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Abstract

We present models for embedding words
in the context of surrounding words. Such
models, which we refer to as token em-
beddings, represent the characteristics of
a word that are specific to a given con-
text, such as word sense, syntactic cat-
egory, and semantic role. We explore
simple, efficient token embedding models
based on standard neural network archi-
tectures. We learn token embeddings on a
large amount of unannotated text and eval-
uate them as features for part-of-speech
taggers and dependency parsers trained on
much smaller amounts of annotated data.
We find that predictors endowed with to-
ken embeddings consistently outperform
baseline predictors across a range of con-
text window and training set sizes.

1 Introduction

Word embeddings have enjoyed a surge of popu-
larity in natural language processing (NLP) due to
the effectiveness of deep learning and the avail-
ability of pretrained, downloadable models for
embedding words. Many embedding models have
been developed (Collobert et al., 2011; Mikolov
et al., 2013; Pennington et al., 2014) and have been
shown to improve performance on NLP tasks, in-
cluding part-of-speech (POS) tagging, named en-
tity recognition, semantic role labeling, depen-
dency parsing, and machine translation (Turian
et al., 2010; Collobert et al., 2011; Bansal et al.,
2014; Zou et al., 2013).

The majority of this work has focused on a sin-
gle embedding for each word type in a vocab-
ulary.1 We will refer to these as type embed-

1A word type is an entry in a vocabulary, while a word
token is an instance of a word type in a corpus.

dings. However, the same word type can exhibit a
range of linguistic behaviors in different contexts.
To address this, some researchers learn multiple
embeddings for certain word types, where each
embedding corresponds to a distinct sense of the
type (Reisinger and Mooney, 2010; Huang et al.,
2012; Tian et al., 2014). But token-level linguis-
tic phenomena go beyond word sense, and these
approaches are only reliable for frequent words.

Several kinds of token-level phenomena relate
directly to NLP tasks. Word sense disambigua-
tion relies on context to determine which sense is
intended. POS tagging, dependency parsing, and
semantic role labeling identify syntactic categories
and semantic roles for each token. Sentiment anal-
ysis and related tasks like opinion mining seek to
understand word connotations in context.

In this paper, we develop and evaluate models
for embedding word tokens. Our token embed-
dings capture linguistic characteristics expressed
in the context of a token. Unlike type embeddings,
it is infeasible to precompute and store all possi-
ble (or even a significant fraction of) token em-
beddings. Instead, our token embedding models
are parametric, so they can be applied on the fly to
embed any word in its context.

We focus on simple and efficient token em-
bedding models based on local context and stan-
dard neural network architectures. We evaluate
our models by using them to provide features for
downstream low-resource syntactic tasks: Twitter
POS tagging and dependency parsing. We show
that token embeddings can improve the perfor-
mance of a non-structured POS tagger to match
the state of the art Twitter POS tagger of Owoputi
et al. (2013). We add our token embeddings to
Tweeboparser (Kong et al., 2014), improving its
performance and establishing a new state of the
art for Twitter dependency parsing.
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2 Related Work

The most common way to obtain context-sensitive
embeddings is to learn separate embeddings for
distinct senses of each type. Most of these meth-
ods cluster tokens into senses and learn vectors
for each cluster (Vu and Parker, 2016; Reisinger
and Mooney, 2010; Huang et al., 2012; Tian et al.,
2014; Chen et al., 2014; Piña and Johansson, 2015;
Wu and Giles, 2015). Some use bilingual infor-
mation (Guo et al., 2014; Šuster et al., 2016; Go-
nen and Goldberg, 2016), nonparametric methods
to avoid specifying the number of clusters (Nee-
lakantan et al., 2014; Li and Jurafsky, 2015), topic
models (Liu et al., 2015), grounding to Word-
Net (Jauhar et al., 2015), or senses defined as sets
of POS tags for each type (Qiu et al., 2014).

