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Abstract

The work presented here continues a pro-
gram of completely characterizing the
constraints on the distribution of stress in
human languages that are documented in
the StressTyp2 database with respect to
the Local and Piecewise sub-regular hier-
archies.

We introduce algorithms that, given a
Finite-State Automaton, compute a set
of forbidden words, units, initial factors,
free factors and final factors that define a
Strictly Local (SL) approximation of the
stringset recognized by the FSA, along
with a minimal DFA that recognizes the
residue set: the set of strings in the approx-
imation that are not in the stringset recog-
nized by the FSA. If the FSA recognizes
an SL stringset, then the approximation is
exact (otherwise it overgenerates).

We have applied these tools to the 106
lects that have associated DFAs in the
StressTyp2 database, a wide-coverage cor-
pus of stress patterns that are attested in
human languages. The results include a
large number of strictly local constraints
that have not been included in prior work
categorizing these patterns with respect to
the Local and Piecewise Sub-Regular hier-
archies of Rogers et al. (2012), although,
of course, they do not contradict the cen-
tral result of that work, which establishes
an upper bound on their complexity that
includes strictly local constraints.

1 Introduction

A stringset L is Strictly k-Local if and only if (iff)
it is completely determined by its k-factors: the
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substrings of length at most k that occur in strings
x-w-X forw € L. (The ‘<’ and ‘X’ are endmark-
ers.) That is to say, L contains all and only the
strings that are generated by the substring relation
from that set of k-factors. The class of stringsets
that are Strictly k-local for some k is known as SL.
This is at the bottom of the local side of a collec-
tion of classes of stringsets, all strict subclasses of
the class of Regular stringsets, which are hierar-
chically related and are characterized by finite sets
of either substrings (the Local Hierarchy) or sub-
sequences (the Piecewise Hierarchy) or by combi-
nations of the two. In Rogers et al. (2012) we ar-
gue that these hierarchies provide a robust notion
of cognitive complexity for constraints on strings.

The long-term project of our group is to charac-
terize all of the stress patterns collected in Goede-
mans et al. (2015)—a wide-coverage database of
stress patterns occurring in human languages—
with respect to this hierarchy. In Edlefsen et al.
(2008), we established that roughly 75% of these
patterns are SLj for £ < 6 and that half are SLj
for £k < 3. Subsequently, we derived a set of
“primitive” constraints sufficient to define all of
the patterns by co-occurrence and classified them
into abstract categories (Fero et al., 2014). Most
of these constraints were, in fact, SL, and it turned
out that all of the patterns could be defined by co-
occurrence of constraints at the bottom two lev-
els of the hierarchies. This is significant, since at
these levels it is possible to determine whether a
string satisfies a constraint solely on the basis of
the information that is explicitly contained in the
string, without inferring any additional structure.
Recent work by Heinz and his co-workers (Heinz,
forthcoming; Heinz, 2010; Chandlee, 2014; Jar-
dine, 2016) suggests that much of phonology may
be characterizable by correspondingly simple sets
of structures or functions.

The work on primitive constraints, however,
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did not include any of the factors from the SL
stringsets because the algorithm for determining
if a given Finite State Automaton (FSA) recog-
nizes an SL stringset, and determining k if it does,
does not yield the set of k-factors that define the
stringset. We resolve that problem in this work.

In Section 2 we introduce our notation and basic
formal definitions. In Section 3 we formally define
Strictly Local stringsets and discuss their formal
properties. In Section 4 we distinguish five types
of forbidden factors—factors in the complement
of the set of factors that generate the stringset. In
Section 5 we develop our algorithms for extract-
ing those factors given a Finite State Automaton.
In Section 7 we extend these algorithms in a way
that allows them to be used to partition non-SL
stringsets in a way that provides a set of SL con-
straints that approximates it (to varying degrees of
closeness) and an automaton that captures the non-
SL aspects of the stringset. We close with thoughts
about where these results lead.

