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Vector representations and vector space
modeling (VSM) play a central role in
modern machine learning. We propose a
novel approach to ‘vector similarity search-
ing’ over dense semantic representations of
words and documents that can be deployed
on top of traditional inverted-index-based
fulltext engines, taking advantage of their
robustness, stability, scalability and ubiq-
uity. We show that this approach allows
the indexing and querying of dense vectors
in text domains. This opens up exciting
avenues for major efficiency gains, along
with simpler deployment, scaling and mon-
itoring. The end result is a fast and scal-
able vector database with a tunable trade-
off between vector search performance and
quality, backed by a standard fulltext en-
gine such as Elasticsearch. We empirically
demonstrate its querying performance and
quality by applying this solution to the
task of semantic searching over a dense
vector representation of the entire English
Wikipedia.

1 Introduction

The vector space model (Salton et al., 1975) of
representing documents in high-dimensional vec-
tor spaces has been validated by decades of re-
search and development. Extensive deployment
of inverted-index-based information retrieval (IR)
systems has led to the availability of robust open
source IR systems such as Sphinx, Lucene or its
popular, horizontally scalable extensions of Elastic-
search and Solr.

Representations of document semantics based
solely on first order document-term statistics, such
as TF-IDF or Okapi BM25, are limited in their ex-
pressiveness and search recall. Today, approaches

based on distributional semantics and deep learn-
ing allow the construction of semantic vector
space models representing words, sentences, para-
graphs or even whole documents as vectors in high-
dimensional spaces (Deerwester et al., 1990; Blei
et al., 2003; Mikolov et al., 2013).

The ubiquity of semantic vector space modeling
raises the challenge of efficient searching in these
dense, high-dimensional vector spaces. We would
naturally want to take advantage of the design and
optimizations behind modern fulltext engines like
Elasticsearch so as to meet the scalability and ro-
bustness demands of modern IR applications. This
is the research challenge addressed in this paper.

The rest of the paper describes novel ways of
encoding dense vectors into text documents, allow-
ing the use of traditional inverted index engines,
and explores the trade-offs between IR accuracy
and speed. Being motivated by pragmatic needs,
we describe the results of experiments carried out
on real datasets measured on concrete, practical
software implementations.

2 Semantic Vector Encoding
for Inverted-Index Search Engines

2.1 Related Work

The standard representation of documents in the
Vector Space Model (VSM) (Salton and Buckley,
1988) uses term feature vectors of very high dimen-
sionality. To map the feature space onto a smaller
and denser latent semantic subspace, we may use
a body of techniques, including Latent Semantic
Analysis (LSA) (Deerwester et al., 1990), Latent
Dirichlet Allocation (LDA) (Blei et al., 2003) or
the many variants of Locality-sensitive hashing
(LSH) (Gionis et al., 1999).

Throughout the long history of VSM develop-
ments, many other methods for improving search
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efficiency have been explored. Weber et al. ran one
of the first rigorous studies that dealt with the inef-
fectiveness of the VSM and the so-called curse of
dimensionality. They evaluated several data parti-
tioning and vector approximation schemes, achiev-
ing significant nearest-neighbour search speedup in
(Weber and Böhm, 2000). The scalability of simi-
larity searching through a new index data structures
design is described in (Zezula et al., 2006). Dimen-
sionality reduction techniques proposed in (Digout
et al., 2004) allow a robust speedup while show-
ing that not all features are equally discriminative
and have a different impact on efficiency, due to
their density distribution. Boytsov shows that the
k-NN search can be a replacement for term-based
retrieval when the term-document similarity matrix
is dense.

Recently, deep learning approaches and tools
like doc2vec (Le and Mikolov, 2014) construct se-
mantic representations of documents D as d = |D|
(dense) vectors in an n-dimensional vector space.

To take advantage of ready-to-use and optimized
systems for term indexing and searching, we have
developed a method for representing points in a
semantic vector space encoded as plain text strings.
In our experiments, we will be using Elastic-
search (Gormley and Tong, 2015) in its ‘vanilla’
setup. We do not utilize any advanced features of
Elasticsearch, such as custom scoring, tokeniza-
tion or a n-gram analyzers. Thus, our method
does not depend on any functionality that is spe-
cific to Elasticsearch, and it is possible (and some-
times even desirable) to substitute Elasticsearch
with other fulltext engine implementations.