These “multi-type” embeddings are restricted to
modeling phenomena expressed by a single clus-
tering of tokens for each type. In contrast, token
embeddings are capable of modeling information
that cuts across phenomena categories. Further,
as the number of clusters grows, learning multi-
type embeddings becomes more difficult due to
data fragmentation. Instead, we learn parametric
models that transform a type embedding and those
of its context words into a representation for the
token. While multi-type embeddings require more
data for training, parametric models require less.

There is prior work in developing representa-
tions for tokens in the context of unsupervised
or supervised training, whether with long short-
term memory (LSTM) networks (Kågebäck et al.,
2015; Ling et al., 2015; Choi et al., 2016; Mela-
mud et al., 2016), convolutional networks (Col-
lobert et al., 2011), or other architectures. How-
ever, learning to represent tokens in supervised
training can suffer from limited data. We instead
focus on learning token embedding models on un-
labeled data, then use them to produce features for
downstream tasks. So we focus on efficient archi-
tectures and unsupervised learning criteria.

The most closely related work consists of ef-
forts to train LSTMs to represent tokens in context
using unsupervised training objectives. Kawakami
and Dyer (2015) use multilingual data to learn to-
ken embeddings that are predictive of their trans-
lation targets, while Melamud et al. (2016) and
Peters et al. (2017) use unsupervised learning
with monolingual sentences. We experiment with
LSTM token embedding models as well, though
we focus on different tasks: POS tagging and de-

pendency parsing. We generally found that very
small contexts worked best for these syntactic
tasks, thereby limiting the usefulness of LSTMs
as token embedding models.

3 Token Embedding Models

We assume access to pretrained type embeddings.
Let W denote a vocabulary of word types. For
each word type x ∈ W , we denote its type embed-
ding by vx ∈ Rd.

We define a word sequence x =
〈x1, x2, ..., x|x|〉 in which each entry xj is a
word type, i.e., xj ∈ W . We define a word token
as an element in a word sequence. We consider
the class of functions f that take a word sequence
x and index j of a particular token in x and output
a vector of dimensionality d′. We will refer to
choices for f(x, j) as encoders.

3.1 Feedforward Encoders

Our first encoder is a basic feedforward neural
network that embeds the sequence of words con-
tained in a window of text surrounding word j.
We use a fixed-size window containing word j,
the w′ words to its left, and the w′ words to its
right. We concatenate the vectors for each word
type in this window and apply an affine transfor-
mation followed by a nonlinearity:

fFF(x, j) =

g
(
W (D)[vxj−w′ ; vx(j−w′)+1

; ...; vxj+w′ ] + b(D)
)

where g is an elementwise nonlinear function
(e.g., tanh), W (D) is a d′ by d(2w′+1) parameter
matrix, semicolon (;) denotes vertical concatena-
tion, and b(D) ∈ Rd′ is a bias vector. We assume
that x is padded with start-of-sequence and end-
of-sequence symbols as needed. The resulting d′-
dimensional token embedding can be transformed
by additional nonlinear layers.

This encoder does not distinguish word j other
than by centering the window at its position. It
is left to the training objectives to place empha-
sis on word j as needed (see Section 3.3). Vary-
ing w′ will influence the phenomena captured by
this encoder, with smaller windows capturing sim-
ilarity in terms of local syntactic category (e.g.,
noun vs. verb) and larger windows helping to dis-
tinguish word senses or to identify properties of
the discourse (e.g., topic or style).
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3.2 Recurrent Neural Network Encoders

The above feedforward DNN encoder will be
brittle with large window sizes. We therefore
also consider encoders based on recurrent neu-
ral networks (RNNs). RNNs have recently en-
joyed a great deal of interest in the deep learn-
ing, speech recognition, and NLP communi-
ties (Sundermeyer et al., 2012; Graves et al., 2013;
Sutskever et al., 2014), most frequently used with
“gated” connections like long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000).

We use an LSTM to encode the sequence of
words containing the token and take the final hid-
den vector as the d′-dimensional encoding. While
we can use longer sequences, such as the sentence
containing the token (Kawakami and Dyer, 2015),
we restrict the input sequence to a fixed-size con-
text window around word j, so the input is identi-
cal to that of the feedforward encoder above. For
the syntactic tasks we consider, we did not find
large context windows to be helpful.

