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Abstract

With growing interest in automated event
extraction, there is an increasing need to
overcome the labor costs of hand-written
event templates, entity lists, and annotated
corpora. In the last few years, more in-
ductive approaches have emerged, seek-
ing to discover unknown event types and
roles in raw text. The main recent efforts
use probabilistic generative models, as in
topic modeling, which are formally con-
cise but do not always yield stable or easily
interpretable results. We argue that event
schema induction can benefit from greater
structure in the process and in linguistic
features that distinguish words’ functions
and themes. To maximize our use of lim-
ited data, we reverse the typical schema in-
duction steps and introduce new similarity
measures, building an intuitive process for
inducing the structure of unknown events.

1 Introduction

Automated event extraction is mainly used in a
few areas of high interest and resource investment,
especially conflict and biomedical research. Yet
there is growing interest in applying event extrac-
tion to new languages and substantive domains.
Identifying meaningful representations of who did
what to whom can enable us not only to study
how known topics are described in pre-categorized
texts, but to use unlabeled records to discover what
has happened in the world that we don’t yet know
how to label, or disagree about how to define.

Event extraction is a complex task, combining
multiple subtasks that continue to be studied in
their own right. To determine that an election
occurred and who voted, won, or lost, we must
identify segments of text that mention the topic of

electing public officials, and determine which en-
tities are attributed certain roles. Finding that a
document is about elections is not enough to de-
termine who attained power and which citizens
they represent. Finding only that someone won
a vote, without thematic context, is not enough to
know whether they won political power, a corpo-
rate board decision, or figurative social approval.

There is growing interest in finding new ways to
induce event frames and patterns linking entities
to event roles. This paper builds on that emerging
body of work, while introducing new ideas about
event narratives and their components. Our con-
tributions involve reversing the typical schema in-
duction process and combining multiple measures
of word similarity, to dissect words’ functional re-
latedness and incorporate hierarchical information
from public WordNet and Wikipedia resources.

This paper proceeds as follows. Section 2 dis-
cusses prior work and defines the terms we use.
Section 3 explains our methodology, including our
re-ordered process and steps for inducing event
roles and event types. Section 4 presents evalu-
ations using the MUC-4 data set, with comparison
to other work, and Section 5 offers discussion.

2 Related Work

Early automation of event extraction relied on
rule-based pattern matching, using hand-written
templates (Chinchor et al., 1993; Schrodt et al.,
1994). Modern efforts have focused on super-
vised machine learning, using annotated corpora
for training data, again with pre-defined event
types and roles (Miyao et al., 2008; Bjorne and
Salakoski, 2011; Bunescu and Mooney, 2004).

Semi-supervised approaches have been used to
identify relations between pairs of entities, us-
ing seed pairs with known relations (Brin, 1998;
Culotta and Sorensen, 2004; Mintz et al., 2009).
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Open IE systems (Banko et al., 2007; Angeli et al.,
2015) extract general relational patterns between
entity pairs, based on domain-independent pat-
terns or heuristics. Similar efforts have emerged
to extract more complex event frames by boot-
strapping from seed event patterns (Huang and
Riloff, 2012; Surdeanu et al., 2006; Yangarber
et al., 2000; Patwardhan and Riloff, 2007).

There has been growing work over the past
decade on purely unsupervised role induction.
Most of these efforts begin with a set of docu-
ments known to cover a type of event or domain,
then cluster verb arguments to determine each
verb’s role slots within that domain (Filatova et al.,
2006; Sekine, 2006). These approaches typically
learn verb-specific roles, rather than multi-verb
event schemas. Other recent work models mul-
tiple verb roles in combination, in various forms
of subject-verb-object relational triples (O’Connor
et al., 2013; Balasubramanian et al., 2013).

In the last few years, several important efforts
have broken new ground with more comprehen-
sive event schema induction. These efforts dis-
cover new event types in unfiltered text, and iden-
tify verb argument positions associated with over-
all event roles. Chambers and Jurafsky (2011)
used a pipeline approach, first discovering re-
lated event patterns, then clustering arguments into
event slots. For the first step, they tested both
LDA and agglomerative clustering, based on event
terms’ co-occurrence. They used the MUC-4 data
set, but relied on an additional external corpus for
role induction, due to data limitations when clus-
tering roles separately in each event category.