2 Formal Preliminaries

A finite state automaton (FSA) is an edge-labeled
directed graph with distinguished vertices that we
will represent by a five-tuple (3, Q, d, I, F') where
3. is the alphabet of the language of the automaton,
@ is the set of states, § C (X x @ x Q) is a tran-
sition relation where (o, g1, q2) € 9§ iff there is an
edge labeled o from ¢; to ¢o, I is the set of ini-
tial states, and F' is the set of accepting states. Let
A=(¥,Q,6,1,F).

Let w = 0102...0, € ¥* be a string and let
q1,¢n € Q. Then there is a path ¢; ~> gy, iff there
exists some sequence of edges

0 <1 <n,
W= 0109...0p-1).

({04, G, Gi+1) €9 |

This is an accepting path on w if g, is in F', else it
is a non-accepting path.

The automaton A is fotal iff for every symbol
o € % and for every state g € (), there exists some
¢’ such that (0, q,q’) € §. It is (partial) functional
iff § is functional in its first two places. That is,
given a state ¢ € () and a symbol o € ¥, there is
at most one ¢’ € @ such that (0, q,¢’) € 0.

An FSA is (fully) deterministic (a proper DFA)
iff it has exactly one initial state and it is both total
and functional. We also consider trim functional
automata to be deterministic, where A is trim iff
for all states ¢ € () there is some accepting path
from q.

37

An automaton is minimal iff it is deterministic
and no two states are Nerode-equivalent! . Further,
it is normalized iff it is both minimal and trim.

Given a string w, the factors of w are those v
that are substrings of w (notation: v < w). If k
is the length of v (notation: |v| = k) then v is a
k-factor of w.

The powerset graph of the automaton A,
PSG(A) = (V,E), is another edge-labeled di-
rected graph where:

P(Q) and
{(U, Sl,SQ> ‘ g c E,
Se={q € Q| (3q € S1)[{0,q,¢') € }]}

Often we are interested only in the subgraph of this
generated from a given set of initial states.

v
E

Lemma 1 If A is deterministic, then the sizes of
the sets along any path in PSG(.A) are monotoni-
cally non-increasing.

This is because if A is deterministic 6 maps each
state in Sp to at most one state in S5.
Corollary 1 All sets in any cycle are equal in size.

Corollary 2 All in-edges to QQ and all out-edges
from () are self-edges.

3 Strictly Local Stringsets

L is Strictly k-Local (L € SLy) iff it is completely
characterized by its k-factors. Let X be the alpha-
bet of L and define Fy(X) = {v € ¥* | [v| = k}
and F<;,(X) = U;<;<,[Fi(¥)]. For any string
w € ¥*, the k-factors of w are

{w} if |w| <=k,
) {veFy(2) |
Fk(w> - w = wi1vwz, Wi, W € Z*}
otherwise.

Similarly for F<j(w). This lifts to sets of strings
in the obvious way.

Let G C F<i({x}-X* - {x}) be the set of per-
mitted factors in L. Then the stringset generated
by G is

L(G)={w e ¥ | F<x(x -w- x) C G}.

Since ¥ is assumed to be finite, F<;(X) is also
finite, and an SLj; language can equivalently be
defined in terms of its forbidden factors: G =

'g1 and g¢o are Nerode-equivalent iff for all strings w,

there is an accepting path on w from g2 iff there is an ac-
cepting path on w from q1



F<;(X) — G. This is more natural in many appli-
cations, including many linguistic ones (as in “no
pair of unstressed syllables occur adjacently”).

A stringset is said to be SL if it is SLy for any
finite k.

The following proposition characterizes SLy.

Proposition 1 (Suffix Substitution Closure)
(SSC)

L e SLy iff
(Vo € F1(2))[ ifwr=ur-z-v1 €L
and wy = ug - x - V9 € L
thenuy -x-vy € L ].

This is because if a symbol o can follow x in some
string of L(.A) then z - o is a permitted factor and
o can follow z in any string of L(.A).

One consequence of this is that if L(A) € SL
and A is deterministic, then for each length & — 1
string z, all states in the set

{d €Q|(FqeQla~> 1}

are Nerode Equivalent. If A is minimal as well,
then all paths that end with the same (k — 1)-factor
lead to the same state. The computations of the
automaton synchronize after at most k£ — 1 steps.

This is the basis of the algorithm used by Edlef-
sen et al. (2008)? to determine if a given A rec-
ognizes an SL stringset and, if it does, to find the
parameter k.