2.2 Our Vector to String Encoding Method

Let our query be a document, represented by its
vector ~q, for which we aim to find the top k most
similar documents in D. We want to search ef-
ficiently, indexing and deleting documents from
the index in near-real-time, and in a manner that
could scale by eventual parallelization, re-using
the significant research and engineering effort that
went into designing and implementing systems like
Elasticsearch.

Conceptually, our method consists of encoding
vector features into string tokens (feature tokens),
creating a text document from each dense vec-
tor. These encoded documents are consequently
indexed in traditional inverted-index-based search
engines. At query time, we encode the query vec-

tor and retrieve the subset of similar vectors E,
|E| ≪ |D|, using the engine’s fulltext search func-
tionality. Finally, the small set of candidate vec-
tors E is re-ranked by calculating the exact similar-
ity metric (such as cosine similarity) to the query
vector. This makes the search effectively a two-
phase process, with our encoded fulltext search
as the first phase and candidate re-ranking as the
second.

2.2.1 Encoding Vectors
The core of our method of encoding vectors into
strings lies in encoding the vector feature values
at a selected precision as character strings – fea-
ture tokens.1 This is best demonstrated on a small
example: Let us take a semantic vector of three
dimensions, ~w = [0.12,−0.13, 0.065]. Each feature
token starts with its feature identification (e.g. a
feature number such as 0, 1 etc.) followed by a
precision encoding schema identifier (such as P2,
I10 etc.) and the encoded feature value (such as
i0d12, ineg0d2 etc.) depending on the particular
encoding method. We propose and evaluate three
encoding methods:

rounding Feature values are rounded to a fixed
number of decimal positions and stored
as a string that encodes both the feature
identification and its value. Rounding to
two decimal places produces representa-
tion of ~w as [’0P2i0d12’, ’1P2ineg0d13’,
’2P2i0d07’].

interval quantizes ~w into intervals of fixed length.
For example, with an interval width of 0.1,
feature values fall into intervals starting at 0.1,
−0.2 and 0.0, which we encode as d1, d2 and
d0, respectively. Combined with the interval
length denotation of I10, the full vector is
encoded into the tokens ~w = [’0I10i0d1’,
’1I10ineg0d2’, ’2I10i0d0’].

combined Rounding and interval encoding used
together. Rounding ~w to three decimal
places and using intervals of length 0.2,
we get the representation of ~w as feature
tokens [’0P3i0d120’, ’1P3ineg0d130’,
’2P3i0d065’, ’0I5i0d0’, ’1I5ineg0d2’,
’2I5i0d0’].

1We avoid the use of any special characters such as plus (+)
or minus (−) signs, white spaces etc. inside the tokens. This
is used as a safeguard against any unintended tokenization
within the fulltext search system, so as to avoid having to
define custom tokenizers.
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The intuition behind all these encoding schemes
is a trade-off between increasing feature sparsity
and retaining search quality: we show that some
types of sparsification actually lead to little loss of
quality, allowing an efficient use of inverted-index
IR engines.

2.2.2 High-Pass Filtering Techniques
The rationale behind the next two techniques is
to filter out semantic vector features of low im-
portance, further increasing feature sparsity. This
improves performance at the expense of quality.

Trim: In the trimming phase, a fixed thresh-
old – such as 0.1 – is used. Feature tokens in
the query with an absolute value of the feature
below the threshold are simply discarded from
the query. In the case of our example vector
~w = [0.12,−0.13, 0.065], the tokens representing
the third feature value 0.065 are removed since
|0.065| < 0.1.

Best: Features of each vector are ordered accord-
ing to their absolute value and only a fixed num-
ber of the highest-valued features are added to
the index, discarding the rest. As an example,
with best = 1, only the second feature of −0.13
(the highest absolute value) would be considered
from ~w.