Chambers (2013), Cheung et al (2013), Nguyen
et al (2015), and Sha et al (2016) all use prob-
abilistic generative models that jointly model the
assignment of predicates to event schemas and ar-
guments to event roles. Chambers uses an entity-
driven model, linking coreferring arguments to the
same event role. Cheung et al focus on event
clauses and model transitions between them, using
a pair of HMMs. Nguyen et al (2015) add phrase
modifiers to argument similarity scores, and Sha et
al (2016) add a normalized cut approach to maxi-
mize intra-class similarity within slots.

2.1 Problem Setup and Terminology

Our goal is to learn a set of meaningful events
and participant roles from a body of text. For in-
stance, given a collection of news reports, we may

want to identify that some of them are about elec-
tions, others are about crime, etc. We also want to
learn that an election involves voters, candidates,
polling sites, and the office to be won.

As we identify meaningful roles, we also want
to learn how to extract particular instances, by
identifying textual positions that refer to each role.
The subjects of the verbs vote and elect are likely
to be voters, while the direct object of elect or the
subject of campaign is likely to be a candidate.

We use the term “event type” to refer to a the-
matic event category (e.g. election), which may
be described using a variety of related verbs. We
use “role” to refer to the semantic role of an event
participant (e.g. candidate), and “event schema”
to refer to the set of an event type’s roles. We use
“entity” to refer to a specific actor or object, which
might be described by multiple coreferences.

To distinguish specific words, we use “predi-
cate” to refer to a verbal or nominal event pred-
icate (e.g. campaign), and “argument” to refer
to a syntactic argument of a predicate; “argument
term” refers to the argument’s head word. We use
“argument position” to refer to the combination of
a predicate and a dependency relation in which an
argument might appear (e.g. elect:dobj). We clus-
ter these positions into “slots” which map to event
roles. Figure 1 shows an example.

Event type: election
Schema slots: {voter, candidate, ...}
Slot positions: voter:{elect:subj, vote:subj}

candidate:{elect:dobj, win:subj}
Mention 1 Mention 2

predicate: elect predicates: vote, win
position: arg term: position: arg term:
elect:subj Berliners vote:subj Canadians
elect:dobj Merkel win:subj Trudeau

Figure 1: Example of an event schema.

3 Process Overview

The traditional event extraction process generally
involves two parts: 1) identifying segments of text
with action terms or phrases that relate to a partic-
ular event type, and 2) identifying entities in rel-
evant argument positions that fill the event type’s
roles. The first task represents a text classifica-
tion or topic identification problem at the level of
the document. The second task (semantic role la-
beling) is more difficult, since it involves complex
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word-level assignments and relationships, requir-
ing a lot of data and features to capture all possible
patterns that link an argument to its correct role.

If we attempt to learn semantic roles only af-
ter separating documents by event type, we have
much less data to work with in identifying event-
specific roles. To overcome this limitation, Cham-
bers and Jurafsky (2011) augmented their role in-
duction stage with a larger external corpus, but
our goal is to induce roles using only the doc-
uments contained in the MUC-4 dataset. Many
event types share similar roles, and some argu-
ment positions will signal the same role in multi-
ple event types (e.g. kill:dobj, signaling the victim
of a bombing, murder, or other attack).

We can make much greater use of limited data
by learning general semantic roles from the whole
corpus. Learning general roles first also helps
us identify event types, by segmenting the text
into narrative sequences with coherent argument
roles, then identifying trigger words that represent
these event narratives. Finally, we construct event
schemas by refining the general roles based on ar-
gument frequencies in specific event contexts.

3.1 Inducing General Argument Roles

We begin with dependency parsing and coref-
erence resolution, using the Stanford CoreNLP
toolkit (Manning et al., 2014), then identify all
predicates’ arguments as candidates for semantic
roles. Predicates are any verb or any noun un-
der the WordNet synset for “event”; arguments are
any of their syntactic dependents. We collect ar-
guments by their argument position, defined as the
argument’s predicate head paired with its depen-
dency relation, e.g. kill:dobj. All arguments with
the dependency relation dobj to the verb kill are as-
signed to the same slot. Similar to Chambers and
Jurafsky (2011) and Cheung et al (2013), we sep-
arate slots by high-level entity type: 1) Person or
Organization, 2) Location, 3) Physical Object, or
4) Other. The position take:dobj:[person] is clus-
tered separately from take:dobj:[object].