3.3 Training

We consider unsupervised ways to train the en-
coders described above. Throughout training for
both models, the type embeddings are kept fixed.
We assume that we are given a corpus X =
{x(i)}|X|i=1 of unannotated word sequences.

One widely-used family of unsupervised crite-
ria is that of reconstruction error and its variants.
These are used when training autoencoders, which
use an encoder f to convert the input x to a vec-
tor followed by a decoder g that attempts to re-
construct the input from the vector. The typical
loss function is the squared difference between the
input and reconstructed input. We use a general-
ization that is sensitive to the position of elements.
Since our primary interest is in learning useful rep-
resentations for a particular token in its context,
we use a weighted reconstruction error:

lossWRE(f, g,x, j) =
|x|∑
i=1

ωi ‖g(f(x, j))i − vxi‖22
(1)

where g(f(x, j))i is the subvector of g(f(x, j))
corresponding to reconstructing vxi , and where ωi

is the weight for reconstructing the ith entry.
For our feedforward encoder f , we use anal-

ogous fully-connected layers in the decoder g,
forming a standard autoencoder architecture. To

train the LSTM encoder, we add an LSTM de-
coder to form a sequence-to-sequence (“seq2seq”)
autoencoder (Sutskever et al., 2014; Li et al., 2015;
Dai and Le, 2015). That is, we use one LSTM as
the encoder f and another LSTM for the decoder
g, initializing g’s hidden state to the output of f .
Since we use the same weighted reconstruction er-
ror described above, the decoder must output a sin-
gle vector at each step rather than a distribution
over word types. So we use an affine transforma-
tion on the LSTM decoder hidden vector at each
step in order to generate the output vector for each
step. Reconstruction error has efficiency advan-
tages over log loss here in that it avoids the costly
summation over the vocabulary.

4 Qualitative Analysis

Before discussing downstream tasks, we perform
a qualitative analysis to show what our token em-
bedding models learn.

4.1 Experimental Setup

We train a feedforward DNN token embedding
model on a corpus of 300,000 unlabeled English
tweets. We use a window size w′ = 3 for the
qualitative results reported here; for downstream
tasks below, we will vary w′. For training, we use
our weighted reconstruction error (Eq. 1). The en-
coder uses one hidden layer of size 512 followed
by the token embedding layer of size d′ = 256.
The decoder also uses a single hidden layer of size
512. We use ReLU activations except the final en-
coder/decoder layers which use linear activations.

In preliminary experiments we compared 3
weighting schemes for ω in the objective: for to-
ken index j, “uniform” weighting sets ωi = 1 for
all i; “focused” sets ωj = 2 and ωi = 1 for i 6= j;
and “tapered” sets ωj = 4, ωj±1 = 3, ωj±2 = 2,
and 1 otherwise. The non-uniform schemes place
more emphasis on reconstructing the target token,
and we found them to slightly outperform uniform
weighting. Unless reported otherwise, we use fo-
cused weighting for all experiments below.

We train using stochastic gradient descent with
momentum for 1 epoch, saving the model that
reaches the best objective value on a held-out val-
idation set of 3,000 unlabeled tweets. For the type
embeddings used as input to our token embedding
model, we train 100-dimensional skip-gram em-
beddings on 56 million English tweets using the
word2vec toolkit (Mikolov et al., 2013).
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Q my first one was like 2 minutes long and has Q jus listenin 2 mr hudson and drake crazyness
1 my fav place- was there 2 years ago and am 1 @mention deaddddd u go 2 mlk high up n
2 thought it was more like 2 ..... either way , i 2 only a cups tho tryin 2 feed the whole family
3 to backup everything from 2 years before i 3 bored on mars i kum down 2 earth ... yupp !!
4 i slept for like 2 sec lol . freakin chessy 4 i miss you i trying 2 looking oud my mind girl
Q the lines : i am so thrilled about this . may Q fighting off a headache so i can work on my
1 and work . i am so glad you asked . let 1 im on my phone so i cant see who @mention
2 i was so excited to sleep in tomorrow 2 did some things that hurt so i guess i was doing
3 @mention that is so funny ! i know which 3 my phone keeps beeping so i know ralph must
4 little girl ! i was so touched when she called 4 randomly obsessed with this song so i bought it

Table 1: Query tokens of two polysemous words and their four nearest neighboring tokens. The target
token is underlined and the encoder context (3 words to either side) is shown in bold. See text for details.