Proposition 2 Suppose A is a normalized DFA.
Then L(A) € SLy iff every path from Q in
PSG(A) that is of length k — 1 leads to a singleton
vertex. If that is the case, then k is one plus the
length of the longest path from Q) to a singleton
(that does not include other singletons). If there is
no such longest path (i.e., there is an infinite path)
then there is some cycle of non-singleton vertices,
L(A) does not satisfy SSC for any k and it is not
SL.

In practice, it is not necessary to build even just
the subgraph of PSG(.A) generated by Q. All that
one needs for a counter-example to SSC is a single
pair of strings in which SSC fails. So it suffices to
just explore the subgraph of PSG(.A) that is gen-
erated by doubleton subsets of (). The size of this
subgraph is only ©(card(Q)?), in contrast to the
subgraph generated by (), which is @(2card(Q))‘

The following is an immediate consequence of
this proposition.

>The pair-graph algorithm was first published in Caron
(2000).
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Lemma?2 If if A is a normalized DFA and
L(A) € SLy, then all cycles in PSG(A) are cycles
of singletons.

4 Classes of Forbidden Factors

Factors may or may not include either a left-end
marker at the beginning or a right-end marker at
the end. In the case that a factor contains neither,
it can occur anywhere in a string (including, pos-
sibly, at the beginning or end) and we say that it
is a free factor or, if forbidden, free forbidden fac-
tor. If the length of a free forbidden factor is one,
then it has somewhat different status than free for-
bidden factors of greater length; it is, in essence, a
restriction to the alphabet. We will refer to these
as forbidden units. If the first symbol of a forbid-
den factor is ‘x’, then it can only occur at the left
end of the word; this is an initial forbidden factor.
If the last symbol is ‘’, then it can only occur at
the right end of the word; it is a final forbidden
factor. Note that the length of the string that these
anchored factors match is £ — 1. An SLj defini-
tion can restrict length k£ — 1 prefixes and suffixes,
but not, in general length k prefixes and suffixes.’
Finally, if a factor contains both end-markers it is
a forbidden word, where the word it forbids is ac-
tually of length k& — 2.

5 Forbidden Factors of SL Stringsets

5.1 Free Forbidden Factors

Suppose A is a DFA. A factor w is a free forbidden
factor of L(.A) iff there is no path in the transition
graph of A from g to an accepting state that in-
cludes w as a substring. If A is normalized, this
will be the case iff there is no path at all that is
labeled w from any state of A, as all such paths
would necessarily lead to the sink state which has
been trimmed. Thus, in PSG(.A) the path from @
that is labeled w leads to (). Again, the converse
holds.

So the set of all labels of paths @ to () in
PSG(A) are free forbidden factors of L(.A), more-
over, that set includes all free forbidden factors of
L(A). Since in general PSG(.A) may include cy-
cles and even in the case that L(.A) is SL it may
include cycles of singleton vertices, in general this

In the original definition of SL; (McNaughton and Pa-
pert, 1971) prefix and suffix factors and forbidden words
could be of length k. But the definition we use is equiva-
lent in all significant aspects and accounts for the information

contained in an anchored factor; it has become the prevailing
definition in most of the literature.



set of paths will be infinite. (In fact, since PSG(.A)
invariably includes a trivial cycle on () for each
o € %, it will always be infinite.) The paths in-
cluding trivial cycles on () are labeled with strings
in w - X*, where w is a free forbidden factor. We
are interested in the set of paths that are minimal in
the sense that the label of the path does not include
the label of any other such path as a substring.

Note that, by Corollary 2, any such path that
includes an in-edge to @ or an out-edge from ()
includes another path from Q to () that is strictly
shorter. Thus none of those paths are minimal free
forbidden factors. Note, also, that if L(A) € SL,
then there are no cycles on (), although there will
always be trivial cycles on () for each o € X.

The next two lemmas establish that if L(A) is
SL then there is some bound such that all cyclic
paths from @ to () in PSG(.A) with length greater
than that bound will be labeled with a string that
includes, as a suffix, the label of an acyclic path
from @ to (). Thus the set of minimal free forbid-
den factors of L(.A) is just the set of labels from
paths from @ to () in PSG(.A) that do not include
the label of any other such path as a suffix and
that do not include self-edges on (). This allows
us to collect forbidden factors with a breadth-first
bottom-up traversal of PSG(.A).