We cluster argument positions using two simi-
larity scores: one for the functional position itself
(i.e. the predicate dependency relation), and one
for the argument terms that appear in that position
throughout the text. We begin with Chambers and
Jurafsky’s (2011) measures of argument similar-
ity: the cosine similarity between vectors of argu-
ment terms, and the cosine similarity between vec-

tors of other positions that share coreferring argu-
ments. To build on Chambers and Jurafsky’s work
and show a meaningful comparison, we use their
method for combining these two scores, taking the
maximum if either score is above 0.7 (which they
optimized on the MUC-4 training set) and back-
ing off to the average between the two otherwise.
We also add noun phrase modifiers to the argu-
ment term vector, following Nguyen et al (2015).

3.1.1 Adding Argument Hypernyms
Our contributions to this stage of the process are to
add two major sources of information about argu-
ment positions, that shed greater light on the sim-
ilarity between their semantic roles. First, we add
argument hypernyms. Many entity terms appear
infrequently in the corpus, such as names of spe-
cific people, locations, or precise objects. Yet cat-
egorical groupings that fall between the word itself
and its high level entity type may be important.

For instance, the two positions attack:iobj-
on:[object] and attack:iobj-with:[object] have the
same high-level entity type. But the first is more
likely to contain buildings, while the second is
more likely to contain weapons. Even some per-
son types share more hypernyms than others, such
as the terms “attacker” and “kidnapper,” which
share the hypernym “wrongdoer”. Using the full
hypernym chain enables us to avoid making arbi-
trary decisions about how much granularity to use
in subdividing entity types. Figure 2 shows an ex-
ample of top hypernym counts from the data set:

pos1 = kill:dobj pos2 = die:subj
Hpos1={person: 387, Hpos2={person: 70,

group: 155, group: 35,
worker: 50, unit: 11,
leader: 45...} worker: 10...}

Figure 2: Top hypernyms in two similar positions.

To label argument hypernyms, we look up the
argument head word in WordNet. If more than one
synset is given, we select the synset whose other
lemmas have the most similar word embeddings
to the target word, using Word2Vec cosine similar-
ity. This is a simple approach to select one synset
for all mentions of the same term throughout the
corpus, rather than performing word sense disam-
biguation on each mention, since existing methods
for WSD still rarely beat selecting the first Word-
Net synset for all mentions (Raganato et al., 2017).
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If a term does not appear in WordNet, we look it
up in Wikipedia. We use Wikipedia’s API to query
for a page with a title exactly matching the argu-
ment phrase or head word, and if not found, use
the search query for a page with a partially match-
ing title. For each page returned, we retrieve the
description, label, alias, and page categories, and
look up the head word of the first noun phrase in
each, until we find a match in WordNet. To make
sure we should use the synset, we again compare
the word embeddings of the synset’s lemmas and
the target term in our corpus. We keep the synset
from Wikipedia if its lemmas have a higher aver-
age Word2Vec similarity to the target term than the
average for all other nouns in the corpus.

This process works well at finding person and
place names that don’t appear in WordNet. It
works less well for common nouns, which don’t
usually have their own Wikipedia page, but those
terms are overwhelmingly found in WordNet al-
ready. In the MUC-4 training set, we found about
95% of noun phrase head words in WordNet. Our
Wikipedia search found a suitable synset that met
the word embedding check for close to 30% of
remaining noun phrases, which slightly improved
our evaluation scores over using WordNet alone.

We then construct a vector of hypernym counts
Hposi for each argument position posi, as in Fig-
ure 2 above. For all arguments in posi through-
out the corpus, we take their assigned WordNet
synsets and count all hypernyms in their full hy-
pernym chains, except the three most general cat-
egories of “entity”, “physical entity”, or “abstrac-
tion”. We take the cosine similarity between these
hypernym vectors and multiply it by the Chambers
and Jurafsky (2011) similarity score for argument
terms and coreferring positions.

hyp sim(posi, posj) = cosine(Hposi , Hposj )
arg sim(posi, posj) = CJ sim(posi, posj)

× hyp sim(posi, posj)