Note that in both cases, this type of filtering
is only meaningful when the feature ranges are
comparable. In our experiments all vectors are
normalized to unit length, ranging absolute values
of features from zero (no feature importance) to
one (maximal feature importance).

2.3 Space and Time Requirements
In this section we summarize and compare the the-
oretical space and time requirements of our pro-
posed vector-to-string encoding and filtering meth-
ods with a baseline of a naive, linear brute force
search. The inverted-index-based analysis is based
on the documentation of the Lucene search engine
implementation2.

While the running time of the naive search is
stable and predictable, the efficiency of the other
optimization methods depends on the data set, such
as its vocabulary size and the expected postings
list sparsity, after the feature token encoding and
filtering. On the other hand, performance can be
influenced by how the method is configurated – for

2https://lucene.apache.org/core/6_5_1/index.
html

example, the expected number of distinct feature
values depends on the precision of the rounding of
the feature values that was used.

The efficiency trade-offs are summarized in Ta-
ble 1. Each document is represented as a vector ~d
of n features computed by LSA over TF-IDF.

Baseline – naive brute force search: The naive
baseline method avoids using a fulltext search alto-
gether, and instead stores all d ‘indexed’ vectors in
their original dense vector representation in RAM,
as an n × d matrix. At query time, it computes
a similarity between the query vector ~q and each
of the indexed document vectors ~d, in a single lin-
ear scan through the matrix, and returns the top k
vectors with the best score.

Efficiency of a naive brute force search: The
index is a matrix of floats of size nd resulting in
𝒪(nd) space complexity. We have chosen the co-
sine similarity as our similarity metric. To calcu-
late cossim between the query and all d documents,
vector ~q of length n has to be multiplied with a
length-normalized matrix of dimensionality n × d,
e.g. 𝒪(nd). Using the resulting vector of d scores,
we then pick the k nearest documents as the final
query result, in 𝒪(d).

Efficiency of encoding: We investigate the ef-
ficiency of our vector-to-string encoding when a
general inverted-index-based search engine is used
to index and search through them.

At worst, we store one token per dimension for
each vector. We need 𝒪(nd) space to store all in-
dexed documents, as is the case with the naive
search. In practice, there are several different con-
stants as naive search saves one float per feature
(four bytes), while our feature tokens are com-
pressed string-encoded feature values and indices
of the sparse feature positions in the inverted index.

Each dimension of the query vector ~q contains a
string-encoded feature q j. For each q j we fetch a
list of documents ci together with term frequency
tn in that document: tf(tn, ci).

For each of these (ci, tf(tn, ci)) pairs we add the
corresponding score value to the score of docu-
ment ci in a list of result-candidate documents. The
score computation contains a vector dot-product
operation in the dimension of the size v of feature
vocabulary V that can be computed in 𝒪(v). Docu-
ment ci is added to the set C of all result-candidate
documents, which we sort in 𝒪(c log c) time and
return the top k results. The whole search is per-
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formed in 𝒪(n · p · v + c log c) steps, where p is the
expected postings list size and c = |C|.
Efficiency of high-pass filtering: We approxi-
mate the full feature vector by storing only the
most significant features, e.g. only the top m di-
mensions. When compared with a naive search,
we save on space: only 𝒪(md), m ≪ n values are
needed.

For each feature value q j we have to find all
documents with the same feature value. We are
able to find the feature set in 𝒪(log j) steps, where
j is the number of distinct indexed values of the
feature. Consequently, we retrieve the matched
documents in 𝒪(l) time, where l is the number of
documents in the index with the appropriate feature
value.

Each of the found documents is added to set C
and its score is incremented for this hit. If repre-
sented with an appropriate data structure, such as
a hash table, we are able to add and increment
scores of the items in 𝒪(1) time. Having all
c = |C| candidate documents over all the separate
feature-searches, we pick and return the top k items
in 𝒪(c) time.

Combined, 𝒪(n · (log j + l) + c) steps are needed
for the search, where j is the expected number of
distinct indexed values per feature and l is the num-
ber of documents in the index per feature value.

