary
size of 9,584 and layer size of 512, merge has about
20% more parameters. However, the foregoing re-
marks concerning over- and under-fitting also apply
when the difference between the number of parame-
ters is small. That is, the difference in performance
is due at least in part to architectural differences, not
just to differences in number of parameters.

Merge models use a greater proportion of the
training vocabulary on test captions. However, the
proportion of vocabulary used is generally quite
small for both architectures: less than 16% for
Flickr8k and less than 7% for Flickr30k. Overall, the
trend is for smaller proportions of the overall train-
ing vocabulary to be used, as the vocabulary grows
larger, suggesting that neural language models find
it harder to use infrequent words (which are more
numerous at larger vocabulary sizes, by definition).
In practice, it means that reducing training vocabu-
laries results in minimal performance loss.

Overall, the evidence suggests that delaying the
merging of image features with linguistic encodings
to a late stage in the architecture may be advan-
tageous, at least as far as corpus-based evaluation
measures are concerned. Furthermore, the results
suggest that a merge architecture has a higher ca-
pacity than an inject architecture and can generate
better quality captions with smaller layers.

5 Discussion

If the RNN had the primary role of generating cap-
tions, then it would need to have access to the image
in order to know what to generate. This does not
seem to be the case as including the image into the
RNN is not generally beneficial to its performance
as a caption generator.

When viewing RNNs as having the primary role
of encoding rather than generating, it makes sense
that the inject architecture generally suffers in per-
formance when compared to the merge architecture.
The most plausible explanation has to do with the
handling of variation. Consider once more the task
of the RNN in the image captioning task: During
training, captions are broken down into prefixes of
increasing length, with each prefix compressed to a
fixed-size vector, as illustrated in Figure 2 above.

In the inject architecture, the encoding task is
made more complex by the inclusion of image fea-
tures. Indeed, in the version of inject used in our
experiments – the most commonly used solution in
the caption generation literature5 – image features
are concatenated with every word in the caption.
The upshot is (a) a requirement to compress caption
prefixes together with image data into a fixed-size
vector and (b) a substantial growth in the vocabu-
lary size the RNN has to handle, because each im-
age+word is treated as a single ‘word’. This prob-
lem is alleviated in merge, where the RNN encodes
linguistic histories only, at the expense of more pa-
rameters in the softmax layer.

One practical consequence of these findings is
that, while merge models can handle more variety
with smaller layers, increasing the state size of the
RNN in the merge architecture is potentially quite
profitable, as the entire state will be used to remem-
ber a greater variety of previously generated words.
By contrast, in the inject architecture, this increase
in memory would be used to better accommodate in-
formation from two distinct, but combined, modali-
ties.

5We are referring to architectures that inject image features
in parallel with word embeddings in the RNN. In the literature,
when this type of architecture is used, the image features might
only be included with some of the words or are changed for
different words (such as in attention models).

57



6 Conclusions

This paper has presented two views of the role of
the RNN in an image caption generator. In the first,
an RNN decides on which word is the most likely
to be generated next, given what has been generated
before. In multimodal generation, this view encour-
ages architectures where the image is incorporated
into the RNN along with the words that were gen-
erated in order to allow the RNN to make visually-
informed predictions.

The second view is that the RNN’s role is purely
memory-based and is only there to encode the se-
quence of words that have been generated thus far.
This representation informs caption prediction at a
later layer of the network as a function of both the
RNN encoding and perceptual features. This view
encourages architectures where vision and langauge
are brought together late, in a multimodal layer.

Caption generation turns out to perform worse, in
general, when image features are injected into the
RNN. Thus, the role of the RNN is better conceived
in terms of the learning of linguistic representations,
to be used to inform later layers in the neural net-
work, where predictions are made based on what has
been generated in the past together with the image
that is guiding the generation. Had the RNN been
the component primarily involved in generating the
caption, it would need to be informed about the im-
age in order to know what needs to be generated;
however this line of reasoning seems to hurt perfor-
mance when applied to an architecture. This sug-
gests that it is not the case that the RNN is the main
component of the caption generator that is involved
in generation.

In short, given a neural network architecture that
is expected to process input sequences from mul-
tiple modalities, arriving at a joint representation,
it would be better to have a separate component to
encode each input, bringing them together at a late
stage, rather than to pass them all into the same RNN
through separate input channels. With respect to
the question of how language should be grounded
in perceptual data, the tentative answer offered by
these experiments is that the link between the sym-
bolic and perceptual should be established late, once
encoding has been performed. To this end, recur-
rent networks are best viewed as learning represen-

tations, not as generating sequences.