3.1.2 Adding Predicate Functionality
Second, we add a new measure of functional simi-
larity between two predicate dependency relations
(i.e. the syntactic base of the argument position, as
opposed to the terms that fill the position). Again,
an argument position is defined by a predicate and
a dependency relation, e.g. kill:dobj. There are
two parts to our functional similarity measure: the
similarity between the predicates themselves, and
whether the positions share the same dependency

relation to their respective predicates.
Consider a victim-type role, which might ap-

pear in the positions kill:dobj, murder:dobj, or
die:subj. The verbs kill and murder are function-
ally similar; they both have human subjects and
direct objects (and often instruments after “with”).
But die, while thematically related, is functionally
different: it is intransitive and has no direct object.
The victim role appears in the same dependency
relation (dobj) to kill and murder, but in a differ-
ent relation (subj) to die. If two positions represent
the same semantic role, they should either fill the
same dependency relation to functionally similar
predicates, or have different relations to predicates
that tend to have different argument structures.

For each predicate, we assemble a count vec-
tor of all of its arguments’ dependency relations in
the corpus, and take the cosine similarity between
two predicates’ dependency relation count vectors.
We multiply this dependent similarity score by the
cosine similarity of the predicates’ word embed-
dings, to confirm that the two verbs are used in
similar ways throughout the corpus.

Then for each pair of argument positions posi

= predi:depi and posj = predj :depj , we look at
whether they have the same dep. If they do, we
use the functional similarity score for their two
predicates pred sim(predi, predj) as the simi-
larity score for the two argument positions. If
the positions have different deps, we use 1 -
pred sim(predi, predj), so that positions with
different deps will only be merged if they’re de-
pendent on functionally different predicates.

We’re more confident that this is a meaningful
comparison of positions with the same dep than
with different deps. So far, we would give kill:dobj
and die:subj the same similarity score as any other
non-matching dependents of kill and die. Instead,
we’d like to infer which non-matching dependents
of two functionally different predicates might fill
similar roles. To do so, we weight the second
case by the cosine similarity of the two positions’
hypernym vectors. (This means we use hyper-
nym similarity twice for positions with different
deps, effectively squaring it in our final slot sim-
ilarity score, which we consider reasonable given
the greater uncertainty that they fill the same role.)

funct sim(posi, posj) =
pred sim(predi, predj) if depi = depj

(1 - pred sim(predi, predj)) if depi 6= depj

×hyp sim(posi, posj)
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3.1.3 Clustering Combined Scores
For two positions’ overall similarity, we multiply
the argument similarity and functional similarity
scores, to ensure we merge positions that are re-
lated on both dimensions. We use agglomerative
clustering with average linkage scores, and ap-
ply constraints against merging two positions that
meet any of the following conditions. Versions of
the first two were also used by Sha et al (2016) and
Chambers and Jurafsky (2011), respectively:

1. Sentence co-occurrence: The positions ap-
pear in the same sentence for more than a
minimal percentage of occurrences.

2. Functional incompatibility: The positions
share the same predicate but different base
dependency relations (e.g. subj vs. dobj or
dobj vs. iobj). These pairs already have a
functional similarity score of 0, but we al-
low indirect objects to merge if they have dif-
ferent prepositions, since iobj-at and iobj-in
may both refer to a verb’s location.

3. Non-overlapping hypernyms: The positions
have a hypernym similarity score equal to
0, which only applies to functional positions
with the high-level entity type “Other”.

These constraints prevent highly dissimilar ar-
gument positions from being merged even as aver-
age similarities between clusters grow. We merge
up to a maximum distance close to 1 (0.999), to
merge as many compatible slots as possible. The
resulting clusters have reasonable sizes (the largest
usually had about 50 argument positions).

3.2 Segmenting Event Narratives
To leverage information from our first step to iden-
tify thematic event types, we add an intermediate
step: chunking the text into potential event narra-
tives. This relates to Cheung et al’s (2013) model-
ing of event frame transitions between clauses.

The motivation for segmenting narrative se-
quences is to help us determine which verbs might
be part of the same event descriptions, to cluster
event triggers in our final stage. Other papers have
clustered event predicates based on nearness in the
text, using different sentence windows (Chambers
and Jurafsky, 2011; Jiang et al., 2014). Chunking
event narratives allows us to relate predicates in
nearby sentences, when the text between them ap-
pears to be part of a continuous event report, with-

out selecting an arbitrary window of how many
words or sentences apart they can be.