3 Experimental Setup

To evaluate our method, we used ScaleText (Rygl
et al., 2016) based on Elasticsearch (Gormley and
Tong, 2015) as our fulltext IR system. The evalua-
tion dataset was the whole of the English Wikipedia
consisting of 4,181,352 articles.

3.1 Quality Evaluation
The aim of the quality evaluation was to investi-
gate how well the approximate ‘encoded vector’
search performs in comparison with the exact naive
brute-force search, using cosine similarity as the
similarity metric. Cosine similarity is definitely
not the only possible metric – we selected cosine
similarity as we needed a fully automatic evalua-
tion, without any need of human judgement, and
because cosine similarity suits our upstream appli-
cation logic perfectly.

We converted all Wikipedia documents into
vectors using LSA with 400 features. We then
randomly selected 1,000 documents from our
Wikipedia dataset to act as our query vectors. By

doing a naive brute force scan over all the vectors
(the whole dataset), we identified the 10 most sim-
ilar ones for each query vector. This became our
‘gold standard’.

We encoded the dataset vectors into various
string representations, as described in Section 2.2.1
and stored them in Elasticsearch.

For evaluating the search, we pruned the val-
ues in the query vectors (see Section 2.2.2) and
encoded them into a string representation. Using
these strings, we performed 1,000 Elasticsearch
searches. For each query, we measured the over-
lap between the retrieved documents and the gold
standard using Precision@k or the Normalized Dis-
counted Cumulative Gain (nDCGk). The mean
cumulative loss between the ideal and the actual
cosine similarities of the top k results (avg. diff.) is
also reported.

Note that since we re-rank |E| results obtained
from Elasticsearch (see Section 2.2), the positions
on which the gold standard vectors were originally
returned by the fulltext engine are irrelevant.

Apart from the vector dimensionality n (the
number of LSA features), we monitored the trim
threshold and the number of best features as de-
scribed in Section 2.2.2. We also experimented
with the number of vectors E retrieved for each
Elasticsearch query as the page parameter.

To provide a comparison with an established
search approach, and to serve as a baseline, we
also evaluated indexing and searching using the
native fulltext indexing and searching capabilities
of Elasticsearch. In this case, the plain fulltext of
every article was sent directly to the fulltext search
engine as a string, without any vector conversions
or preprocessing. For querying, we use the More
Like This (MLT) Query API of Elasticsearch.3 Any
data processing during indexing and querying was
done by Elasticsearch in its default settings with
a single exception: we evaluated multiple values
of the max_query_terms parameter of the MLT
API. We tested the default value (25) plus values
corresponding to the values of the best parameter
used for the evaluation of our method.

We report mainly on the avg. diff., i.e. the mean
difference between the ideal and the actual cosine
similarities of the first ten retrieved documents to
a query, averaged over all 1,000 queries. We also
report Precision@10, i.e. the ratio of the gold stan-

3https://www.elastic.co/guide/
en/elasticsearch/reference/5.2/
query-dsl-mlt-query.html
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Table 1: Comparison of encoding methods in terms of space and time. n is the number of semantic vector
features, d is the number of semantic vectors, m is the number of semantic vector features after high-pass
filtering, p is the expected postings list size (inverted index sparsity), v is the expected vocabulary size per
a feature, c is the number of result-candidate semantic vectors, j the expected number of distinct indexed
values of the feature, and l the expected number of documents in the index per a feature value. For details
see Section 2.3.

naive search token encoding high-pass filtering

space 𝒪(nd) 𝒪(nd) 𝒪(md)
time 𝒪(nd) 𝒪(n · p · v + c log c) 𝒪(n · (log j + l) + c)

dard documents in the first ten results averaged over
all 1,000 queries, and on Normalized Discounted
Cumulative Gain (nDCG10) (Manning et al., 2008,
Section 8.4), where the relevance value of a re-
trieved document is taken to be its cosine similarity
to the query.

3.2 Speed Evaluation

In this section, we evaluate the performance of fea-
ture token strings searches in Elasticsearch, using
various Elasticsearch configurations as well as var-
ious vector filtering parameters.

Our Elasticsearch cluster consisted of 6 nodes,
with 32 GiB RAM and 8 CPUs each, for a total of
192 GiB and 48 cores.