4.2 Nearest Neighbor Analysis

We inspect the ability of the encoder to distin-
guish different senses of ambiguous types. Table 1
shows query tokens (Q) followed by their four
nearest neighbor tokens (with the same type), all
from our held-out set of 3,000 tweets. We choose
two polysemous words that are common in tweets:
“2” and “so”. As queries, we select tokens that ex-
press different senses. The word “2” can be both a
number (left) and a synonym of “to” (right). The
word “so” is both an intensifier (left) and a con-
nective (right). We find that the nearest neighbors,
though generally differing in context words, have
the same sense and same POS tag.

In Table 2 we consider nearest neighbors that
may have different word types from the query
type. For each query word, we permit the near-
est neighbor search to consider tokens from the
following set: {“4”, “for”, “2”, “to”, “too”, “1”,
“one”}. In the first two queries, we find that tokens
of “4” have nearest neighbors with different word
types but the same syntactic category. That is, to-
kens of different word types are more similar to
the query than tokens of the same type. We see this
again with neighbors of “2” used as a synonym for
“to”. The encoder appears to be doing a kind of
canonicalization of nonstandard word uses, which
suggests applications for token embeddings in nor-
malization of social media text (Clark and Araki,
2011). See neighbor 8, in which “too” is under-
stood as having the intended meaning despite its
misleading surface form.

4.3 Visualization

In order to gain a better qualitative understand-
ing of the token embeddings, we visualize the
learned token embeddings using t-SNE (Maaten
and Hinton, 2008). We learn token embeddings
as above except with w′ = 1. Figure 1 shows
a two-dimensional visualization of token embed-

Q masters swimmers annual swim 4 your heart !
1 so many miles loking for her and handing
2 off to the rehearsal space for a weekend long
3 on the inauguration for your enjoyment
Q #canucks now have a 4 point lead on the
1 way lol . it’s the 1 mile trail and then you
2 my first one was like 2 minutes long and
3 my fav place- was there 2 years ago and
Q jus listenin 2 mr hudson and drake crazyness
1 @mention deaddddd u go 2 mlk high up n bk
2 only a cups tho tryin 2 feed the whole family
3 are ya’ll listening to the annointed one ? he’s on
4 @mention well could u come to mrs wilsons for
5 i’m bored on mars i kum down 2 earth ... yupp !!
6 i am listening to amar prtihibi - black
7 about neopets and listening to yelle ( URL
8 high ritee now - - bout too troop to the crib

Table 2: Nearest neighbors for token embeddings,
where we consider neighbors that may have differ-
ent word types from that in the query token. See
text for details.

dings for the word type “4”. For this visualiza-
tion, we embed tokens in the POS-annotated tweet
datasets from Gimpel et al. (2011) and Owoputi
et al. (2013), so we have their gold standard POS
tags. We show the left and right context words
(using w′ = 1) along with the token and its gold
standard POS tag. We find that tokens of “4” with
the same gold POS tag are close in the embed-
ded space, with prepositions appearing in the up-
per part of the plot and numbers appearing in the
lower part.

5 Downstream Tasks

We evaluate our token embedding models on
two downstream tasks: POS tagging and depen-
dency parsing. Given an input sequence x =
〈x1, x2, ..., xn〉, we want to predict its tag se-
quence and dependency parse. We focus on Twit-
ter since there is limited annotated data but abun-
dant unlabeled data for training token embeddings.
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Figure 1: t-SNE visualization of token embeddings for word type “4”. Each point shows the left and right
context words (w′ = 1) for the token along with the gold standard POS tag following an underscore (“ ”).
The tag “P” is preposition and “$” is number. Following the t-SNE projection, points were subsampled
for this visualization for clarity.