Cheung et al used a stickiness parameter to en-
courage neighboring clauses to remain in the same
event frame. We approach event segmentation
from the other direction, assuming that neighbor-
ing text is part of the same event until it no longer
can be, because it contains elements that have in-
ternally incoherent semantic roles. We segment by
paragraph, since the MUC-4 corpus contains news
reports, which have short paragraphs of one or two
sentences usually referring to the same event.

Consider the following two segments, each of
which contain the same number of sentences,
predicates and arguments:

1. “Insurgents attacked a village.
Four people were killed.”

2. “Insurgents attacked a village.
An airport was bombed.”

In the first example, the insurgents are the only
perpetrators, the village is the physical target of at-
tacked and the four people the victims of killed. In
the second example, the village is again the target
of attacked, but there is a second physical target –
the airport – of bombed. This suggests that the sec-
ond example might contain two different events.

Our narrative segmentation is simple. If two
neighboring paragraphs have non-coreferring ar-
guments (i.e. different entities) in the same gen-
eral semantic role, we assume that they are part of
different event narratives, and split the document
between those paragraphs. We consider the result-
ing sequences likely to be coherent narratives with
internally consistent themes, and use them to clus-
ter thematically related event predicates next.

3.3 Inducing Trigger Verbs for Event Types

In supervised or rule-based document classifica-
tion, a common approach to identifying events is
to search for “trigger” words, i.e. action terms
that are highly representative of a specific type
of event. For instance, verbs like choose or win
might signal their arguments’ roles in an election
context, but those same verbs appear in other the-
matic contexts as well. The verbs vote or elect, or
the nominal predicate election, are better indica-
tions that a document is actually about an election.
Trigger words are often hand selected, which does
not enable the discovery of new event types.
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When inducing event types, other researchers
have sought to assign all predicates in a corpus
to event clusters, often using probabilistic distri-
butions to allow more general verbs to appear in
more than one event type. However, very gen-
eral terms can still have much in common with
thematically specific terms, so that including all
of them can result in loosely associated clusters
that may shift considerably with different algo-
rithm parameters. Cheung et al (2013) included a
“background” frame with a binary switching vari-
able in their event sequences, so that some clauses
may contain terms used in any context.

We focus instead on identifying only a limited
number of highly eventful verbs that are likely to
represent a particular type of event. We inspected
mentions of events in the corpus, comparing more
event-specific terms like “election” to more the-
matically general verbs like “take” or “see”. We
observed that event trigger words tend to appear
in prominent syntactic positions like the root of a
sentence, in both verb and nominal form (e.g. “at-
tacked” and later “the attack”), and to often have
theme-specific objects, while general verbs have a
wider variety of argument terms.

Based on this review, we chose two criteria for
triggers that also roughly parallel our approach to
semantic roles, combining aspects of functional
positions and argument terms. We did not test
other ideas, so there may be room to add other fea-
tures related to event-specific verbs in the future.
Our criteria for event triggers are as follows:

1. Major functional positions: We count the
number of times that a form of the verb ap-
pears in the following positions: a) in a sen-
tence’s “root” dependency relation; b) as an
object of a reporting verb in the position
report:iobj-that; c) in nominal form with def-
inite article as the subject of another verb;
and d) in nominal form with definite article
as the direct object of an auxiliary or control
verb. We use lists of reporting verbs, auxil-
iary verbs, and control verbs from Wiktionary
(a Wikimedia dictionary resource) to iden-
tify these major action positions, and exclude
the enabling terms from being event triggers
themselves, as well as the Wiktionary cate-
gory for copulative verbs and WordNet syn-
onyms of “occur” and “happen”.

2. Argument concentration: We calculate a
verb’s argument concentration using a type

of ratio used in economics for industry firms.
For each verb, we count how many of its ar-
guments contain one of the verb’s top 50%
most frequent argument terms, and divide by
the verb’s total arguments. This gives us the
percentage of the verb’s arguments that are
covered by its most repeated argument terms.

We apply these criteria to verb infinitives, in-
cluding all mentions of the verb in conjugated or
nominal form. For each verb in the corpus that ap-
pears in at least three of the major functional posi-
tions, we multiple the log number of mentions in
major positions with the argument concentration
ratio to get our potential event trigger score. We
select all predicates with a score above a thresh-
old (0.2, chosen by inspection to ensure enough
meaningful candidate terms in the training set).