We experimented with several Elasticsearch pa-
rameters: the number of Elasticsearch index shards
(6, 12, 24, 48, 96; always using one replica), the
number of LSA features (100, 200, 400), a trim
threshold of LSA vector values (none, 0.05, 0.10,
0.20), the number of Elasticsearch results used
(Elasticsearch page size; 20, 80, 320, 640), par-
allel querying (1 [serial], 4, 16) and the cluster
querying strategy (querying single-node or round-
robin querying of 5 different Elasticsearch nodes).
Each evaluation batch consisted of 128 queries (ran-
domly selected for each batch) that were used to
ask Elasticsearch one-by-one or in parallel in mul-
tiple queues depending on the evaluation setup.

We report ES avg./std. [s] – the average num-
ber of seconds per request Elasticsearch took (the
‘took’ time from the Elasticsearch response, i.e.
the search time inside Elasticsearch) and its stan-
dard deviation, Request avg./std. [s] – the average
number of seconds and its standard deviation per
request including communication overhead with
Elasticsearch to get the results (i.e. the time of the
client to get the answer), Total time [s] – total num-
ber of seconds for processing all requests in the

batch. This can differ from the sum of average
request times when executing queries in parallel.
The number of features in query vectors that passed
through threshold trimming is reported as Vec. size
avg./std.

4 Results

4.1 Quality Evaluation

Results of the quality evaluation are summarized
in Table 2. The results of our method in different
settings are put side by side with the results of the
brute-force naive search and with Elasticsearch’s
native More Like This (MLT) search. For the MLT
results, the max_query_terms Elasticsearch pa-
rameter is reported in the best column since both
the semantics and the impact on the search speed
are similar.

Figure 1 illustrates the impact of feature value
filtering and the number of retrieved search candi-
dates from Elasticsearch (page size) on its accuracy.
It can be seen that avg. diff. decreases logarithmi-
cally with the page size. The results improve all
the way up to 640 search results (the maximum
value we have tried), which is expected as this in-
creases the size of the subset E that is consequently
ordered (re-ranked) in phase 2 with the precise but
more costly exact algorithm. Increasing the size of
E increases the chance of the inclusion of relevant
results.

The shape of the curve suggests that there would
only be a slight improvement in accuracy, and this
would be at the cost of a substantial drop in per-
formance. The impact of including only a limited
number of features with the highest absolute value
(see Section 2.2.2), is rather low. This is an excel-
lent result with regard to performance as it means
we may effectively sparsify the query vector with
very little impact on search quality. We observe
little difference between no filtering (searching by
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Table 2: Results of quality evaluation. 400 LSA features were used. See Section 3.1 for more details.
Only the subset of results with the top nDCG10 scores are shown. Results with Precision@10 ≥ 0.9 are
shown in bold, with avg. diff. ≤ 0.002 in italics.
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naive search 10 1.0 1.0000 1.0 1.0000 0.0000

MLT 17 10 0.0 0.1967 1.0 0.9206 0.1799
MLT 25 10 0.0 0.2029 1.0 0.9221 0.1698
MLT 40 10 0.0 0.2077 1.0 0.9224 0.1619
MLT 90 10 0.0 0.2120 1.0 0.9210 0.1580
MLT 400 10 0.0 0.2114 1.0 0.9211 0.1568