6.1 Future work

The experiments reported here were conducted on
two separate datasets. One concern is that results on
Flickr8k and Flickr30k are not entirely consistent,
though the superiority of merge over inject is clear
in both. We are currently extending our experiments
to the larger MSCOCO dataset (Lin et al., 2014).

The insights discussed in this paper invite future
research on how generally applicable the merge ar-
chitecture is in different domains. We would like
to investigate whether similar changes in architec-
ture would work in sequence-to-sequence tasks such
as machine translation, where instead of condition-
ing a language model on an image we are condi-
tioning a target language model on sentences in a
source language. A similar question arises in image
processing. If a CNN were conditioned to be more
sensitive to certain types of objects or saliency dif-
ferences among regions of a complex image, should
the conditioning vector be incorporated at the begin-
ning, thereby conditioning the entire CNN, or would
it be better to instead incorporate it in a final layer,
where saliency differences would then be based on
high-level visual features?

There are also more practical advantages to merge
architectures, such as for transfer learning. Since
merge keeps the image separate from the RNN, the
RNN used for captioning can conceivably be trans-
ferred from a neural language model that has been
trained on general text. This cannot be done with an
inject architecture since the RNN would need to be
trained to combine image and text in the input. In fu-
ture work, we intend to see how the performance of
a caption generator is affected when the weights of
the RNN are initialized from those of a general neu-
ral language model, along lines explored in neural
machine translation (Ramachandran et al., 2016).

Acknowledgments

This work was partially funded by the Endeavour
Scholarship Scheme (Malta), part-financed by the
European Social Fund (ESF).

58



References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual Question Answer-
ing. In Proc. ICCV’15, pages 2425–2433, Santiago,
Chile.

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with improved
correlation with human judgments. In Proc. Work-
shop on Intrinsic and Extrinsic Evaluation Measures
for Machine Translation and/or Summarization, vol-
ume 29, pages 65–72.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott,
Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis,
Frank Keller, Adrian Muscat, and Barbara Plank.
2016. Automatic Description Generation from Im-
ages: A Survey of Models, Datasets, and Evaluation
Measures. Journal of Artificial Intelligence Research,
55:409–442.

Xinlei Chen and C. Lawrence Zitnick. 2015. Mind’s
eye: A recurrent visual representation for image cap-
tion generation. In Proc. CVPR’15.

Jeff Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
Recurrent Convolutional Networks for Visual Recog-
nition and Description. In Proc. CVPR’15.

Desmond Elliott and Frank Keller. 2013. Image De-
scription using Visual Dependency Representations.
In Proc. EMNLP’13, pages 1292–1302, Seattle, WA.
Association for Computational Linguistics.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proc. 13th International Conference on
Artificial Intelligence and Statistics, pages 249–256.

Alex Graves. 2013. Generating Sequences with Recur-
rent Neural Networks. CoRR, abs/1308.0850:1–43.

Ankush Gupta, Yashaswi Verma, and C. V. Jawahar.
2012. Choosing Linguistics over Vision to Describe
Images. In Proc. AAAI’12, pages 606–612.

Stevan Harnad. 1990. The symbol grounding problem.
Physica D, 42:335–346.

Lisa Anne Hendricks, Subhashini Venugopalan, Mar-
cus Rohrbach, Raymond Mooney, Kate Saenko, and
Trevor Darrell. 2016. Deep Compositional Cap-
tioning: Describing Novel Object Categories without
Paired Training Data. In Proc. CVPR’16.

Jack Hessel, Nicolas Savva, and Michael J. Wilber. 2015.
Image Representations and New Domains in Neural
Image Captioning. CoRR, abs/1508.02091.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing Image Description as a Ranking Task:
Data, Models and Evaluation Metrics. Journal of Ar-
tificial Intelligence Research, 47(1):853–899.

Ting-Hao Huang, Francis Ferraro, Nasrin Mostafazadeh,
Ishan Misra, Aishwarya Agrawal, Jacob Devlin, Ross
Girshick, Xiaodong He, Pushmeet Kohli, Dhruv Batra,
C Lawrence Zitnick, Devi Parikh, Lucy Vanderwende,
Michel Galley, and Margaret Mitchell. 2016. Visual
Storytelling. In Proc. NAACL-HLT’16, pages 1233–
1239.

Andrej Karpathy and Li Fei-Fei. 2015. Deep Visual-
Semantic Alignments for Generating Image Descrip-
tions. In Proc. CVPR’15.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization. CoRR,
abs/1412.6980.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S Zemel.
2014a. Multimodal neural language models. In Proc.
ICML’14, page 595603.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2014b. Unifying visual-semantic embeddings
with multimodal neural language models. CoRR,
abs/1411.2539.