5.1 Part-of-Speech Tagging

Baseline We use a simple feedforward DNN as
our baseline tagger. It is a local classifier that pre-
dicts the tag for a token independently of all other
predictions for the tweet. That is, it does not use
structured prediction. The input to the network is
the type embedding of the word to be tagged con-
catenated with the type embeddings of w words on
either side. The DNN contains two hidden layers
followed by one softmax layer. Figure 2(a) shows
this architecture for w = 1 when predicting the tag
of 4 in the tweet thanks 4 follow. We concatenate
a 10-dimensional binary feature vector computed
for the word being tagged (Table 3).2

We train the tagger by minimizing the log loss
(cross entropy) on the training set, performing
early stopping on the validation set, and reporting
accuracy on the test set. We consider both learn-
ing the type embeddings (“updating”) and keeping

2The definition of punctuation is taken from Python’s
string.punctuation.

x begins with @ and |x| > 1
x begins with # and |x| > 1
lowercase(x) is rt (retweet indicator)
x matches URL regular expression
x only contains digits
x contains $
x is : (colon)
x is . . . (ellipsis)
x is punctuation and |x| = 1 and x is not : or $
x is punctuation and |x| > 1 and x is not . . .

Table 3: Rules for binary feature vector for word
x. If multiple rules apply, the first has priority. The
tagger uses this feature vector only for the word to
be tagged; the parser uses one for the child and
another for the parent in the dependency arc under
consideration.

them fixed. When we update the embeddings we
include an `2 regularization term penalizing the di-
vergence from the initial type embeddings.

Token Embedding Tagger When using token
embeddings, we concatenate the d′-dimensional
token embedding to the tagger input. The rest of
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(a) Baseline DNN Tagger

Baseline Tagger 

Input 

hidden 
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output probability for each tag 

thanks 4 follow 

… … 

   binary feature vector 

(b) Token Embedding Tagger

Token Embedding Tagger 

Input 

hidden 

layers 

output probability for each tag 

4 

… … … 

   binary feature vector 

    token 

embedding 

thanks 4 follow 

hidden layers 

Figure 2: (a) Baseline DNN tagger, (b) tagger aug-
mented with token embeddings.

the architecture is the same as the baseline tagger.
Figure 2(b) shows the model when using type em-
bedding window size w = 0 and token embedding
window size w′ = 1.

While training the DNN tagger with the token
embeddings, we do not fine-tune the token embed-
ding encoder parameters, leaving them fixed.

5.2 Dependency Parser

Baseline As our baseline, we use a simple DNN
to do parent prediction independently for each
word. That is, we use a local classifier that
scores parents for a word. To infer a parse at
test time, we independently choose the highest-
scoring parent for each word. We also use our
classifier’s scores as additional features in Twee-
boParser (Kong et al., 2014).

Our parent prediction DNN has two hidden lay-
ers and an output layer with 1 unit. This unit corre-
sponds to a value S(xi, xj) that serves as the score
for a dependency arc with child word xi and parent
word xj . The input to the DNN is the concatena-
tion of the type embeddings for xi and xj , the type
embeddings of w words on either side of xi and
xj , the features for xi and xj from Table 3, and
features for the pair, including relative positions,
direction, and distance (shown in Table 4).3

3When considering the root attachment (i.e., xj is the wall
symbol $), the type embeddings for xj and its neighbors are
all zeroes, the feature vector for xj is all zeroes, and the de-
pendency pair features are all zeroes except the first and last.

For a sentence of length n, the loss function we
use for a single arc (xi, xj) follows:

lossarc(xi, xj) =

− S(xi, xj) + log

 n∑
k=0,k 6=i

exp{S(xi, xk)}

(2)

where k = 0 indicates the root attachment for xi.
We sum over all possible parents even though the
model only computes a score for a binary deci-
sion.4 Where head(xi) returns the annotated par-
ent for xi, the loss for a sequence x is:

n∑
i=1

lossarc(xi, head(xi)) (3)

After training, we predict the parent for a word xi

as follows:

head(xi) = argmax
k 6=i

S(xi, xk) (4)

Token Embedding Parser For the token em-
bedding parser, we use the d′-dimensional token
embeddings for xi and xj . We simply concate-
nate the two token embeddings to the input of the
DNN parser. When xj = $, the token embedding
for xj is all zeroes. The other parts of the input
are the same as the baseline parser. While training
this parser, we do not optimize the token embed-
ding encoder parameters. As with the tagger, we
tune over the decision to keep type embeddings
fixed or update them during learning, again using
`2 regularization when doing so. We tune this de-
cision for both the baseline parser and the parser
that uses token embeddings.