0.00 160 17 0.0 0.4275 1.0 0.9840 0.0220
0.00 320 17 0.0 0.5281 1.0 0.9949 0.0149
0.00 640 17 0.0 0.6340 1.0 0.9989 0.0101
0.00 40 40 0.0 0.5090 1.0 0.9870 0.0142
0.00 80 40 0.0 0.6215 1.0 0.9940 0.0085
0.00 160 40 0.0 0.7254 1.0 0.9980 0.0051
0.00 320 40 0.1 0.8181 1.0 0.9998 0.0030
0.00 640 40 0.0 0.8883 1.0 0.9989 0.0016
0.00 10 90 0.0 0.3927 1.0 0.9940 0.0323
0.00 20 90 0.0 0.5167 1.0 0.9950 0.0147
0.00 40 90 0.0 0.6314 1.0 0.9970 0.0084
0.00 80 90 0.1 0.7306 1.0 0.9994 0.0051
0.00 160 90 0.1 0.8185 1.0 0.9994 0.0029
0.00 320 90 0.0 0.8818 1.0 0.9988 0.0017
0.00 640 90 0.0 0.9282 1.0 0.9989 0.0010
0.00 20 all 0.1 0.5730 1.0 1.0000 0.0124
0.00 80 all 0.3 0.7870 1.0 1.0000 0.0044
0.00 320 all 0.4 0.9050 1.0 1.0000 0.0016
0.00 640 all 0.4 0.9460 1.0 1.0000 0.0010
0.05 160 17 0.0 0.4276 1.0 0.9837 0.0220
0.05 320 17 0.0 0.5280 1.0 0.9948 0.0149
0.05 640 17 0.0 0.6341 1.0 0.9989 0.0101
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0.05 40 40 0.0 0.5088 1.0 0.9870 0.0142
0.05 80 40 0.0 0.6216 1.0 0.9940 0.0085
0.05 160 40 0.0 0.7255 1.0 0.9980 0.0051
0.05 320 40 0.1 0.8177 1.0 0.9992 0.0030
0.05 640 40 0.0 0.8880 1.0 0.9988 0.0016
0.05 10 90 0.0 0.3927 1.0 0.9940 0.0323
0.05 20 90 0.0 0.5168 1.0 0.9950 0.0147
0.05 40 90 0.0 0.6313 1.0 0.9970 0.0084
0.05 80 90 0.0 0.7305 1.0 0.9990 0.0051
0.05 160 90 0.1 0.8187 1.0 0.9997 0.0029
0.05 320 90 0.0 0.8815 1.0 0.9988 0.0017
0.05 640 90 0.0 0.9281 1.0 0.9988 0.0010
0.05 10 all 0.0 0.3923 1.0 0.9960 0.0321
0.05 20 all 0.0 0.5154 1.0 0.9976 0.0149
0.05 40 all 0.0 0.6320 1.0 0.9985 0.0085
0.05 80 all 0.0 0.7321 1.0 0.9990 0.0051
0.05 160 all 0.0 0.8179 1.0 0.9990 0.0030
0.05 320 all 0.1 0.8810 1.0 0.9992 0.0018
0.05 640 all 0.1 0.9302 1.0 0.9991 0.0009
0.10 320 17 0.0 0.4981 1.0 0.9888 0.0171
0.10 640 17 0.0 0.6008 1.0 0.9969 0.0117
0.10 160 40 0.0 0.4409 1.0 0.9771 0.0216
0.10 320 40 0.0 0.5432 1.0 0.9891 0.0148
0.10 640 40 0.0 0.6435 1.0 0.9968 0.0099
0.10 320 90 0.0 0.5434 1.0 0.9893 0.0148
0.10 640 90 0.0 0.6436 1.0 0.9968 0.0099
0.10 160 all 0.0 0.4410 1.0 0.9770 0.0216
0.10 320 all 0.0 0.5431 1.0 0.9889 0.0148
0.10 640 all 0.0 0.6438 1.0 0.9972 0.0099
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Figure 1: The impact of the number of best features selected (with no trimming) and the page size (the
number of search results retrieved from Elasticsearch) on Avg. diff. and Precision@10.
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(b) Parallel querying in 4 parallel queues, 32 queries each
(128 queries in total)

Figure 2: The impact of value filtering and the number of retrieved search results on the average request
time. The x-axis shows the average precision, the y-axis the average request time. The size of the points
indicates the number of retrieved results: large = Elasticsearch page size 320, medium = page size 80,
small = 20. The color of the points indicates the trim thresholds: white = 0.00 (no filtering), gray = 0.05,
black = 0.10.

all 400 encoded features) and trimming to only the
90 best query vector values. However, trimming to
as low as 6 values results in a significant increase
in avg. diff. See Figure 1a.

Our methods scores above the MLT baseline in
all of the followed metrics, even with aggressive
high-pass filtering and with a small page size.