Lemma 3 [f v and w label acyclic paths from @)
to () in PSG(A) and v < w, then w = uv for some
u € X*

Proof: v < w implies that w = wvz for some
u,z € Y*. Since Q ~>  and all vertices
S C @, for all vertices S, S ~> ) as well, and, in
particular, Q ~ S ~ (). Hence z is either ¢ or the
path it labels is a self-loop on (), contradicting the
assumption of acyclicity. -

Lemma 4 If a path from Q to () in PSG(A), with
L(A) € SL includes a cycle other than a trivial
cycle on Q or (), then there is a finite bound on the
number of times the cycle can be taken before the
label of the path includes the label of an acyclic

path from Q to () as a suffix.

Proof: Since L(.A) is SL, any cycle must be a cy-
cle of singletons. Suppose, then that there is a
path:

Q5 {qo} ~ {1}~ {qo} 50
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where, possibly, v may be a prefix of x. Since
4o, q1 € Q there must be a path:

Q= So~> S1~> Sy~ Sy---

where ¢y € So; and q; € So;41 for i > 0. Since
there are no cycles of non-singletons, by Lemma 1
the sequence of .S;s must ultimately be decreasing
in size. Thus, for some n it resolves to:

Q5 S ~5 Sy~ Sz ~5 So, = {q0} S Q

So (vw)™x labels a path from @ to () and will
be a suffix of all paths @ to () that take the
{qo} ~ {aq1} cycle at least 2n times. .

Theorem 1 If L(A) € SL then a string w is a free
forbidden factor of L(A) € SL iff it labels a path
in PSG(A) from Q to (). It is minimal if that path
does not include any cycles other than cycles of
singletons and w does not include the label of any
other such path as a suffix.

Note that if L(.,A) € SL then the only cycles of
non-singletons will be trivial cycles on (). Labels
of paths including these will include some free for-
bidden factor as a prefix and are, thus, not mini-
mal.

Paths including cycles of singletons are neces-
sary since none of the paths labeled u(vw)iz as in
the proof of Lemma 4 is labeled with a factor of
any of the others; they are minimal with respect to
each other. It is only the label of the acyclic path
that subsumes the labels of further iterations.

5.2 Final Forbidden Factors

Suppose A is a DFA. A factor w is a final for-
bidden factor of L(.A) iff there is no path from gq
to an accepting state in the transition graph of A
that includes w as a suffix but there is some path
from qg to an accepting state that includes w as a
proper substring. (If no there is no such accepting
path, then w is a free forbidden factor.) If A is
normalized then w is a final forbidden factor iff all
paths labeled w from any state in () end at a non-
accepting state and there is some such path. This
will be the case iff the path from @ in PSG(.A) la-
beled w ends at a non-empty vertex that is disjoint
with F'.

Lemma 5 Suppose A is a DFA. No final forbid-
den factor of L(A) includes a free forbidden fac-
tor of L(A) as a substring.



This is because if v is a free forbidden factor of
L(A) then the path from Q in PSG(A) leads to ()
and, hence, the path labeled v from any vertex of
PSG(A) leads to () as well.

Note that a final forbidden factor may include
another as a suffix. (It is irrelevant whether it in-
cludes an final forbidden factor as a non-suffix,
since final forbidden factors are, by definition,
only relevant as suffixes.)

Theorem 2 If a path from Q) to a non-empty ver-
tex disjoint from F in PSG(A), with L(A) € SL,
includes a cycle other than a trivial cycle on @),
then there is a finite bound on the number of times
the cycle can be taken before the label of the path
includes the label of an acyclic path from Q) to a
non-empty vertex disjoint from F as a suffix.

The proof is essentially the same as the proof of
Lemma 4.

5.3 Initial Forbidden Factors

Suppose A is a DFA. A string w is an initial for-
bidden factor of L(A) iff it is w® (w reversed)
for some w, a final forbidden factor of L(AR),
where AR is the DFA that recognizes the reversal

of L(A).