Girish Kulkarni, Visruth Premraj, Sagnik Dhar, Siming
Li, Yejin Choi, Alexander C Berg, and Tamara L Berg.
2011. Baby Talk : Understanding and Generating Im-
age Descriptions. In Proc. CVPR’11, pages 1601–
1608, Colorado Springs.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature, 521(7553):436–444.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proc. ACL’04. Association for Computational
Linguistics (ACL).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. 2014. Microsoft COCO: Com-
mon objects in context. In Proc. ECCV’14, pages
740–755.

Siqi Liu, Zhenhai Zhu, Ning Ye, Sergio Guadarrama, and
Kevin Murphy. 2016. Optimization of image descrip-
tion metrics using policy gradient methods. CoRR,
abs/1612.00370.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard
Socher. 2016. Knowing when to look: Adaptive atten-
tion via A visual sentinel for image captioning. CoRR,
abs/1612.01887.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, and Alan L.
Yuille. 2014. Explain images with multimodal recur-
rent neural networks. In Proc. NIPS’14 Deep Learn-
ing Workshop.

59



Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng
Huang, and Alan Yuille. 2015a. Deep Caption-
ing with Multimodal Recurrent Neural Networks (m-
RNN). In Proc. ICLR’15.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang, Zhiheng
Huang, and Alan Yuille. 2015b. Learning like a Child:
Fast Novel Visual Concept Learning from Sentence
Descriptions of Images. In Proc. ICCV’15.

Rebecca Mason and Eugene Charniak. In Proc.
CONLL’14, pages 11–20, Baltimore, MA.

Margaret Mitchell, Jesse Dodge, Amit Goyal, Kota Ya-
maguchi, Karl Stratos, Xufeng Han, Alyssa Mensch,
Alex Berg, Xufeng Han, Tamara Berg, and Hal Daume
III. 2012. Midge: Generating Image Descriptions
From Computer Vision Detections. In Proc. EACL’12,
pages 747–756, Avignon, France.

V Ordonez, G Kulkarni, and Tl Berg. 2011. Im2text:
Describing images using 1 million captioned pho-
tographs. In Proc. NIPS’11, pages 1143–1151,
Granada, Spain.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In Proc. ACL’02, pages
311–318.

Prajit Ramachandran, Peter J. Liu, and Quoc V. Le. 2016.
Unsupervised pretraining for sequence to sequence
learning. CoRR, abs/1611.02683.

E. Reiter and R. Dale. 2000. Building Natural Lan-
guage Generation Systems. Cambridge University
Press, Cambridge, UK.

Deb Roy and Ehud Reiter. 2005. Connecting language
to the world. Artificial Intelligence, 167(1-2):1–12.

Karen Simonyan and Andrew Zisserman. 2014. Very
Deep Convolutional Networks for Large-Scale Image
Recognition. CoRR, abs/1409.1556.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014. Grounded
Compositional Semantics for Finding and Describ-
ing Images with Sentences. Transactions of the
Association for Computational Linguistics (TACL),
2(April):207–218.

Mingoo Song and Chang D. Yoo. 2016. Multimodal rep-
resentation: Kneser-ney smoothing/skip-gram based
neural language model. In Proc. ICIP’16.

Ilya Sutskever, James Martens, and Geoffrey Hinton. In
Proc. ICML’11, pages 1017–1024, Bellevue, WA.

Marc Tanti, Albert Gatt, and Kenneth P. Camilleri. 2017.
Where to put the image in an image caption generator.
CoRR, abs/1703.09137.

Ramakrishna Vedantam, C. Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In Proc. CVPR’15.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. 2015. Show and tell: A neural image
caption generator. In Proc. CVPR’15.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C. Courville, Ruslan Salakhutdinov, Richard S.
Zemel, and Yoshua Bengio. 2015. Show, Attend and
Tell: Neural Image Caption Generation with Visual
Attention. In Proc. ICML’15.

Zhilin Yang, Ye Yuan, Yuexin Wu, Ruslan Salakhutdi-
nov, and William W. Cohen. 2016. Encode, review,
and decode: Reviewer module for caption generation.
CoRR, abs/1605.07912.

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with semantic
attention. In Proc. CVPR’16.

Peter Young, Alice Lai, Micah Hodosh, and Julia Hock-
enmaier. 2014. From image descriptions to visual
denotations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of the
Association for Computational Linguistics, 2:67–78.

Luowei Zhou, Chenliang Xu, Parker Koch, and Ja-
son J. Corso. 2016. Image caption generation
with text-conditional semantic attention. CoRR,
abs/1606.04621.

60