6 Experimental Setup

For training the token embedding models, we
mostly use the same settings as in Section 4.1 for
the qualitative analysis. The only difference is that
we train the token embedding models for 5 epochs,
again saving the model that reaches the best ob-
jective value on a held-out set of 3,000 unlabeled
tweets. We also experiment with several values for
the context window size w′ and the hidden layer
size, reported below.

4We found this to work better than only summing over the
exponentiated scores of an arc or no arc for the pair 〈xi, xj〉.
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i
n

j
n ∆ = 1 ∆ = 2 3 ≤ ∆ ≤ 5 6 ≤ ∆ ≤ 10 ∆ ≥ 11 i < j i > j xj is wall symbol

Table 4: Dependency pair features for arc with child xi and parent xj in an n-word sentence and where
∆ = |i− j|. The final feature is 1 if xj is the wall symbol ($), indicating a root attachment for xi. In that
case, all features are zero except for the first and last.

6.1 Part-of-Speech Tagging
We use the annotated tweet datasets from Gimpel
et al. (2011) and Owoputi et al. (2013). For train-
ing, we combine the 1000-tweet OCT27TRAIN set
and the 327-tweet OCT27DEV development set.
For validation, we use the 500-tweet OCT27TEST

test set and for final testing we use the 547-tweet
DAILY547 test set. The DNN tagger uses two hid-
den layers of size 512 with ReLU nonlinearities
and a final softmax layer of size 25 (one for each
tag). The input type embeddings are the same as
in the token embedding model. We train using
stochastic gradient descent with momentum and
early stopping on the validation set.

6.2 Dependency Parsing
We use data from Kong et al. (2014), dividing their
717 training tweets randomly into a 573-tweet
train set and a 144-tweet validation set. We use
their 201-tweet TEST-NEW as our test set. Kong
et al. annotated whether particular tokens are con-
tained in the syntactic structure of each tweet (“to-
ken selection”). We use the same automatic token
selection (TS) predictions as they did, which are
97.4% accurate. We use a pipeline architecture
in which unselected tokens are not considered as
possible parents when performing the summation
in Eq. 2 or the argmax in Eq. 4.

Like Kong et al., we use gold standard POS
tags and gold standard TS during training and
tuning. For final testing on TEST-NEW, we use
automatically-predicted POS tags and automatic
TS (using their same automatic predictions for
both). Like them, we use attachment F1 score (%)
for evaluation. Our DNN parsers use two hidden
layers of size 1024 with ReLU nonlinearities. The
final layer has size 1 (the score S(xi, xj)). We
train using SGD with momentum.

7 Results

7.1 Part-of-Speech Tagging
We first train our baseline tagger without the bi-
nary feature vector using different amounts of
training data and window sizes w ∈ {0, 1, 2, 3}.
Figure 3 shows accuracies on the validation set.
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20 40 60 80

a
c
c
u
ra

c
y

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Baseline(0)

Baseline(1)

Baseline(2)

Baseline(3)

TokenEmbedding(0+1)

TokenEmbedding(0+2)

TokenEmbedding(0+3)

Figure 3: Tagging results. “Baseline(w)” refers
to the baseline tagger with context of ±w words;
“TokenEmbedding(w+w′)” refers to the token em-
bedding tagger with tagger context of ±w words
and token embedding context of ±w′ words.

When using only 10% of the training data, the
baseline tagger with w = 0 performs best. As the
amount of training data increases, the larger win-
dow sizes begin to outperform w = 0, and with
the full training set, w = 1 performs best.