5.4 Forbidden Words

Suppose A is a DFA and L(A) € SLj. Then w
is a forbidden word of L(.A) iff it labels a path of
length less than or equal to & that leads from ¢ to
astatein Q — F.

6 Algorithms

Theorem 1 guarantees that if we do a breadth-
first bottom-up traversal of PSG(.A) then we will
discover each minimal forbidden factor before we
discover any of its proper suffixes. Expanding the
frontier of the search in discrete stages, every (re-
verse) path from () to @ found in the k™ stage will
be a minimal forbidden k-factor.

There may be more than one such path so we do
need to avoid gathering more than one instance of
the factor. In general, there will be open paths (not
reaching ()) that are labeled with the same factor.
Extended to (), they would include the factor as a
proper suffix. So we exclude these from the fron-
tier for the next stage.

We structure the bottom-up traversal of PSG(.A)
as a top-down traversal of PSG®(A), in which
each of the edges of PSG(.A) is reversed. For con-
venience (and convergence) we trim self-edges on
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() and @ while reversing the graph. Since we are
traversing bottom-up, we actually find w® of each
factor w, but we gather these in a list structure, in-
serting at the head, which reverses the factor again
as we construct it.

For the purposes of the algorithm, a Path in
an edge-labeled graph (V, E') as a computational
structure, is a 3-Tuple: (v, S, w), where v € V
is the final vertex of the path, S C V is the (un-
ordered) set of vertices along the path and w € »*
is the sequence of labels of the edges in the path,
in reverse order. A Frontier is a set of paths. For-
bidden factors are gathered in stages, with Stage;
expanding Frontier;_; to Frontier;, gathering the
set FF; of all minimal forbidden :-Factors in the
process.

The initial frontier Frontierq for finding free for-
bidden factors includes just the trivial (0-length)
path from (). For finding final forbidden factors
Frontiery includes the trivial path from each ver-
tex that is a subset of () — F.

Theorem 1 guarantees that, if we eliminate
paths labeled with a forbidden i-Factor from
Frontier; the search will converge after finitely
many iterations, k, with Frontier; empty. (Note it
is an empty set of Paths, not a set including a path
ending at ().) The set of minimal free forbidden
factors will be the union of the sets of factors gath-
ered at stages 2 through k, where L(A) € SLy.
(Forbidden 1-factors are not included, since they
are forbidden units.) The search for final forbid-
den factors will terminate after k — 1 iterations,
with the minimal k-final forbidden factors includ-
ing the right-end marker.

Pseudo-code for the algorithms is given in Fig-
ures 1 and 2.

6.1 Forbidden Words for SL Stringsets

If L(A) € SL; and A is deterministic, then the
words it forbids are just the labels of paths of
length k& — 2 (to allow for the endmarkers) from
the (single) initial state to a state in () — F'. These
can be gathered by doing a bounded traversal of

A.
6.2 Forbidden Units

If A is normalized (minimal and trim), the forbid-
den units of L(.A) are just the symbols of ¥ that
do not label any edge in 0. In PSG(.A) these will
label edges @ to () and will be gathered in Stage,
while gathering free forbidden factors. But these
may not be the only forbidden units of interest. In



many applications there will be an alphabet that in-
cludes all symbols that occur in any of a collection
of stringsets and the subset of that alphabet that is
not included in the alphabet of the FSA will also
be significant. This is the case in most linguistic
applications, for example (as in “this lect forbids
unstressed heavy syllables™).

In those applications we need to include the dif-
ference between some default alphabet and the set
of symbols that label edges in A. Since we are
building PSG(.A) anyway, the simplest way of do-
ing this is to just take the difference between the
default alphabet and the labels of the out-edges
from (). If we union that with the labels of the sub-
set of those edges that lead to () we get the free for-
bidden 1-factors as well. We can avoid gathering
the latter in both the set of free forbidden factors
and the set of forbidden units by not including the
forbidden factors gathered in Stage,. (Or, in order
to simplify the code, by removing them from the
set of free forbidden factors.)