We cluster these trigger words to get event
types, based on their proximity in the text and sim-
ilarity of arguments. As discussed in section 3.2,
we use the narrative sequences from the previous
stage to identify term co-occurrence. For each pair
of trigger verbs, we calculate how many times they
appear in the same narrative sequence, as a per-
centage of their total mentions in the corpus. We
multiple this co-occurrence score by the percent-
age overlap in the two verbs’ argument term count
vectors, and by the cosine similarity of the trig-
gers’ word embedding vectors.

As in the first stage, incorporating multiple cri-
teria enables us to focus on words that perform
prominent eventful functions in the text, in similar
ways and in meaningful proximity to each other.
We again cluster using average linkage scores, ap-
plying constraints so that two predicates will not
be merged if they have no co-occurring mentions
and no overlapping argument terms.

3.4 Event Role Extraction

After inducing general roles and event triggers, we
are ready to extract specific mentions of events.
We classify a narrative sequence as a mention of a
specific event type if it contains at least one of the
event type’s trigger words. For event schema slots,
we look for argument positions from the general
roles that appear in event-specific narratives, and
calculate the probability of argument terms falling
into each slot within each event context. This al-
lows us to refine the general roles into thematically
relevant versions for each event type, without hav-
ing to recluster argument positions within a much
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more limited set of event-related documents.
Our extraction rules follow those used by

Chambers and Jurafsky (2011). First, if an argu-
ment in an event narrative has a predicate and de-
pendency relation assigned to an event slot, and
has the correct high-level entity type for that slot,
we assign it to the corresponding event role. If an
argument’s functional position was not assigned to
any learned slot, we see if the argument term has a
high probability of falling into one of the learned
slots in the given event context, and assign the ar-
gument to the corresponding role if it does.

Our argument hypernym vectors enable us to
add a similar rule for the probability of certain hy-
pernyms appearing in specific event slots. If an
argument has a hypernym with a high probability
of appearing in a learned slot, we assign the argu-
ment to the corresponding role. For instance, if we
come across the name of a rebel group we haven’t
seen before, but Wikipedia identifies it as an in-
surgent group, we can assign it to the same slot
that other insurgent groups were clustered into,
when the group is mentioned in an event context
in which insurgents usually fill one particular role.

We get our best results if we only cluster argu-
ment positions that appear in the corpus at least 10
times, because less frequent positions are unlikely
to have enough data to end up in the right clus-
ter. This restriction also makes the time complex-
ity and memory usage more manageable, given
that we’re calculating multiple pairwise similarity
scores between argument positions. Then during
extraction, for arguments in rare unclustered posi-
tions, we use the term or hypernym slot probabili-
ties to assign them to their most likely event role.

4 Evaluation

We used the same information extraction task and
sought to match our evaluation settings to those
used in the other event schema induction papers.
The evaluation data set is from the Fourth Mes-
sage Understanding Conference (MUC-4) (Sund-
heim, 1992), which contains 1300 documents for
training, plus 200 documents for development and
200 documents for testing.

The documents contain English newswire arti-
cles about conflict events in Latin America, anno-
tated with four types of events: Attack, Bombing,
Kidnapping, and Arson. As in the other papers,
we tested entity extraction for the four main tem-
plate roles: perpetrator (combining both individu-

als and organizations), human target (i.e. victim),
physical target, and instrument, and ignored en-
tries marked “optional”. For the final tests, we
induced event schemas from all 1700 documents
in training, development, and test sets, and report
scores for the 200 documents in the test set.

4.1 Experiments: General Role Extraction

To evaluate our first stage, we present results for
the best mapping of our general roles to the four
MUC-4 template roles, combining like roles (e.g.
all perpetrator roles) across the four event types.
To isolate the analysis of our new predicate struc-
ture and hypernym similarity measurements, we
use this stage to compare our contributions to pre-
vious measures of argument similarity. We apply
our general roles to test documents labeled with
at least one of the four MUC-4 event templates,
and show our results alongside Chambers’ (2013)
and Cheung et al’s (2013) scores assuming per-
fect document classification. Since we induced
corpus-wide roles using only the documents in the
MUC-4 data set, the most relevant comparison is
among the versions of our own implementation, in
which we’ve sought to replicate argument similar-
ity metrics used by others, then added our own.