Figure 3 also shows the results of our token em-
bedding tagger for w = 0 and w′ ∈ {1, 2, 3}.5
We see consistent gains when using token embed-
dings, higher than the best baseline window for all
values of w′, though the best performance is ob-
tained with w′ = 1. When using small amounts of
data, the baseline accuracy drops when increasing
w, but the token embedding tagger is much more
robust, always outperforming the w = 0 baseline.

We then perform experiments using the full
training set, showing results in Table 5. For all
experiments with the baseline DNN tagger, we fix

5We used focused weighting for the results in Figure 3
using ωj = 2, but found slightly more stable results by in-
creasing ωj to 3, still keeping the other weights to 1. Our
final tagging results use ωj = 3.
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val. test
(1) Baseline 88.4 88.9
(1) + DNN TE +1.6 +0.9
(2) Baseline + updating 89.4 89.4
(2) + DNN TE +0.6 +0.5
(3) Baseline + features 89.2 89.3
(3) + DNN TE* +0.6 +0.3
(3) + DNN TE +1.2 +1.2
(3) Baseline + features 89.2 89.3
(3) + seq2seq TE* -0.6 -1.0
(3) + seq2seq TE +1.3 +1.0

Table 5: Tagging accuracies (%) on validation
(OCT27TEST) and test (DAILY547) sets. Accu-
racy deltas are always relative to the respective
baseline in each section of the table. “updating”
= updates type embeddings during training, “fea-
tures” = uses binary feature vector for center word,
* = omits center word type embedding.

val. test
(4) Baseline + all features 92.1 92.2
(4) + updating 92.2 92.4
(4) + DNN TE + without updating 92.4 92.8
Owoputi et al. 91.6 92.8

Table 6: Tagging accuracies (%) on validation
(OCT27TEST) and test (DAILY547) sets using all
features: Brown clusters, tag dictionaries, name
lists, and character n-grams. Last row is best re-
sult from Owoputi et al. (2013).

w = 1; when using token embeddings, we fix
w = 0 and w′ = 1. We also consider updating the
initial word type embeddings during tagger train-
ing (“updating”) and using the binary feature vec-
tor for the center word (“features”).

Using token embeddings consistently outper-
forms using type embeddings alone. On the test
set, we see gains from token embeddings across all
settings, ranging from 0.5 to 1.2. The gains from
DNN and seq2seq token embeddings are similar
(possibly because we again use w = 0 and w′ = 1
for the latter). The baseline taggers improve sub-
stantially by updating type embeddings or adding
features (settings (2) or (3)), but adding token
embeddings still yields additional improvements.
When we use token embeddings but remove the
type embedding for the word being tagged (de-
noted “*”), DNN TEs can still improve over the
baseline, though seq2seq TEs yield lower accu-
racy. This suggests that the seq2seq TE model is
focusing on other information in the window that
is not necessarily related to the center word.

Comparison to State of the Art. Owoputi et al.
(2013) achieve 92.8% on this train/test setup, us-

ing structured prediction and additional features
from annotated and curated resources. We add
several additional features inspired by theirs. We
use features based on their generated Brown clus-
ters, namely, binary vectors representing indica-
tors for cluster string prefixes of length 2, 4, 6, and
8. We add tag dictionary features constructed from
the Wall Street Journal portion of the Penn Tree-
bank (Marcus et al., 1993). We use the concate-
nation of the binary tag vectors for the three most
common tags in the tag dictionary for the word be-
ing tagged. We use the 10-dimensional binary fea-
ture vector and a binary feature indicating whether
the word begins with a capital letter. All features
above are used for the center word as well as one
word to the left and one word to the right.

We add several more features only for the word
being tagged. We use name list features, adding a
binary feature for each name list used by Owoputi
et al. (2013), where the feature indicates member-
ship on the corresponding name list of the word
being tagged. We also include character n-gram
count features for n ∈ {2, 3}, adding features for
the 3,133 bi/trigrams that appear 3 or more times
in the tagging training data.

After adding these features, we increase the hid-
den layer size to 2048. We use dropout, using a
dropout rate of 0.2 for the input layer and 0.4 for
the hidden layers. The other settings remain the
same. The results are shown in Table 6. Our new
baseline tagger improves from 89.2% to 92.1% on
validation, and improves further with updating.