7 Forbidden Factors of non-SL
Stringsets

Every non-SL stringset can be fully defined by the
conjunction of a set of SL constraints (possibly
trivial: X*, () and X% are SL; and SLo, respec-
tively) along with a set of properly non-SL con-
straints. In applications that are exploring con-
straints across a collection of stringsets, most lin-
guistic applications for instance, these SL con-
straints are significant. We would like to be able
to factor the constraints so that the non-SL con-
straints capture, to the extent possible, just the
non-strictly-local aspects of the patterns.

The problem isn’t finding factors that character-
ize the stringset, the problem is that there are too
many of them. ¥* — L(A), augmented with left
and right endmarkers, is a set of forbidden factors
that characterizes L(.A) exactly. It is, of course, in
general infinite and necessarily so if L(.A) is not
SL.

The algorithms for SL stringsets are still par-
tially correct for non-SL stringsets. The problem
is that if L(.A) is non-SL then there will be non-
singleton cycles (in addition to those on (}) and the
traversal will not terminate.

These non-singleton cycles actually localize the
reason that the stringset is not SL. They capture
circumstances under which the automaton fails to
synchronize ever; they identify places in which
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SSC (Proposition 1) fails for L(.A).

As with the set of forbidden words, the set of
labels of the paths in PSG(.A) that include non-
singleton cycles are all legitimate forbidden fac-
tors of L(.A), but again there are infinitely many of
them. The stringset they define is what we would
like to isolate as the non-SL fragment of L(.A).

It is tempting to try modifying the traversal so it
follows only singleton cycles. But, unfortunately,
if there are non-singleton cycles the chain of the
proof of Lemma 4 may be infinite, so there is
no guarantee of termination even when following
only singleton cycles.

Another approach would be to modify .4, work-
ing backward from PSG(.A), in a way that would
eliminate the non-singleton cycles. We have not
really pursued this idea, but our sense is that it is
likely to fail for the same reason as simply not fol-
lowing non-singleton cycles fails.

In any case, we are looking for a set of forbid-
den factors that approximates L(.A). Since none of
our algorithms introduces constraints that are not
manifest in the automaton, the approximation will
overgenerate. The issue is how close do we need
it to be.

7.1 SL Approximations

First of all, as we noted above, ¥* is an SL ap-
proximation of every stringset over X. But it’s
a particularly licentious one. Another possibility
is to only gather the forbidden factors that label
non-cyclic paths in PSG(.A). This will miss many
forbidden factors that may well be significant—all
those factors labeling paths with singleton cycles
that would have eventually been subsumed if there
were no non-singleton cycles. On the other hand,
it gives the smallest set of forbidden factors that
comprise a reasonable approximation of L(.A).

Another way of bounding the traversal is to note
that no acyclic path from @ to () in PSG(A) can
be 2¢ard(@) _ 9 o longer. But the set of factors
gathered by a traversal with this bound, although
arguably the largest justifiable set of forbidden fac-
tors, is almost certainly unreasonably large.

SL approximations that are too large are mis-
leading both in terms of the apparent complexity
of the SL aspects of the constraints and in terms
of the their non-SL aspects, which will appear to
need to include many exceptions in order to ac-
count for the strings excluded by the SL approx-
imation. When the SL approximation overesti-



mates, the non-SL residue undergeneralizes.

In some applications, there may be a theoret-
ically justified bound on how long the relevant
factors are, that is, on how many times a cycle
should be followed in the traversal. As we noted
in the introduction, all of the SL stress patterns in
StressTyp2 are SLy, for £ < 6. Thus one may well
be justified in limiting the SL fragment to factors
of length no more than six. Even assuming the
bound is well-justified, this is still likely to gener-
ate too close an approximation. Forbidden factors
that should properly be captured by the non-SL
constraints, that involve non-singleton cycles that
are not needed to terminate the traversal of single-
ton cycles, will be included. If the goal is to ex-
plore the nature of the constraints across a collec-
tion of stringsets these will likely be misleading,
particularly since half of the patterns in StressTyp2
are SLg3 (or less, SL is an inclusive hierarchy in k).