We expect that similar setup parameters will
work similarly, at least for general multi-topic text
datasets. Its behaviour for a dramatically different
dataset, such as images instead of texts, or without
normalized feature ranges, cannot be directly in-
ferred and remains to be investigated in our future
work. However, we expect our speed optimization
methods to be applicable in some form, with the
concrete parameters to be validated on the particu-
lar dataset and algorithmic setup.

4.2 Speed Evaluation

Selected results of our speed evaluation are sum-
marized in Table 3. For clarity, we selected only
the configurations using 400 LSA features and
48 Elasticsearch shards, as this setup turned out
to provide the optimal performance on the Elastic-
search cluster and dataset we used according to
the quality evaluation (see Section 4.1), where the
same parameters were used.

The speed of the native Elasticsearch MLT
search is summarized in Table 4. The speed is
comparable to our method when high-pass filtering
is involved.

Figure 2 displays the impact of value filter-
ing and the number of retrieved search results on
the average request time. Comparing consecutive
queries (Figure 2a) with four parallel queries on
the same Elasticsearch cluster configuration (Fig-
ure 2b) shows that at the expense of doubling the
response time, we are able to answer four requests
in parallel.

The best results in Figure 2 are located in the
bottom right corner where the precision is high
and the response time is low. For our dataset and
algorithm (LSA with 400 features), the best overall
results are represented by the largest gray dots, i.e.
retrieving 320 vectors from Elasticsearch while
filtering the query vector to roughly 90 values via
trimming with a threshold of 0.05.

To achieve the optimal results, we suggest re-
trieving as large a set of candidates (Elasticsearch
page size, E) as the response-time constraints al-
low, as the page size seems to have significantly
lower influence on the response time compared to
trimming, while having a significant positive effect
on accuracy.

Our experiments were done on the Wikipedia
dataset. Wikipedia is a multi-topic dataset – arti-
cles are on a wide variety of different topics using
different keywords (names of people, places and
things, etc) and notation (text only articles, articles
on mathematics using formulae, articles on chem-
istry using different formulae, etc) are included.
This provides enough room for the machine learn-
ing algorithms to build features that reflect these
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Table 3: Results of speed evaluation using 400 LSA features, batches of 128 queries and 48 Elasticsearch
shards. Column Parallel q. shows the number of parallel queries used together, Trim is the threshold for
high-pass filtering of the features, Page is the number of vectors retrieved from Elasticsearch for each
query (see Section 2.2.2), ES avg./std. is the average and standard deviation of the number of seconds
per request Elasticsearch took, Request avg./std. is the average and deviation of the number of seconds
per request including processing overheads, Total time is the total number of seconds for processing all
requests, Vec. size avg./std. is the average/deviation of the number of values in query vectors that passed
high-pass filtering.

Para
llel

q.

Trim Page
ES avg. [s]

ES std
. [s]

Request
avg. [s]

Request
std

. [s]

Total
tim

e [s]

Vec.
siz

e avg.

Vec.
siz

e std
.

1 0.00 20 1.1949 0.0737 1.2418 0.2864 160.760 400.0000 0.0000
1 0.00 80 1.1656 0.0710 1.1829 0.0713 153.246 400.0000 0.0000
1 0.00 320 1.2066 0.0893 1.2494 0.0894 161.783 400.0000 0.0000
1 0.05 20 0.0935 0.0202 0.1013 0.0204 14.521 93.5781 20.9268
1 0.05 80 0.0935 0.0214 0.1119 0.0228 15.898 91.5781 22.9822
1 0.05 320 0.1635 0.1014 0.2085 0.1032 28.360 87.2500 20.6908
1 0.10 20 0.0241 0.0057 0.0320 0.0057 5.574 19.3516 4.4222
1 0.10 80 0.0259 0.0059 0.0435 0.0061 7.107 19.0469 4.3027
1 0.10 320 0.0940 0.0966 0.1383 0.0971 19.357 18.0703 4.7863
4 0.00 20 2.9093 0.3943 2.9325 0.3989 94.750 400.0000 0.0000
4 0.00 80 2.8842 0.2968 2.9211 0.3004 94.548 400.0000 0.0000
4 0.00 320 2.8621 0.2897 2.9439 0.2938 95.290 400.0000 0.0000
4 0.05 20 0.1919 0.0491 0.2094 0.0531 7.212 89.3516 21.9351
4 0.05 80 0.2027 0.0525 0.2327 0.0563 7.948 93.2422 20.6166
4 0.05 320 0.2583 0.0983 0.3442 0.1025 11.538 86.3203 24.1855
4 0.10 20 0.0422 0.0080 0.0550 0.0078 2.253 18.8047 4.4547
4 0.10 80 0.0703 0.0708 0.1151 0.0884 4.174 19.5547 4.2625
4 0.10 320 0.1547 0.1093 0.2468 0.1161 8.411 17.8750 4.4459