We then add DNN token embeddings to this
new baseline. When doing so, we set w = 0,
as in all earlier experiments. We add two sets of
DNN token embedding features to the tagger, one
with w′ = 1 and another with w′ = 3. The re-
sults improve by 0.4 over the strongest baseline
on the test set, matching the accuracy of Owoputi
et al. (2013). This is notable since they used struc-
tured prediction while we use a simple local clas-
sifier, enabling fast and maximally-parallelizable
test-time inference.

7.2 Dependency Parsing

We show results with our head predictors in Ta-
ble 7. The baseline head predictor actually does
best with w = 0. The predictors with token em-
beddings are able to leverage larger context: with
DNN token embeddings, performance is best with
w′ = 1 while with seq2seq token embeddings,
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w or w′ Baseline DNN TE seq2seq TE
0 75.8 - -
1 75.4 77.8 77.8
2 73.2 77.3 77.9
3 72.3 77.2 76.9

Table 7: Attachment F1 (%) on validation set us-
ing different models and window sizes. For TE
columns, the input does not include any type em-
beddings at all, only token embeddings. Best re-
sult in each column is in boldface.

performance is strong with w′ = 1 and 2. When
using token embeddings, we actually found it ben-
eficial to drop the center word type embedding
from the input, only using it indirectly through the
token embedding functions. We use w = −1 to
indicate this setting.

The upper part of Table 8 shows the results
when we simply use our parsers to output the
highest-scoring parents for each word in the test
set. Token embeddings are more helpful for
this task than type embeddings, improving perfor-
mance from 73.0 to 75.8 for DNN token embed-
dings and improving to 75.0 for the seq2seq token
embeddings.

We also use our head predictors to add a
new feature to TweeboParser (Kong et al., 2014).
TweeboParser uses a feature on every candidate
arc corresponding to the score under a first-order
dependency model trained on the Penn Treebank.
We add a similar feature corresponding to the arc
score under our model from our head predictors.
Because TweeboParser results are nondeterminis-
tic, presumably due to floating point precision, we
train TweeboParser 10 times for both its baseline
configuration and all settings using our additional
features, using TweeboParser’s default hyperpa-
rameters each time. We report means and standard
deviations.

The final results are shown in the lower part
of Table 8. While adding the feature from the
baseline parser hurts performance slightly (80.6→
80.5), adding token embeddings improves perfor-
mance. Using the feature from our DNN TE head
predictor improves performance to 81.5, establish-
ing a new state of the art for Twitter dependency
parsing.

8 Conclusion

We have presented a simple and efficient way of
learning representations of words in their con-
texts using unlabeled data, and have shown how

(1) Baseline parser (w = 0) 73.0
(1) + DNN TE (w = −1, w′ = 1) 75.8
(1) + seq2seq TE (w = −1, w′ = 1) 75.0
(1) + seq2seq TE (w = −1, w′ = 2) 74.2
(2) Kong et al. 80.6 ± 0.25
(2) + Baseline parser (w = 0) 80.5 ± 0.30
(2) + DNN TE (w = −1, w′ = 1) 81.5 ± 0.25
(2) + seq2seq TE (w = −1, w′ = 1) 81.0 ± 0.17
(2) + seq2seq TE (w = −1, w′ = 2) 80.9 ± 0.33

Table 8: Dependency parsing unlabeled attach-
ment F1 (%) on test (TEST-NEW) sets for baseline
parser and results when augmented with token em-
bedding features. Following Kong et al., we report
three significant digits.

they can be used to improve syntactic analysis
of Twitter. Qualitatively, our token embeddings
are shown to encode sense and POS information,
grouping together tokens of different types with
similar in-context meanings. Quantitatively, us-
ing token embeddings in simple predictors con-
sistently improves performance, even rivaling the
performance of strong structured prediction base-
lines. Our code and trained token embedding mod-
els are publicly available at the authors’ websites.
Future work includes further exploration of token
embedding models, unsupervised objectives, and
their integration with supervised predictors.
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