It is straightforward to modify the algorithms
given above for either of these approaches. Cy-
cles can be completely excluded by modifying the
definition of Extensions. Limits on the size of the
factor are just depth limits on the traversal. It is
also straightforward to combine these, only fol-
lowing singleton cycles and only doing it up to
a depth limit. To bound the search for forbidden
words we first compute the sets of forbidden ini-
tial, free and final factors and then bound the depth
to max(|frFF| — 2, |inFF| — 1, |fiFF| — 1), where
|frFE|, [inFF|, |fiFF| are the maximum width of
the free, initial and final factors, respectively.

As our goal in developing these algorithms is
to provide tools that phonologists can use produc-
tively in exploring systems of phonotactic con-
straints the third approach to bounding the traver-
sal seems most useful, although we have currently
only implemented the acyclic path approach.

7.2 Residue Automata

When the algorithms are run on automata that rec-
ognize non-SL stringsets the result is a set of for-
bidden factors for the approximated stringset. We
are just as interested in the characteristics of the
stringset that these forbidden factors miss. Most
work on approximating stringsets with stringsets
in a weaker complexity class has focused on ap-
proximating CFLs with regular stringsets (Neder-
hof (2000) includes a good survey) or Tree-
Adjoining Stringsets (TALs) with CFLs (Schabes
and Waters, 1993; Rogers, 1994). Whenever the
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class of stringsets that is being approximated in-
cludes CFLs the (symmetric) difference between
the approximation and the target will not be a de-
cidable set. Consequently, there is little that can
be determined about that difference.

We have the advantage that all of our stringsets
are regular and so the difference is not only decid-
able but an automaton recognizing it is effectively
constructible. Moreover, in this case, we know
that every string excluded by the approximation is
necessarily excluded by the target. The approxi-
mation never undergenerates. To isolate the non-
SL characteristics of the target we construct an au-
tomaton that recognizes exactly the set of strings
that are overgenerated by the SL approximation.

Using well-known algorithms for combining
automata, it is straightforward to construct an au-
tomaton Agg that recognizes the set of strings li-
censed by the set of forbidden factors. One starts
with deterministic automata that recognize each
of the given factors, complements them and then
builds the automaton that recognizes the intersec-
tion of those complements. It is then straight-
forward to construct A,.,, the residue automaton®
which recognizes exactly L(Apz) — L(.A). This
residue automaton captures exactly the non-SL as-
pects of L(.A), up to the degree to which the for-
bidden factors approximate the strictly SL aspects

of L(A).
8 Results and Prospectus

We have designed and implemented algorithms
that, given a Finite-State Automaton, compute a
set of forbidden words, units, initial factors, free
factors and final factors that define an SL approx-
imation of the stringset recognized by the FSA,
along with a minimal DFA that recognizes the
residue set: the set of strings in the approxima-
tion that are not in the stringset recognized by the
FSA. If the FSA recognizes a stringset that is SL,
then the approximation is exact.

As we explain in Section 7.1, the closeness of
the approximation is a parameter that may be var-
ied depending on the application. As we have im-
plemented it, we obtain the smallest set of fac-
tors that is arguably a reasonable approximation.

*The term “residue” is motivated from the perspective of
factoring constraints. These automata should not be confused
with the residual automata of Denis et al. (2002), NFAs in
which every state corresponds to the residual stringset wrt
some prefix. “Residual” in that context is justified from the
perspective of factoring strings.



We have also implemented an algorithm that col-
lects the union of the forbidden factors of each
type from a collection of these results, although
we don’t present it here, the algorithm being obvi-
ous.

We have applied these tools to the 106 lects that
have associated DFAs in the StressTyp2 database.
For the individual lects the maximum number of
forbidden words is 20. Since the size of our de-
fault alphabet is 15 (five degrees of weight and
three degrees of stress) and some lects have only
one weight and two levels of stress, the maximum
number of forbidden units is 13. The maximum
number of forbidden initial factors is 15. The max-
imum number of forbidden free and final factors is
386 and 117, respectively, but these are all due to
Pirah3, an outlier. Without Piraha they are 185 and
32, respectively.