16 0.00 20 11.5664 3.2998 11.6019 3.3018 94.480 400.0000 0.0000
16 0.00 80 11.5408 2.6209 11.6033 2.6262 94.535 400.0000 0.0000
16 0.00 320 11.5144 3.7843 11.7623 3.7645 95.112 400.0000 0.0000
16 0.05 20 0.7870 0.1988 0.8116 0.2020 6.896 88.4141 21.6681
16 0.05 80 0.7253 0.2309 0.8802 0.3051 7.463 87.9063 23.1528
16 0.05 320 0.8511 0.2350 1.0453 0.2491 9.332 89.9141 23.0604
16 0.10 20 0.1354 0.0182 0.1660 0.0169 1.625 18.4375 3.9484
16 0.10 80 0.1845 0.0859 0.2613 0.0891 2.400 18.7656 4.8404
16 0.10 320 0.4181 0.1442 0.6213 0.2065 5.416 18.0703 4.3807

unique markers of particular topics and makes par-
ticular features significantly irrelevant for particular
documents in the dataset.

For general multi-topic text datasets, we recom-
mend trimming features values by their absolute
value below 5% of the maximum (i.e. between
−0.05 and 0.05 in our experiments). Trimming
more feature tokens decreases the precision with
almost no influence on the response times, while
keeping more feature tokens in the index has al-
most no positive effect on the precision but slows
down the search significantly.

5 Conclusions

In this paper we have demonstrated a novel method
for the conversion of semantic vectors into a set
of string ‘feature tokens’ that can be subsequently
indexed in a standard inverted-index-based fulltext
search engine, such as Elasticsearch.

Two techniques of feature tokens filtering were
demonstrated to further significantly speed up the
search process, with an acceptably low impact on
the quality of the results.

Using Elasticsearch MLT on document texts as a
baseline, our method performs better than the base-
line on all the followed metrics. With sufficient
query vector feature reduction, our method is faster
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Table 4: Results of speed evaluation using
the native Elasticsearch More Like This (MLT)
search (no parallel queries) using 48 shards.
max_query_terms is the maximum number of
query terms per query that were selected by Elastic-
search. ES avg./std. is the average and standard
deviation of the number of seconds per request
Elasticsearch took.

System max_query_terms ES avg. [s] ES std. [s]

MLT 17 0.0468 0.0233
MLT 25 0.0595 0.0270
MLT 40 0.0745 0.0322
MLT 90 0.1090 0.0490
MLT 400 0.1458 0.0978

than MLT. With moderate query vector feature re-
duction, we can achieve excellent approximation
of the gold standard while being only marginally
slower than the MLT.

An important conclusion from our experiments
is that the search speed can be improved even with
filtering the query vectors alone and without the
need to trim index vectors. A pleasant practical
consequence of this finding is that a vector search
engine based on our proposed scheme could allow
the users to define the filtering parameters dynami-
cally, at search time rather than at indexing time. In
this way, we let the users choose the approximation
trade-off between the search speed and accuracy,
i.e. use weaker filtering parameters for searches
where accuracy is critical, and more aggressive
filtering where speed is critical.

In our future work we will focus on the valida-
tion of our techniques on different types of data
(such as images or audio data) and different text
representations (such as doc2vec) in specific do-
mains (such as question answering).
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