Evaluation: General Roles, Gold Documents
Comparison scores (as reported)

Role P R F1
Chambers 2013 41 44 43
Cheung et al 2013 49 43 46

Component measures (our implementation)
Arg terms+corefs (C&J 2011) 26 41 32
w/ mods (Nguyen et al 2015) 38 31 34
+ hypernym similarity 47 30 37
+ pred-dep functional sim 51 39 45
+ hyper sim + pred-dep sim 53 42 47

Table 1: MUC-4 role extraction, mapping general
slots to documents with at least one labeled event.

Our first stage performs well, applying general
learned roles to gold documents. Adding each of
our contributions individually improved upon the
scores we obtained using others’ argument term
similarity scores alone. Adding both of our contri-
butions of hypernyms and argument position func-
tional similarity performed best overall.

Again, we were able to do so using only the
documents in the MUC-4 dataset, because we re-
versed the order of the process and only induced
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general semantic roles at this stage. One concern
might be that our general roles could be overly
broad when induced from corpora with more var-
ied topics, since the MUC-4 data is overwhelm-
ingly dominated by conflict events that share the
same set of roles. We discuss the need for more
varied evaluation datasets in the final section.

4.2 Full Process Evaluation: Event Roles

For our second stage, we used our induced trig-
ger words to assign narrative sequences to MUC-4
event types, then extracted entities in event slots
as described in 3.4. To evaluate the full process,
we need to map our event-specific slots to MUC-
4 template roles. Since we now have both event
types and component slots, there are two ways to
do the mapping: 1) map any learned slot to any
template role (called “slot-only mapping”), or 2)
map learned schemas to MUC-4 templates, then
only map slots from one schema to roles in its
matching template (called “template mapping”).
Most of the recent papers reported slot-only map-
ping scores for the MUC-4 dataset, while fewer
reported stricter template mapping scores as well.
However, as Chambers (2013) discussed, the latter
is the more comprehensive (and ideal) method for
evaluating induced event schemas as a whole.

We first report slot-only mapping scores in com-
parison to the scores from the previous papers, in
Table 2. We then discuss the greater difficulty but
more precise evaluation using template mapping,
in Table 3, along with possible ways to improve.

Evaluation: Learned Events, Slot Mapping
P R F1

C&J 2011 48 25 33
Chambers 2013 41 41 41
Cheung et al 2013 32 37 34
Nguyen et al 2015 36 54 43
Sha et al 2016 39 70 50
Our results, all template roles 33 39 36

Table 2: MUC-4 role extraction on narratives with
event triggers, mapping slots to any template role.

The results in Table 2 are comparable to some
of the earlier work on this task, but do not reach
the level achieved by the most recent efforts. We
believe there is room for improvement in our doc-
ument classification stage, since we only induced
event trigger words. We explored more complex
approaches to clustering all event predicates while

allowing some to appear in multiple events. How-
ever, the more promising options became too com-
plicated to fully develop in this paper. We opted
instead for a focused approach to event triggers
that highlights our intuition about functional rela-
tionships between eventful words.

For slot-only mapping, we still restricted candi-
date slots to the four schemas that mapped to the
MUC-4 templates. Since the slots in each of our
schemas are derived from the same general seman-
tic roles, the difference between the two mappings
is that the stricter template mapping tests whether
we were able to correctly distinguish an entity as
the perpetrator of a bombing, rather than the per-
petrator of another form of attack. In other words,
for schema slots that share a general role structure,
the stricter template mapping places greater em-
phasis on our ability to distinguish between spe-
cific event types in document classification.

The relatively homogenous nature of the MUC-
4 corpus makes it easier to identify documents that
contain any of its main event types, but more diffi-
cult to distinguish between them. Bombings, kid-
nappings, arson, and (other) attacks often use sim-
ilar argument terms. For the stricter template map-
ping evaluation, we found that we needed to stop
clustering event trigger words at a slightly smaller
maximum distance score (0.99 rather than 0.999,
chosen on the training set), to keep some trigger
words for each MUC-4 event type in separate clus-
ters. This resulted in very few triggers for each
schema, but reasonable template mapping scores
for at least some events, both shown in Table 3.