For the union factor types, there are 14 distinct
forbidden units (only unstressed light syllables oc-
cur in every lect), 44 distinct forbidden words, 35
distinct forbidden initial factors, 904 distinct for-
bidden free factors and 230 distinct forbidden final
factors. The maximum width of forbidden words,
initial factors and free factors is 5. The maximum
width of forbidden final factor is 6, due to a single
lect (Icua Tupi) which is also the only example of
a properly SLg stringset, the other SL patterns all
being SL, or less.

That is still a lot of factors, too many to draw
much insight from. But these are all in ground
form, with each syllable type represented by a dis-
tinct alphabet symbol. In future work we plan
to adapt the alphabet type to be tuples of fea-
tures or perhaps non-re-entrant feature structures
(adding full feature structures we will leave for
others), which will provide opportunities to gen-
eralize across those features. We know, just from
the phonology, that this will reduce the total num-
ber of exemplars significantly.

The algorithms we have presented here, are
asymptotically exponential-time in the size of the
automaton, but that is actually optimal for al-
gorithms that construct sets of ground factors:
the worst case size of the set of factors of the
stringset of an automaton with card(Q)) states
is Q(card(X)@rd(@)). Nevertheless these algo-
rithms are actually quite effective in practice. We
have incorporated them into a Haskell workbench
for manipulating automata with a particular fo-
cus on logical descriptions of sub-regular con-
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straints. With only minimal optimization the al-
gorithm computes the forbidden factors and the
residue automaton for all 106 lects in our corpus
in less than an hour, which is practical as it stands,
but can be improved significantly. The asymptotic
bound is due to the potential size of the power-
set graph as well as the potential size of the set
of factors. These are not, however, the dominant
factor in the practical performance. Rather it is
the time it takes to generate a minimal DFA from
the forbidden factors. This is an easy target for
optimization; the intersection step, a critical path
in the construction, can be done in time logarith-
mic in the number of factors, for example. There
are many other easy opportunities for optimization
and Haskell provides a particularly powerful plat-
form form implementing them.
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FREEFFsS
Given: PSG®R = (V, E)
Where:V C P(Q), EC X x P(Q) x P(Q)
> The reversed powerset graph of a DFA A = (¥,6,1, F)

1 Let:
2 Front o = {(0,{0},¢)}

> The initial frontier,
3 Goals = {Q}
4 Extensions((v, S,w)) = {{(v', SU{v},0 - w) | (o,v,v’) € E and either v/ € S or v is singleton }

> Outedges that are acyclic if not from a singleton
5 while Front ; # ()

Construct:

6 FrFF = \J|FF 1, FF o,...],

o> the set of free forbidden factors of L(.A)
7 in stages: STAGE, STAGEy, . ..

> as given in Figure 2
FINALFFS

Given: PSG®R = (V, E)
>> as in FREEFFS

1 Let:
2 Fronto = {(S,{0},e) | SCQ—F}

> The set of trivial paths from vertices disjoint with F'
3 Goals = {Q}
4 Extensions({v, S, w))

> as in FREEFFS
5 while Front; # ()

Construct:

6 FiFF = \J[FF 1,FF o,...],

o> the set of final forbidden factors of L(.A)
7 in stages: STAGE1, STAGEy, . ..

> as given in Figure 2

Figure 1: Main procedures for Free and Final forbidden factors.
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STAGE;

Given:
Front ;—1 C{(v,S,w) |[veV,SCV,weX*}
> The frontier of the search, a set of Path
Where: v € V is the final vertex,
S C V is the (unordered) set of vertices in the path,
w € X* is the sequence of labels of the edges in the path, in reverse order
Goals C V is the set of goal vertices
Eztensions is a function taking a Path to its qualified extensions
Construct: Front;, FF;

1 ForEach Path € Front ;_1
2 ForEach (v', S U {v},0 - w) € Extensions(Path)
3 ifo-w¢gFF; > o - w has not already been found to be an ¢-FF
4 then if ' € Goals > o - wis an i-FF
then
5 Front; < Front; — {(—, —, 0 - w) € Front;}
> Remove any paths labeled with this factor from Front;
6 FFZ'<—FF1'U{J"LU}
> Add o -wto F'F;
else
7 Front; < Front; U {(v/, S U {v},0 - w)}

> Add extension to Front;
End of STAGE;.

Figure 2: Gathering Forbidden Factors
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