Evaluation: Strict Template Mapping
Arson Bomb Attack Kidnap

triggers burn explode, attack, kidnap,
damage kill release

F1 40 36 25 29

Table 3: Event trigger words and MUC-4 role
extraction F1 scores, mapping slots to roles sepa-
rately for each mapped schema-template pair.

The difference in performance across event
types seems to relate to the number of triggers
needed to capture each event concept. (Note that
schema slots still use more predicates, the trigger
words only classify the event narratives.) If we
stop merging even sooner and retain a schema with
only the trigger word “kidnap”, the F1 score for
Kidnapping goes up to 40, but the score for Attack
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(the largest category in the dataset) goes down.
Chambers and Jurafsky (2011) achieved their best
results when mapping several schemas to the At-
tack template, including subtypes for shootings,
murders, and coups. Our trigger learning approach
does not enable us to learn a larger cluster of At-
tack trigger words without merging in the trigger
words for the other MUC-4 event types as well.

This suggests that a challenge for correct one-
to-one mapping of event schemas to gold tem-
plates is achieving the right level of aggregation
for all event types in a given corpus. Whether to
label very fine-grained events like shootings and
murders, or higher-level categories like attacks,
crimes, or conflicts, is a subjective judgment of-
ten driven by the substantive motivation of the re-
search. To induce event types that can be mapped
to labeled events with the right level of granularity
between related concepts, we may need to learn
hierarchies of actions or events. Emerging efforts
to identify event-event relations and event corefer-
ence offer promising avenues (Hong et al., 2016).

We might also do better at distinguishing sim-
ilar event types if we combine our structural and
functional contributions with a more probabilistic
approach to schema induction. By breaking apart
the process as we’ve done, we’ve been able to ex-
plore and test various new components, that could
be incorporated into more concise models for bet-
ter overall task performance in the future.

5 Discussion

In this paper, we have offered a novel approach
to event schema induction, reversing the typi-
cal pipeline process to maximize the use of lim-
ited training data, and inducing general seman-
tic roles that help distinguish coherent event nar-
ratives. Our approach differs from the dominant
use of generative probabilistic models that jointly
model event schemas and role slots. In keeping the
steps separate, while leveraging rich information
throughout, we’ve constructed a process that can
be manipulated intuitively at different stages, in-
corporating structure and distinguishing word fea-
tures related to function and theme.

While joint models may be mathematically
cleaner, our process yields meaningful compo-
nents along the way, that might be useful to re-
searchers in their own right. These include the
mapping of event-specific roles to common gen-
eral semantic roles, the segmentation of coherent

event narratives, and the induction of prominent
eventful trigger words. Separating out the steps in
a pipeline process also allows us to explore dif-
ferent types of intuition at each stage, since event
topics are qualitatively different types of concepts
from semantic roles.

In general, we’ve sought to induce event com-
ponents intuitively, and to aid those tasks by incor-
porating knowledge from public, general-domain
resources. WordNet and Wikipedia don’t contain
event frames, but they add general information
about word functions and themes beyond what can
be observed in relatively small corpora. We in-
clude word embeddings to confirm the relevance
of certain elements to our corpus, in order to con-
struct domain-specific event schemas when the
only domain resource is raw text. WordNet and
Wikipedia are available in multiple languages and
are easy to use, reducing the burden on other re-
searchers seeking to apply similar methods. In the
future, we would also be interested in inductive ap-
proaches to learning word taxonomies, to ensure
that the hierarchical structures used to induce se-
mantic roles accurately reflect the senses and rela-
tionships of words as used in the relevant domain.

As a final note about data, we sought to make
our evaluation directly comparable to previous
work, and the MUC-4 dataset has been the stan-
dard for evaluating event extraction in the past.
But the dataset is now over two decades old, and
we struggled with some of its shortcomings. It was
designed to evaluate rule-based pattern matching
and supervised extraction algorithms, and there
are coding nuances that may not be inferable from
the raw text alone. In addition to the narrow focus
on four somewhat overlapping types of violent at-
tacks, our inspection of incorrect extractions in the
training set revealed some entities that are clearly
attack perpetrators or targets, but are not labeled
as such in the key. We are encouraged by cur-
rent efforts to develop new annotated corpora that
might be more useful for evaluating the emerg-
ing research on inductive event extraction, and that
cover a wider variety of real-world events.
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